JPS5856489A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS5856489A
JPS5856489A JP15498781A JP15498781A JPS5856489A JP S5856489 A JPS5856489 A JP S5856489A JP 15498781 A JP15498781 A JP 15498781A JP 15498781 A JP15498781 A JP 15498781A JP S5856489 A JPS5856489 A JP S5856489A
Authority
JP
Japan
Prior art keywords
fet
stripe
active layer
layer
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15498781A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Yano
矢野 光博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15498781A priority Critical patent/JPS5856489A/en
Publication of JPS5856489A publication Critical patent/JPS5856489A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06233Controlling other output parameters than intensity or frequency
    • H01S5/06243Controlling other output parameters than intensity or frequency controlling the position or direction of the emitted beam

Abstract

PURPOSE:To deflect an optical beam along a stripe by forming an FET as a drive circuit for generating a light deflection for a semiconductor laser, controlling the gate voltage of an FET, thereby asymmetrically varying the carrier distribution in an active layer. CONSTITUTION:In the state that a voltage is applied between a p type side electrode 15 and an n type side electrode 16 in an ordinary laser oscillation, a carrier distribution in the active layer 8 is symmetrical. When 1-3V of a voltage is applied between the source 12 and the drain 14 of an FET by flowing a current through the drain electrode 14 of the FET and a voltage of -0.5-0.5V is applied between the gage 13 and the drain 14, a current flows into the region 17, becoming swept asymmetrical distribution is produced toward the current injecting direction, i.e., the carrier at the right end of the strip width in the layer 8 is increased. Accordingly, the optical beam can be deflected toward the right side. Since the current amount injected from the FET is controlled by varying the gate voltage of the FET, the light can be deflected at the desired angle.

Description

【発明の詳細な説明】 本発明は牛導体発光装置に係り、特に、光偏向機能を有
する複合装置に関するO 近年、半導体レーザと他の能動素子を組み合わせたり、
或いは、半導体レーザに発光装置以外の新たな機能を持
たせて複合装置を構成する試みがなされている。特番こ
、半導体レーザの様な発光装置と駆動回路、例えばトラ
ンジスタ、FET等の組み会わせによる複合装置では、
光強度の変調は可能であるが、光偏向機能を有していな
かった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductor light emitting device, and particularly to a composite device having a light deflection function.In recent years, semiconductor lasers and other active elements have been combined,
Alternatively, attempts have been made to construct a composite device by providing a semiconductor laser with a new function other than the light emitting device. This special number is a composite device that combines a light emitting device such as a semiconductor laser and a drive circuit, such as a transistor or FET.
Although it is possible to modulate light intensity, it does not have a light deflection function.

光強匿変調のみならず偏向ができる半導体発光装置では
、光信号を空間的に異なる場所に光検出器を配列し、°
゛         光1−ムを入射させるようにTれ
ば、光の多段スイッチ或いは光変調器を構成できる。
In semiconductor light-emitting devices that can perform not only optical intensity modulation but also polarization, photodetectors are arranged in spatially different locations to detect optical signals.
゛ If T is set so that a beam of light is incident, an optical multi-stage switch or an optical modulator can be constructed.

本発明の目的は、光偏向を起こさせるための駆動回路を
、半導体レーザが形成されている同一基板上に作成した
複合装置を提供するζこある。
An object of the present invention is to provide a composite device in which a drive circuit for causing optical deflection is formed on the same substrate on which a semiconductor laser is formed.

本発明は、レーザ発振を起こす活性層と該活性層より大
きい禁制帯幅を有し、且つ該活性層を挾んだ第1及び第
2のクラッド層とを有するダブルへテロ構造の半導体層
上に半絶縁性層及びFET動作層を順次配置し、前記F
ET動作層にドレイン及びソースを設けてFETを構成
し、レーザ発光領域に電流を流す第1の電流路を画定す
るストライプ形状の不純物領域と該第1の不純物領域に
近接して第2の電流路を画定するストライプ形状の不純
物領域を設け、該第2の不純物領域をFETのソースま
たはドレインと接続した光偏向機能を備えた半導体発光
装置である。
The present invention is directed to a double heterostructure semiconductor layer having an active layer that causes laser oscillation, and first and second cladding layers that have a larger forbidden band width than the active layer and sandwich the active layer. A semi-insulating layer and a FET operation layer are sequentially arranged on the
A drain and a source are provided in the ET operating layer to form an FET, and a stripe-shaped impurity region defining a first current path through which current flows through the laser emitting region and a second current path adjacent to the first impurity region are formed. This is a semiconductor light emitting device having a light deflection function in which a stripe-shaped impurity region defining a path is provided and the second impurity region is connected to the source or drain of an FET.

