JPS5856336A - Composite dry etching device - Google Patents

Composite dry etching device

Info

Publication number
JPS5856336A
JPS5856336A JP15438181A JP15438181A JPS5856336A JP S5856336 A JPS5856336 A JP S5856336A JP 15438181 A JP15438181 A JP 15438181A JP 15438181 A JP15438181 A JP 15438181A JP S5856336 A JPS5856336 A JP S5856336A
Authority
JP
Japan
Prior art keywords
etching
chamber
substrate
sample
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15438181A
Other languages
Japanese (ja)
Other versions
JPH0324776B2 (en
Inventor
Kiyoshi Asakawa
浅川 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP15438181A priority Critical patent/JPS5856336A/en
Publication of JPS5856336A publication Critical patent/JPS5856336A/en
Publication of JPH0324776B2 publication Critical patent/JPH0324776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes

Abstract

PURPOSE:To combine etching, the heat treatment, etc., and to perform processing by etching desirable for compound semiconductor holding the surface of a sample in purity as it is by a method wherein a dry etching device is constituted of four chambers of a preparation chamber, an etching chamber, a heat treatment chamber and a surface analizing chamber. CONSTITUTION:The etching device is consisting of the preparation chamber 1, the etching chamber 2, the heat treatment chamber 3 and the surface analizing chamber 4, and the respective chambers are intercepted by gate valves 8, 9, 10 inserted in the coupling parts 5, 6, 7 to constitute respectively independent vacuum devices. At the etching chamber 2, etching gas excited into plasma condition is injected through a waveguide 13, and applies impacts of ions on the surface of the sample 17 to perform etching. At this time, neutral and radical particles reach the surface of the sample due to the thermal motion to perform etching by chemical reaction. Moreover the device thereof is provided with a mass analizing means 18 for particles.

Description

【発明の詳細な説明】 本発明はドライエツチング装置に関するものである。[Detailed description of the invention] The present invention relates to a dry etching apparatus.

ドライエツチング技術は゛、今日、半導体、1%に81
を用い九電子工llにおいて、LSI(大規模集積回路
)の基幹製造技術の一つとして、極めて1妥な位置を占
めている0元来、エツチング技術はIC(集積囲路)を
製造する上で、電極・艶縁愉Q半導体等の薄膜や基板材
料を固有のパターンに加工する為の不可欠な技@’oあ
る。近都、ICの集積度が飛躍的に向上し、前記固有パ
ターンの最小寸法が1ξクーン(μ−)以下の微小寸法
になるに及び、旧来用いられていた化学薬品の溶液によ
るウェット(湿式)エツチングは、結晶ウェハー内での
パターン寸法積度・均一性が皐いため使用工程が限定さ
れ、最近では専らドライエツチングが用いられている。
Dry etching technology accounts for 81% of semiconductors today.
Etching technology occupies an extremely reasonable position as one of the core manufacturing technologies for LSI (Large-Scale Integrated Circuits) at Kyushu Electronics. There are essential techniques for processing thin films and substrate materials such as electrodes and glossy Q semiconductors into unique patterns. In recent years, the degree of integration of ICs has improved dramatically, and the minimum dimension of the unique pattern has become microscopic, less than 1ξ Kuhn (μ-). Etching has a limited pattern size and uniformity within a crystal wafer, so the process in which it can be used is limited, and recently dry etching has been exclusively used.