一般壷こ、半導体レーザでは、作り付けの導波路或いは
電流注入領域をストライプ状に形成してあり、動作とし
ては、このストライプ状領域に沿う固定された方向に放
射ビームが存在し、一定の光強度分布を得るようにして
いるものである。
In a typical semiconductor laser, a built-in waveguide or current injection region is formed in a stripe shape, and the operation is such that a radiation beam exists in a fixed direction along this stripe region and has a constant light intensity. This is to obtain the distribution.

本発明では、光偏向を起こさせる駆動回路としてFBT
を設け、該FETのゲート電圧を制御する、即ち、FE
T動作層中に空乏層を広げるととlこより、活性層内の
キャリア分布を変化させ、ストライプfこ沿った光ビー
ムを偏向させるものである。
In the present invention, an FBT is used as a drive circuit for causing optical deflection.
is provided to control the gate voltage of the FET, that is, the FE
By expanding the depletion layer in the T active layer, the carrier distribution in the active layer is changed and the light beam along the stripe f is deflected.

このような偏向を実現するには一1活性層のストライプ
幅付近に非対称なキャリア分布を作り出せば、その放射
ビームの方向はストライプに沿う方向からずれる旨の現
象を利用している。物理的には、非対称キャリア分布に
よって生じる非対称光強度分布と放射ビームの空間的な
フーリエ変換によって結ばれることから説明される。
In order to realize such deflection, a phenomenon is utilized in which if an asymmetric carrier distribution is created in the vicinity of the stripe width of the active layer, the direction of the emitted beam deviates from the direction along the stripe. Physically, this is explained by the connection between the asymmetric light intensity distribution caused by the asymmetric carrier distribution and the spatial Fourier transform of the radiation beam.

光偏向の動作原理を簡単に説明すると次の通りである。The operating principle of optical deflection is briefly explained as follows.

通常のストライプ形半導体レーザでは、例えば不純物拡
散、プロトン照射、I)n接合など何らかの技術1こ依
ってストライプ領域内に注入電流を絞り、このストライ
プ幅内ζこ於いてレーザ発振を起こさせるようにしてい
る。
In a typical striped semiconductor laser, some technique such as impurity diffusion, proton irradiation, I)n junction, etc. is used to narrow down the injection current within the stripe region and cause laser oscillation within this stripe width. ing.

第1図はその様子を説明する為の模式的説明図であり、
レーザ発振を起こす活性層である第1の半導体層1は、
それより禁制帯幅が広い第2及び第3の半導体層2及び
3で挾才れて二重へテロ接合が構成されている。岡、4
はストライプ電極、5は電極、S!はストライプ領域を
それぞれ指示している。
Figure 1 is a schematic explanatory diagram to explain the situation.
The first semiconductor layer 1, which is an active layer that causes laser oscillation, is
A double heterojunction is formed between the second and third semiconductor layers 2 and 3, which have wider forbidden band widths. Oka, 4
is a stripe electrode, 5 is an electrode, S! each indicates a stripe area.

このような構成になっているので半導体層1内に注入さ
れたキャリアは厚み方向に有効に閉じ込められ、その結
果、キャリア濃度の横方向(ストライプ幅方向)の分布
は第2図に見られるようになる。即ち、キャリアはスト
ライプ中央部から対称形lこ分布する。
With this structure, carriers injected into the semiconductor layer 1 are effectively confined in the thickness direction, and as a result, the distribution of carrier concentration in the lateral direction (stripe width direction) is as shown in Figure 2. become. That is, carriers are distributed symmetrically from the center of the stripe.

前記のような状態lこ於いて、半導体層1は横方向に於
ける屈折率分布を持っていないので、第3図に見られる
ような対称形の近視野像、頗ち、発光面fこ於ける光強
朋分布が得られ、また、同じく対称形の遠視野像、即ち
、光の放射方向の分布が得られている。
In the above state, since the semiconductor layer 1 does not have a refractive index distribution in the lateral direction, a symmetrical near-field image, a neck, and a light emitting surface f as shown in FIG. A symmetrical far-field pattern, that is, a distribution in the radiation direction of light, is also obtained.

ところで、何らかの方法で、半、導体層l#こ於いて横
方向に屈折率差を持たせ、左右非対称にすることができ
れば光の偏向を行なうことができる。
By the way, if it is possible to provide a difference in refractive index in the lateral direction in the semi-conductive layer l# by some method and make it asymmetrical, light can be deflected.

例えば第4図或いは第5図に見られるようlこストライ
プ端近傍に屈折率変化を持たせると近視野像及び遠視野
像は同図ζこ見られるように非対称性を持つようにする
ことができ、特に遠視野像は偏向させることができる。
For example, if the refractive index is changed near the edge of the stripe as shown in Figures 4 and 5, the near-field and far-field images can be made to have asymmetry as shown in the figure. In particular, the far-field image can be deflected.

本発明では同一基板上に半導体レーザとFETを組み合
わせること憂こより、活性層のストライプ幅付近に非対
称なキャリア分布を作り出し、非対称屈折率分布を笑現
させるものである。尚、第4図及び第5図(こ見られる
θは偏向角を表わし、また島屈折率差Δnはストライプ
幅等に依存するものである。
In the present invention, rather than combining a semiconductor laser and an FET on the same substrate, an asymmetric carrier distribution is created near the stripe width of the active layer, thereby realizing an asymmetric refractive index distribution. Note that θ shown in FIGS. 4 and 5 represents the deflection angle, and the island refractive index difference Δn depends on the stripe width and the like.

以下、本発明の詳細な説明の実施例を用いて説明するこ
とにする。第6図は本実施例の半導体発光装置の斜視図
である。
Hereinafter, the present invention will be explained in detail using examples. FIG. 6 is a perspective view of the semiconductor light emitting device of this example.

図に於いて、6はn形ガリウム・ヒ素(GaAs )基
板、7は厚さ5〜10μmのn形ガリウム・アルミニウ
ムΦヒ素(Ga0.7AtO,3As) クラy ドN
、8は厚さ0.1〜0.3μmのGa O,97Ato
、03As活性層、9は厚さ1〜2μmのp形Ga O
,7Ato、3Asクラッド層、10は厚さ0.5〜1
μmのn′″形GaAs半絶縁層、11は厚さ0.2〜
1μm不純物濃度1011〜10 ” cm−”のn形
GaAs F E Tの動作層、12はFETのソース
電極、13はFgTのゲート電接、14はFETのドレ
イン電極、15はp側電極、16はn91tlt極、1
7は例えばカドミウム(Cd )又は亜鉛(Zn)を拡
散して形成したp形ストライブ生成用領域をそれぞれ示
している。本実施例では、p形ストライプ生成用ノン1
7に近接して第2のp形ストライプ生成用領域17’が
形成され、電極として、レーザ発振用の電流を流す為の
主電極、即ちp@電極15とキャリア分布を変化させる
為の電流を流す制御電極、即ち、FETのドレインを極
14が形成されていて、制御電極14に電流を流して光
偏向を行っている。尚、p形ストライプ生成用領域17
と17′の間をエツチングlこよって分離しているが、
活性層8のストライプ幅のキャリア分布の変化を大きく
シ、光偏向を有効に行なうためである。
In the figure, 6 is an n-type gallium arsenide (GaAs) substrate, and 7 is an n-type gallium aluminum Φ arsenide (Ga0.7AtO, 3As) substrate with a thickness of 5 to 10 μm.
, 8 is GaO,97Ato with a thickness of 0.1 to 0.3 μm
, 03As active layer, 9 is p-type GaO with a thickness of 1 to 2 μm
, 7Ato, 3As cladding layer, 10 has a thickness of 0.5 to 1
μm n''' type GaAs semi-insulating layer 11 has a thickness of 0.2~
An active layer of an n-type GaAs FET with a 1 μm impurity concentration of 10 cm to 10 cm, 12 the source electrode of the FET, 13 the gate electrode of the FgT, 14 the drain electrode of the FET, 15 the p-side electrode, 16 is n91tlt pole, 1
Reference numeral 7 indicates a p-type stripe generation region formed by diffusing, for example, cadmium (Cd) or zinc (Zn). In this example, a non-1 for p-type stripe generation is used.
A second p-type stripe generation region 17' is formed adjacent to 7, and serves as an electrode for passing a current for laser oscillation to a main electrode, that is, a p@ electrode 15, and a current for changing carrier distribution. A control electrode, that is, a pole 14 is formed at the drain of the FET, and a current is caused to flow through the control electrode 14 to deflect light. Note that the p-type stripe generation region 17
and 17' are separated by etching,
This is to greatly change the carrier distribution of the stripe width of the active layer 8 and to effectively deflect light.