ドライエツチングには、活性ガス(例えばハρゲンガス
等)プラズマ中の化学活性粒子(9ジカル、イオン等)
と基板物質との化学反応を利用し九ブツズマエッチング
と、不活性ガス(例えばアルゴン等)を高電界中でイオ
ン化し、これを電場で加速して基板物質に衝撃を与え二
削り取るイオンビームエツチング(又はイオンjリング
)に大別される。前者は、使用ガスと基板材料との組合
せ次第では、エツチング速度が非常に大きい為ICの製
造時間を短縮できるという利点を有する。反面、ウェッ
トエツチングと同様、エツチングが等方的である為、レ
ジストマスクパターンを用いて選択エツチングな゛行5
時マスク直下にエツチングが遂行し、微細寸法のエツチ
ングが困難であるという欠点がある。これに対し、後者
はエツチングがイオンの加速方向に速やかに進む為エツ
チングの^方性が強く、従って急峻な断面を持った所謂
シャープカットのエツチングが可能であるという利点を
有する。反面、後者はイオン衡撃のみでエツチングが行
われる為前者に比べて一般にエツチング速度が6桁近く
小さくその上基板に与える損傷は遥かに大きいという欠
点がある。
For dry etching, chemically active particles (9 radicals, ions, etc.) in active gas (e.g. halogen gas, etc.) plasma are used.
9-button etching, which utilizes a chemical reaction between the substrate material and the substrate material, and ion beam etching, which ionizes an inert gas (such as argon) in a high electric field and accelerates it in the electric field to impact and scrape the substrate material. (or ion J-ring). The former method has the advantage that the etching rate is very high depending on the combination of the gas used and the substrate material, so that the IC manufacturing time can be shortened. On the other hand, like wet etching, etching is isotropic, so selective etching using a resist mask pattern is not possible.
However, etching is performed directly under the mask, making it difficult to etch fine dimensions. On the other hand, the latter has the advantage that the etching progresses quickly in the direction of acceleration of the ions, so that the etching is strongly directional, and that it is therefore possible to perform so-called sharp-cut etching with a steep cross section. On the other hand, since the latter etching is performed only by ion bombardment, the etching rate is generally about six orders of magnitude lower than the former, and furthermore, the damage to the substrate is much greater.

近都、前述のプラズマエツチングとイオンビームエツチ
ングの双方の利点を活用した反応性イオンエツチング(
又は反応性スパッタエツチング。
Kinto has developed reactive ion etching (reactive ion etching) that utilizes the advantages of both plasma etching and ion beam etching mentioned above.
or reactive sputter etching.

反応性ドライエツチングとも言う)が脚光を浴びている
(also called reactive dry etching) has been attracting attention.

かかる反応性イオンエツチングの装置構造は、多楕多様
なものが知られているが、基本的には真空装置内で7ノ
ードとカソードを構成する対向電極例えば平行平板鑞電
極の一方1例えばカソード匈にエツチング用基板を置き
、活性ガス、例えばへpゲン化炭素(CFa 、 CC
Ik等)や/SPグン化硫黄(SF−等7髭ガスを導入
し、両電極間に高電圧、例えばIKVIi度のRF電圧
(しばしば周波数塾、56MHz)を印加してプラズマ
放電を発生せしむる様になりている。このとき、基板側
のカソード電極近傍には所−イオンシースが発生し、カ
ソードは負の直流電位となるので、前記プラズマ中のイ
オンが加速され、基板に衝撃を与える。従りてかかる構
造においては前述の如く、基板表面にはグッズマ反応に
よる化学的エツチングとイオン衝撃による物哩的エツチ
ングの両エツチング現象が適当な寄与率で絡み合いなが
らエツチングが進行する。
A wide variety of apparatus structures for such reactive ion etching are known, but basically, in a vacuum apparatus, seven nodes and a counter electrode, for example, one side of a parallel plate solder electrode, which constitutes a cathode, are connected to one side of the cathode. The substrate for etching is placed on the substrate, and an active gas such as carbon hepide (CFa, CC
A plasma discharge is generated by introducing a gas such as sulfur (Ik, etc.) or /SP gunned sulfur (SF-, etc.) and applying a high voltage, for example, an RF voltage of IKVIi degree (often frequency, 56 MHz) between both electrodes. At this time, an ion sheath is generated near the cathode electrode on the substrate side, and the cathode has a negative DC potential, so the ions in the plasma are accelerated and impact the substrate. Therefore, in such a structure, as described above, etching progresses on the substrate surface while the two etching phenomena, chemical etching due to Goodsmer reaction and physical etching due to ion bombardment, are intertwined at appropriate contribution rates.

この為かかる反応性イオンエツチングは急峻な加工断面
のパターンが速いエツチング速度で得られ、しかもエツ
チングの材料依存性が強いので。
For this reason, reactive ion etching allows a pattern with a steep cross section to be obtained at a high etching rate, and the etching is highly dependent on the material.