第6図の装置の断面図である第7図に於いて、S、を領
域17のストライプ幅、S、を領域17′のストライプ
幅、領域17及Q17′と活性層8との距離をt1領域
17と領域17′との間の距離をkとすると、 Sl −3〜20〔μm〕 S、−1〜10〔μm〕 t −0,2〜0.5〔μm〕 k  −0,2〜2〔4m) が適当な範囲である。領域17と17′間距離にとして
は注入された活性層内のキャリアの拡散長より短力)〈
採り、ストライプ幅S、は大きくTると制御電流が増加
するので好ましくない。
In FIG. 7, which is a cross-sectional view of the device shown in FIG. 6, S is the stripe width of the region 17, S is the stripe width of the region 17', and t1 is the distance between the regions 17 and Q17' and the active layer 8. If the distance between region 17 and region 17' is k, then Sl -3 to 20 [μm] S, -1 to 10 [μm] t -0,2 to 0.5 [μm] k -0,2 ~2 [4 m] is an appropriate range. The distance between regions 17 and 17' is shorter than the diffusion length of the injected carriers in the active layer)
However, if the stripe width S is too large, the control current will increase, which is not preferable.

尚、第6図からもわかるようIこ、本実施例の牛導体発
光装置では図面の右側に光偏向を起こさせる駆動回路、
即ち、FETが形成されている。
As can be seen from FIG. 6, in the conductor light emitting device of this embodiment, the drive circuit that causes light deflection is located on the right side of the drawing.
That is, an FET is formed.

次に、本実施例に於ける動作を観明する。今、FBTを
動作させずに、p側電極15及びn11g電極16間に
電圧を印加して通常のレーザ発振を行なわせている状態
に於いては、光ビームがストライプと同方向、即ち、労
開面に垂直な方向に放射されている。この状態に於ける
活性層8内のキャリア分布は第8因に実線で示す通りで
ある。即ち、p側電極15から注入される電流に依り、
ストライプ幅S、付近に対称形にキャリアの分布を生じ
るものである。しかし、FgTのソース12・ドレイン
14間の電圧を1〜3V、ゲート13、ドレイン14間
の電圧を−0,5〜05vに印加すると、該領域17内
へ電流が流れ、第8図に破線で示しである通り、電流が
注入された方向に向ってすそを引くような分布をとる〇 これを屈折率分布で見た場合が第9図に示されている。
Next, the operation in this embodiment will be observed. Now, when normal laser oscillation is performed by applying a voltage between the p-side electrode 15 and the n11g electrode 16 without operating the FBT, the light beam is directed in the same direction as the stripe, that is, when the laser oscillates in the same direction as the stripe. It is radiated in a direction perpendicular to the open plane. The carrier distribution within the active layer 8 in this state is as shown by the solid line in the eighth factor. That is, depending on the current injected from the p-side electrode 15,
This produces a symmetrical distribution of carriers near the stripe width S. However, when the voltage between the source 12 and drain 14 of FgT is applied to 1 to 3V, and the voltage between the gate 13 and drain 14 is applied to -0.5 to 0.5V, a current flows into the region 17, and the broken line in FIG. As shown in Fig. 9, the distribution is such that the tail is drawn in the direction in which the current is injected. This is shown in Fig. 9 as a refractive index distribution.