加工精度が優れている上にプルセスの経済性が高いとい
う利点を有する。又イオン衡撃による基板の損傷も、*
述のイオンビームエツチンfK比べると遥かに少ない。
It has the advantage of superior machining accuracy and high economic efficiency. Also, damage to the board due to ion bombardment, *
This is far less than the ion beam etching fK mentioned above.

ところで、出を用いたLSIとは別に、G番Ajlli
の所am−v族化合物半導体を用いたICの研究e開発
が注目される様になってきた。かかるICの狙いの1つ
はこれらの化合物半導体の易動度がSiに比べて大きい
事を利用して高速の論lJ@路ICな実現しようとする
ものである。他の狙いは前記化合物半導体がレーザー、
フォトダイオード等の光素子を実現できる事から、これ
ら光素子と前記高速電子素子をモノリシックに組み込ん
だIC。
By the way, apart from the LSI using the
Research and development of ICs using am-v group compound semiconductors is now attracting attention. One of the aims of such an IC is to realize a high-speed logic IC by taking advantage of the fact that the mobility of these compound semiconductors is greater than that of Si. Another aim is that the compound semiconductor can be used as a laser,
Since it is possible to realize optical elements such as photodiodes, ICs monolithically incorporate these optical elements and the high-speed electronic elements.

即ちオプトエレクトsy 二yり(0pto−E1@t
romie IC以後略し−1:0EICと呼ぶ)を実
現しようというものである。411K後者は現在、実用
化が急速に過展している光通信の分野で、将来、党ファ
イバーケーブルを中心とする通信網が社命のい九るとこ
ろに張りめぐらされるようになった時、前記網目の結線
部に登場するものであり、大容量、光回線の高速スイッ
チ、中継器あるいは信号処理等の機能を有するICと考
えられているものである。
That is, opto-elect sy 2yri (0pto-E1@t
romie IC (hereinafter referred to as -1:0EIC). The latter is currently being used in the field of optical communications, which is rapidly being put into practical use. It appears in the connection section of the mesh, and is considered to be an IC with functions such as large capacity, high-speed optical line switch, repeater, or signal processing.

前記化1411半導体IC&′製造する場合、5t−x
cと同様、ドライエツチング技術は不可欠な重要技術で
ある。しかしながら、当該のドライエツチング技術が適
用される対象材料、あるいは要求される加工性能につい
てみると、特に前記0EICを1に81する場合、5i
−ICの場合とかなり様相を異にする。即ち、5i−I
Cの場合、被エツチング材料は例えばMO8構造におけ
るゲート電極(例えばポリシリ:I/)配−用M電極あ
るいはこれのプンタクトホール形成の為の絶縁II(例
えばシリコン酸化膜、sl化膜なと)等であうた。又加
工KIN請される条件はパターンの高密度化の為、加工
寸法がナプ4クロンの微小領域′まで可能であり、且つ
加工断面形状が急峻である事、エツチングの材料選セス
の経済性)が大である事等々であった。
When manufacturing the above chemical formula 1411 semiconductor IC&', 5t-x
Similar to c., dry etching technology is an essential and important technology. However, when looking at the target material to which the dry etching technology is applied or the required processing performance, especially when increasing the 0EIC to 1, the 5i
-The situation is quite different from the case of IC. That is, 5i-I
In the case of C, the material to be etched is, for example, the M electrode for disposing the gate electrode (for example, polysilicon: I/) in the MO8 structure, or the insulation II (for example, silicon oxide film, SL film, etc.) for forming puncture holes therein. etc. In addition, the conditions for processing KIN are that the pattern is highly dense, so the processing dimensions can be as small as 4 micrometers, and the processing cross-sectional shape is steep, and the material selection process for etching is economical. was large, etc.

これに対し、例えばGaAs−0EICの場合、エツチ
ングされるべき領域は1例えばレーザにおいて従来II
I開によって得られていた出射端面部、あるいは電流狭
窄もしくは光導波構造用活性層の加工等、光学的な活性
層を含むGaAj自身である事が多い。従って、加工K
i!Iせられた条件は可能な限りエツチングによる表面
損傷及び表面汚染を抑制する事であり、又成る場合には
鏡面の如く滑らかに仕上げる事である。更に成る場合に
は加工断面プロフィールを時に鋭<、fi直に、時に正
弦波状に近く制御することである。
In contrast, for example in the case of a GaAs-0EIC, the region to be etched is one
It is often GaAj itself including an optically active layer, such as the output end face obtained by I-opening, or processing of an active layer for current confinement or an optical waveguide structure. Therefore, processing K
i! The conditions imposed are to suppress surface damage and surface contamination due to etching as much as possible, and if possible, to achieve a mirror-like smooth finish. Furthermore, the machined cross-sectional profile is sometimes controlled to be sharp, sometimes almost sinusoidal.