即ち、電流が注入されない場合は実線で示されている分
布になる@これは、活性層3が第8図に見られるように
中ヤリア濃度が2 X 101@Ccm−” )である
場合゛であって、一般にキャリア濃度が零であわば1点
鎖線で示すように平担であるが、前記した程度のキャリ
アが入りていると、10−”〜10−3程度低下し、そ
のときの屈折率n0は約3.52である。このように屈
折率がマイナスになっても、キャリアの利得があるので
光は通常の如く放射される。しかしながら、FETを動
作させることによってキャリアが注入された場合には屈
折率分布が破線に見らnるよう奢こ変化する。即ち、洩
れモードも非対称になる。
That is, when no current is injected, the distribution is as shown by the solid line. Generally, when the carrier concentration is zero, it is flat as shown by the dashed line, but if the carrier concentration is as high as described above, it decreases by about 10-" to 10-3, and the refraction at that time The ratio n0 is approximately 3.52. Even if the refractive index becomes negative in this way, light is emitted as usual because of the carrier gain. However, when carriers are injected by operating the FET, the refractive index distribution changes drastically as shown by the broken line. That is, the leakage mode also becomes asymmetric.

従って、FETからのキャリアの注入がある状態では、
ストライプの右側に於いて伝播する光の波面が進められ
ることになり、光の進行方向は曲げられる。この様子が
第10図に模式的な平面説明図として表わされている。
Therefore, in a state where carriers are injected from the FET,
The wavefront of the light propagating on the right side of the stripe is advanced, and the traveling direction of the light is bent. This situation is shown in FIG. 10 as a schematic plan view.

この結果、第11図に見られるようζこ、光強度分布は
、キャリアの注入がない実線の状態からキャリア注入の
ある破線の状態になり、方向のずれに対して非対称な分
布となる。
As a result, as shown in FIG. 11, the light intensity distribution changes from a solid line without carrier injection to a broken line with carrier injection, resulting in an asymmetric distribution with respect to the directional shift.

光が偏向される角度θは3°〜10’程度が可能であっ
て、電流注入量、即ち、FETゲート電圧に依存してい
る。
The angle θ at which the light is deflected can be about 3° to 10′ and depends on the amount of current injection, that is, the FET gate voltage.

本実側例によれば、PETを動作させることにより、活
性層内のストライプ幅右端のキャリアが増加するため、
キャリア分布は非対称形となり、光ビームを右側に偏向
することができる。また、FETから注入される電流量
をFETのゲート電光を所望の角就に偏向することがで
きる。
According to this practical example, by operating PET, the number of carriers at the right end of the stripe width in the active layer increases;
The carrier distribution becomes asymmetric and the light beam can be deflected to the right. Furthermore, the amount of current injected from the FET can be used to deflect the gate light of the FET to a desired angle.

前記冥雄側の変形例を2つ紹介することにする。I will introduce two modified examples of the Meio side.

第6図番こ関して観明した部分と同部分を同記号で指示
しである。
The same parts as those observed in Figure 6 are indicated by the same symbols.

第12図は、第6図の半導体レーザ装置のり2ラド層7
#こ段差を設けたことを特徴とする半導体レーザ装置の
斜視図である。クラッド層7の段差部曇こ電流が注入さ
れると、厚み方向に導波される光の伝播定数の変化に依
り活性層8内に笑効的に屈折率差を設けたことになり第
4図及び第5図に見られるような動作を実現できる。
FIG. 12 shows the semiconductor laser device glue 2 rad layer 7 of FIG. 6.
FIG. 2 is a perspective view of a semiconductor laser device characterized by providing a step. When a clouding current is injected into the stepped portion of the cladding layer 7, a difference in refractive index is effectively created in the active layer 8 due to a change in the propagation constant of light guided in the thickness direction. The operations shown in FIG. 5 and FIG. 5 can be realized.

第13図は、第12図の半導体レーザ装置の断面図であ
る。クラッド層7の薄くしである部分での厚さをmとす
るとm −0,2〜0.5(μm〕が適当更にでき、光
ビームの偏向を容易にできるという効果がある。
FIG. 13 is a sectional view of the semiconductor laser device of FIG. 12. If the thickness of the thinned portion of the cladding layer 7 is m, it can be suitably m -0.2 to 0.5 (μm), which has the effect of facilitating the deflection of the light beam.