上述の如く、化合物中導体0EICに対し、ドライエツ
チングに要求されるべき加工性能には、真に厳しいもの
がある。かかる要求を満足せしむる為の方法としては、
第1にドライエツチング前後、あるいは加工中に表面の
損傷−汚染・@!J場的化学的状態を正確に検知する事
であり、第2に前述の化学的、及び−哩的両エッチング
機構の寄与率を正確に制御できる事であり、更に第3に
表面損傷を検知した時には速やかに損傷を1復せLむる
手段な設ける事等である。これに対し、従来のドライエ
ツチング装置、とりわけ、加工性能に優れ【いる点が多
いといわれる前述の反応性イオンエツチング装置に着目
しても、上記の要求を満足するには程遠いといわねばな
らない。即ち、従来の装置において、前記化学的・物理
的エツチング現象の寄与率は、一般に印加電圧、イオン
電流。
As mentioned above, the processing performance required for dry etching for conductor in compound 0EIC is truly severe. As a way to satisfy these demands,
First, surface damage - contamination - @! before and after dry etching or during processing. Second, it is possible to accurately control the contribution ratio of both the chemical and chemical etching mechanisms mentioned above, and third, it is possible to detect surface damage. In the event of such damage, measures should be taken to quickly reverse the damage. On the other hand, even if we focus on conventional dry etching equipment, especially the aforementioned reactive ion etching equipment which is said to have excellent processing performance in many respects, it must be said that it is still far from satisfying the above requirements. That is, in conventional devices, the contribution rate of the chemical/physical etching phenomenon is generally determined by the applied voltage and ion current.

導入ガス種、ガス圧等にようて決定付けられるがこれら
のバクメータは装置の構造に依存している。
This is determined by the type of gas introduced, the gas pressure, etc., but these vacuum meters depend on the structure of the device.

従って、前記バクメータを任意に変えて前記化学的エツ
チングと物理的エツチングを独立に制御でする範囲は、
装置によって異なるものの、一般KNい領域に限られて
いる。更に、前記化学的エツチング機構の寄与率が大き
−・条件下では、基板物質と化学活性ガスが反応して生
じた生成物の蒸気圧が低いと基板表面Kllす、汚染源
としてエツチングのムラを生ずる事があるか、現在知ら
れている反応性イオンエツチング装置では、これら基a
m面の残渣を定量的に、もしくは定性的に分析する手段
を備えていない。又、前記物理的エツチング機構の寄与
率が大きいエツチング条件下では前述の如(イオン衡撃
による基板表面損傷が発生するが、現在の反応性イオン
エツチング装置ではかかる表面損傷を定量的もしくは定
性的に分析したり、表面損傷を回復させ九りせしむる手
段を備え【いない。この様な事情は、反応性イオンエツ
チング装置のみならず、前述の従来知られたプ2スマエ
ッチyグ装置やイオンビームエッチンク装置においても
同様であった。
Therefore, the range in which the chemical etching and physical etching can be controlled independently by changing the bacmeter is as follows:
Although it varies depending on the device, it is generally limited to a certain range. Furthermore, under conditions where the contribution rate of the chemical etching mechanism is large, if the vapor pressure of the product produced by the reaction between the substrate material and the chemically active gas is low, the substrate surface will be contaminated, causing uneven etching as a source of contamination. In the currently known reactive ion etching equipment, these groups a
It does not have a means to quantitatively or qualitatively analyze m-plane residue. Furthermore, under etching conditions in which the contribution rate of the physical etching mechanism is large, damage to the substrate surface occurs due to ion bombardment (as described above), but current reactive ion etching equipment cannot quantitatively or qualitatively reduce such surface damage. There is no means for analyzing or repairing surface damage.This situation is not limited to reactive ion etching equipment, but also to the previously known plasma etching equipment and ion beam etching equipment mentioned above. The same was true for etching equipment.