第14図は、光出力を制御Tる機能を設けた半導体レー
ザ装置の斜視図である。図に於いて、18は光出力制御
用のFBTンーソー極、19は光出力制御用FETゲー
ト電極、20は光出力制御用FITドレイン電極を示し
ている。図面では、左側に光出力制御用のPET、右側
に光偏向用のFgTを設けている。光出力制御用のFE
Tのゲート電圧を制御することにより、p形ストライプ
生成用領域17に訛れる電流量を変化することができる
為、光出力を制御できる。同、レーザを発振させる為に
は閾値以上の電流をNさなければならない。
FIG. 14 is a perspective view of a semiconductor laser device provided with a function of controlling optical output. In the figure, reference numeral 18 indicates an FBT source pole for controlling optical output, 19 indicates an FET gate electrode for controlling optical output, and 20 indicates an FIT drain electrode for controlling optical output. In the drawing, a PET for controlling optical output is provided on the left side, and an FgT for optical deflection is provided on the right side. FE for light output control
By controlling the gate voltage of T, the amount of current flowing through the p-type stripe generation region 17 can be changed, so the optical output can be controlled. Similarly, in order to cause the laser to oscillate, the current must be greater than the threshold value.

本変形例によれば、光偏向を可能にするばかりです<、
光出力をも制御できるという効果かある。
According to this modification, it only makes light deflection possible.
This also has the effect of being able to control the light output.

本発明によnは、光偏向を起こさせるための駆動回路を
、半導体レーザが形成されている同一基板上着こ作成で
きる。
According to the present invention, a drive circuit for causing optical deflection can be fabricated on the same substrate on which a semiconductor laser is formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のIjA埋を説明する為の半導体レーザ
装置の断面図、第2図はキャリア濃度分布を表わす函、
第3−乃至第5図は屈折率分布と近視野像及び遠視野像
の関係を表ねTls図、第6@及。 び第7図は本実施例を表わす斜視図及び断面図1第8図
は活性層に於けるキャリア分布を表わす線図、第9図は
活性層lこ於ける屈折率分布を異わT線図、第10図は
光の進行方向を説明する為の装置の平面図、第11図は
光強度の分布を表わす線図、第12乃至第14図は本実
施例の変形例を表わす斜視図及び断面図である。 1.8 活性層 2.3,7.9  クラッド層 10 半絶縁性層 11  FHTa作層 12FB’l’ソース電極 13  FETゲート電極 14  pwTドレイン電極 15  P側電極 16 11側電極 17  P形ストライプ生成用領域 17’ 第2のp形ストライプ生成用領域第1図 1↓1↓↓i     〜3 一一一一一−−−−−−−−−−−−−−−フr1/2 第21¥] 第 6 図 f6 第 q 図 第8図 第 q 図 痢 10  図 第 12  図 稟!3図
FIG. 1 is a cross-sectional view of a semiconductor laser device for explaining the IjA embedding of the present invention, and FIG. 2 is a box showing the carrier concentration distribution.
Figures 3 to 5 show the relationship between the refractive index distribution and the near-field image and far-field image. FIG. 7 is a perspective view and a cross-sectional view showing this embodiment. FIG. 8 is a diagram showing the carrier distribution in the active layer, and FIG. 9 is a T-line diagram showing the refractive index distribution in the active layer. 10 is a plan view of the device for explaining the traveling direction of light, FIG. 11 is a diagram showing the distribution of light intensity, and FIGS. 12 to 14 are perspective views showing modifications of this embodiment. and a cross-sectional view. 1.8 Active layer 2.3, 7.9 Cladding layer 10 Semi-insulating layer 11 FHTa layer 12 FB'l' source electrode 13 FET gate electrode 14 PwT drain electrode 15 P-side electrode 16 11-side electrode 17 P-type stripe generation Region 17' Second p-type stripe generation region FIG. 1 1↓1↓↓i ~3 ¥] Figure 6 f6 Figure q Figure 8 Figure q Diarrhea 10 Figure 12 Diarrhea! Figure 3

Claims (1)

【特許請求の範囲】[Claims] レーザ発振を起こす活性層と、″該活性層より大きい禁
制帯幅を有し、且つ該活性層を挾んだ第1及び第2のク
ラッド層とを有するダブルへテロ構造の半導体層上に半
絶縁性層及びFET動作層を順次配置し、前記FET動
作層にドレイン及びソースを設けてFETを構成し、レ
ーザ発光領域に電流を流す第1の電流路を画定するスト
ライプ形状の不純物領域と該第1の不純物領域に近接し
て第2の電流路を画定するストライプ形状の不純物領域
を設け、該第2の不純物領域をFITのソースまたはド
レインと接続したことを特徴とする半導体発光装置。
A semiconductor layer having a double heterostructure has an active layer that causes laser oscillation, and first and second cladding layers that have a larger forbidden band width than the active layer and sandwich the active layer. An insulating layer and an FET operation layer are arranged in sequence, a drain and a source are provided in the FET operation layer to constitute an FET, and a stripe-shaped impurity region defining a first current path through which current flows through the laser emission region is formed. 1. A semiconductor light emitting device comprising: a stripe-shaped impurity region defining a second current path in proximity to a first impurity region; and the second impurity region is connected to a source or drain of an FIT.
JP15498781A 1981-09-30 1981-09-30 Semiconductor light emitting device Pending JPS5856489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15498781A JPS5856489A (en) 1981-09-30 1981-09-30 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15498781A JPS5856489A (en) 1981-09-30 1981-09-30 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS5856489A true JPS5856489A (en) 1983-04-04

Family

ID=15596234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15498781A Pending JPS5856489A (en) 1981-09-30 1981-09-30 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS5856489A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236190A (en) * 1985-04-12 1986-10-21 Agency Of Ind Science & Technol Semiconductor laser
US5202896A (en) * 1991-07-16 1993-04-13 The United States Of America As Represented By The Secretary Of The Air Force Bipolar inversion channel field effect transistor laser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154081A (en) * 1974-05-31 1975-12-11
JPS5339142A (en) * 1976-09-22 1978-04-10 Hitachi Ltd Photo deflecting element
JPS5670681A (en) * 1979-11-14 1981-06-12 Hitachi Ltd Semiconductor luminous element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154081A (en) * 1974-05-31 1975-12-11
JPS5339142A (en) * 1976-09-22 1978-04-10 Hitachi Ltd Photo deflecting element
JPS5670681A (en) * 1979-11-14 1981-06-12 Hitachi Ltd Semiconductor luminous element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61236190A (en) * 1985-04-12 1986-10-21 Agency Of Ind Science & Technol Semiconductor laser
US5202896A (en) * 1991-07-16 1993-04-13 The United States Of America As Represented By The Secretary Of The Air Force Bipolar inversion channel field effect transistor laser

Similar Documents

Publication Publication Date Title
JP2681044B2 (en) Light modulator
US6392781B1 (en) High speed semiconductor optical modulator and fabricating method thereof
US4430741A (en) Semiconductor laser device
JPH10173291A (en) Semiconductor laser device
US20030146440A1 (en) Semiconductor optical integrated device
JPH07106685A (en) Semiconductor laser
US4862474A (en) Semicondutor laser device
US5912475A (en) Optical semiconductor device with InP
US8538221B1 (en) Asymmetric hybrid photonic devices
JPS5856489A (en) Semiconductor light emitting device
JPS5831592A (en) Buried semiconductor laser
US5113283A (en) Optical intensity modulator
JPH04184973A (en) Long-wavelength light transmitting oeic
JPS6115385A (en) Semiconductor laser
US6272161B1 (en) High power diode type laser devices
US4571729A (en) Semiconductor laser having an inverted layer in a plurality of stepped offset portions
JPS6243355B2 (en)
JPS621277B2 (en)
KR100261242B1 (en) 3-beam laser diode
JP2001024211A (en) Semiconductor light receiving element
KR100255694B1 (en) Semiconductor laser diode
JPS6185885A (en) Photo semiconductor
JP2006080427A (en) Semiconductor light emitting element
JPS6239088A (en) Semiconductor laser
JPS59197181A (en) Semiconductor laser