以上の様に、従来のドライエツチング装置は化合物中導
体IC,特にGaAs等のt−v*化合瞼牛導体を用い
AOE I Ctl−製造する為のエツチング装置とし
ては、多くの欠点を有していた。
As mentioned above, conventional dry etching equipment has many drawbacks as an etching equipment for manufacturing AOE I Ctl using compound medium conductor ICs, especially tv* compound conductors such as GaAs. Ta.

本発明の目的はこれらの欠点を除去した新しい構造のド
ライエツチング装置を提供するものである。本発明によ
れば、真空装置内にて、エツチングガスとしての気相と
、被エツチング基板としての同相との物理的もしくは化
学的相互作用をなさしめる手段を設けたエツチング装置
において、鋏エツチング装置が準備室・エツチング室・
熱処理室及びII!内分析富の4室から構成され、前記
エツチング室は少なくとも前記気相拳固相関の物思的%
L(は化学的相互作用をせしむる手段と、蚊相互作用K
m与する1次もしくは2次粒子の質量分析手段を備え、
前記熱#l&理塞は少なくとも基板を加熱する手段と、
基板加熱時に発生する、基板構成元素の化学量論比の変
動を補償する手段と、基板表面層の結晶状部を評価する
手段とを備え、前記表面分析室は少なくとも基板表面層
の構成元素もしくは表面吸着元素の同定及び化学結合状
態の分析な可能ならしめる手段を備え、更に前記準備室
・エツチング室・熱処理室及び表面分析室は各各の結合
部に挿入されたゲートパルプで遮断されて独立に真空排
気され、基板はロードロツタ機構によって、前記4室間
を移送する可能ならしめる事を特徴とする複合ドライエ
ツチング装置が得られる。
An object of the present invention is to provide a dry etching apparatus of a new structure which eliminates these drawbacks. According to the present invention, in an etching apparatus provided with a means for causing a physical or chemical interaction between a gas phase as an etching gas and the same phase as a substrate to be etched in a vacuum apparatus, the scissors etching apparatus is used. Preparation room/Etching room/
Heat treatment chamber and II! Consisting of four houses of internal analysis and wealth, the etching chamber is responsible for at least % of the physical relationship of the gas phase and solidity.
L (is a means of forcing chemical interaction, and mosquito interaction K
comprising means for mass spectrometry of primary or secondary particles giving m;
The heat #1 & barrier includes means for heating at least the substrate;
The surface analysis chamber is equipped with a means for compensating for fluctuations in the stoichiometric ratio of the substrate's constituent elements that occur when the substrate is heated, and a means for evaluating the crystalline portion of the substrate's surface layer. It is equipped with means to enable the identification of surface-adsorbed elements and the analysis of chemical bonding states, and the preparation chamber, etching chamber, heat treatment chamber, and surface analysis chamber are separated by gate pulp inserted into each joint. A composite dry etching apparatus is obtained in which the substrate is evacuated and the substrate can be transferred between the four chambers by a load rotor mechanism.

次に図面を用いて本発明の詳細な説明する。Next, the present invention will be explained in detail using the drawings.

第1図は、本発明実施例の構成概略図である。FIG. 1 is a schematic diagram of the configuration of an embodiment of the present invention.

同図において、準備室l、エツチング1izs熱縄埋室
3及び表面分析室4は結合部5.6及び7に挿入された
ゲートパルプ8,9及びlOによってである。同図にお
いて、イオンシャワーエツチング部がプラズマ室11 
、マイクロ波導波管13 、 /1ρゲン化合物のエツ
チングガス導入管14及びイオン引出し用グリッド12
から成っている。
In the figure, the preparation chamber 1, the etching chamber 3 and the surface analysis chamber 4 are formed by gate pulps 8, 9 and 1O inserted into the joints 5, 6 and 7. In the figure, the ion shower etching section is located in the plasma chamber 11.
, a microwave waveguide 13 , an etching gas introduction tube 14 for /1ρ gene compound, and an ion extraction grid 12
It consists of

複数種のエツチングガスの切り換え・流量制御等が可能
なガスツー−コントローラ15から、ガス導入管14を
通して、プラズマ室11に送り込まれたエツチングガス
は、導波管13を通りて注入され、λ4 G11zのマ
イクロ波によりプラズマ状11に励起され【いる。グツ
ズV室の周辺はプラズマ収束用のマグネットムで覆われ
ている。プラズマ室11にはイオン又は中性ラジカル状
態の、)〜−ゲンガス又はハロゲン化金物ガスが存在し
ているが、このうちイオン状態の粒子は、グリッド12
に印加し九電場により加速されてプラズマ室外に飛び出
し。
The etching gas is sent into the plasma chamber 11 through the gas introduction pipe 14 from the gas-to-controller 15, which is capable of switching between multiple types of etching gases and controlling the flow rate. It is excited into a plasma-like state 11 by microwaves. The area around the Gutsuzu V chamber is covered with a magnet for plasma convergence. )~-gen gas or metal halide gas in an ion or neutral radical state is present in the plasma chamber 11. Of these, particles in an ionic state are separated from the grid 12.
It is accelerated by the nine electric fields applied to it and flies out of the plasma chamber.

基板支持台16上に固定した試料17の表面にイオン鶴
撃を与え、エツチングを行う。この時、前記グッズマ富
内に存在する中性ラジカル粒子は、前記グリッドにより
【は加速さ些ないが、熱運動によりプラス−riilを
飛び出し、試料表面に到来した粒子は化学反応により試
料表面のエツチングを行5゜電界により加速されて試料
面に到来したイオン(1次粒子)の一部は、支持台16
に設けた透過孔を通過して矢印21を通りて四重1ia
i質量分析計18に夫人し、元素分析が行われる。同様
に前記1次粒子が試料表面に衡撃を与え九時に基板から
飛び出した粒子(2次粒子)の5ち、矢印nの方向に飛
来した粒子は、四重111m質量分析計19に夫人し元
素分析が行われる。これら質量分析針は1次粒子、2次
粒子の元素の同定と同時に定量分析もある程度可能であ
るので、前記プラズマ室への所定エツチングガス流量、
イオン引出し電圧に対する試料入射1次粒子と2次粒子
の関係、卸ちスパッタ率等に関する情報を入手できる。
Ion bombardment is applied to the surface of the sample 17 fixed on the substrate support 16 to perform etching. At this time, the neutral radical particles existing in the goods matrix are accelerated by the grid, but they fly out due to thermal motion, and the particles that arrive at the sample surface undergo a chemical reaction that causes etching of the sample surface. A part of the ions (primary particles) that are accelerated by the electric field and arrive at the sample surface are transferred to the support table 16.
Pass through the permeation hole provided in the
i A mass spectrometer 18 is used to perform elemental analysis. Similarly, among the particles (secondary particles) that the primary particles hit the sample surface and flew out from the substrate at 9 o'clock, the particles that flew in the direction of the arrow n are transferred to the quadruple 111m mass spectrometer 19. Elemental analysis is performed. These mass spectrometer needles are capable of identifying the elements of primary particles and secondary particles as well as quantitative analysis to some extent, so that a predetermined etching gas flow rate to the plasma chamber,
Information on the relationship between primary particles and secondary particles incident on the sample with respect to ion extraction voltage, wholesale sputtering rate, etc. can be obtained.

尚、頌は#気孔である。又、当然ながら、大気中から準
備室(第1図1)K入れられた試料はゲートパルプ8な
開いて当該のエツチング室2に送り込まれエツチング終
了と同時にゲートパルプ9を開いて隣室3に転送される
。これら試料の転送は以下の説明の場合も含めて全てロ
ードロツタ機構により行われる。
In addition, the ode is #stoma. Also, as a matter of course, the sample introduced into the preparation chamber (Fig. 1) K from the atmosphere is sent to the corresponding etching chamber 2 by opening the gate pulp 8, and at the same time as the etching is completed, the gate pulp 9 is opened and transferred to the adjacent chamber 3. be done. All of these sample transfers, including those described below, are performed by a load rotor mechanism.

第3図は、第1図の熱処理室3の具体的構造説明図であ
る。図において、熱処理用ヒーターが組込まれた試料支
持台31に固定された試料32は熱処理を行5前に高速
反射量電子線回折(所@ R眠D)33により、表面の
結晶状11に関する分析を行い、ドライエツチングによ
る表面損傷度を評価する。
FIG. 3 is a diagram illustrating a specific structure of the heat treatment chamber 3 shown in FIG. 1. In the figure, a sample 32 fixed on a sample support stand 31 with a built-in heater for heat treatment is analyzed for surface crystallinity 11 by high-speed reflection electron diffraction (at R-D) 33 before being subjected to heat treatment. and evaluate the degree of surface damage caused by dry etching.

斜は、前記RHEEDの回折パターンを投射するスクリ
ーンである。上記表面損傷が大きい場合には試料支持台
31内のヒーターに通電して試料を高温処理し、損傷回
復を計る。熱旭理条件例は、700℃15分である。こ
の時、試料32がGaAsの場合は、んがm発し、試料
裏面層が化学量論比か櫨動する事が多い。この為、h蒸
着源35を設け、これによりA−を蒸着しながら熱地震
を行い室内のM分圧を制御する必要がある。肖、フォト
にミネセンス評価用光ビーム入射窓謁及び表面清浄化の
為のアルゴンイオン銃37は必l!に応じて設ける。本
島処理室も、前エツチング室と同様独立の排気孔部な通
して排気されている。前記エツチング室の真空度は最高
到達時で10〜10 Tsrr 、エツチング時lO4
〜16’τ・ryであり九が、当熱部瑠室は1a4〜1
0  ↑orrK到達する。この為前述のム―蒸着は清
浄な雰囲気中で行われる為、分子線蒸着に近く、従って
前記熱処理時のh補償は極めて効果的に行われる。
The diagonal is a screen that projects the diffraction pattern of the RHEED. If the surface damage is large, the heater in the sample support stand 31 is energized to treat the sample at a high temperature to recover from the damage. An example of heat treatment conditions is 700°C for 15 minutes. At this time, if the sample 32 is made of GaAs, gas is emitted and the back layer of the sample often moves in a stoichiometric ratio. For this reason, it is necessary to provide an h evaporation source 35 and use it to perform thermal earthquake while evaporating A- to control the M partial pressure in the room. A light beam entrance window for evaluating the luminescence and an argon ion gun 37 for surface cleaning are a must for the photo! Provided accordingly. The main processing chamber is also evacuated through an independent exhaust hole, similar to the pre-etching chamber. The degree of vacuum in the etching chamber is 10 to 10 Tsrr when the maximum is reached, and 1O4 during etching.
~16'τ・ry and 9, but the heat section Rumuro is 1a4~1
0 ↑orrK is reached. For this reason, since the above-mentioned mu-evaporation is performed in a clean atmosphere, it is close to molecular beam deposition, and therefore h compensation during the heat treatment is performed extremely effectively.

は、前記ドフイエッチング直前、または直後)す1時と
して前記熱処理直後となることもある。
may be immediately before or immediately after the heat treatment.

試料42がいずれの場合も当室にて表面分析を行5o4
3はオージェ電子分光針(ムEB)、4B及び46は各
々X線励起光電子分光(xps)用xIs源及び紫外線
励起光電子分光(UPS)用紫外線源分析機である。歯
表面分析室では主としてムESによって試料表面層の元
素分析(Rさ方向分布も含む)が得られ、XP8 、U
PSによって試料表面層元素又は表面吸着元素の化学結
合状態が明らかとなる。肖、排気孔47は前記2室と同
様独立の排気系につながっており、歯表面分析室&−1
0〜→1 10  Torrの超高真空に保つている。
In either case, sample 42 was subjected to surface analysis in our laboratory.5o4
3 is an Auger electron spectroscopy needle (MUEB), 4B and 46 are an xIs source for X-ray excitation photoelectron spectroscopy (XPS) and an ultraviolet source analyzer for ultraviolet excitation photoelectron spectroscopy (UPS), respectively. In the tooth surface analysis room, elemental analysis (including distribution in the R direction) of the sample surface layer is mainly obtained using MuES, and XP8, U
PS reveals the chemical bonding state of the sample surface layer elements or surface adsorbed elements. The exhaust hole 47 is connected to an independent exhaust system like the two chambers mentioned above, and is connected to the tooth surface analysis chamber &-1.
It is maintained at an ultra-high vacuum of 0 to 1 10 Torr.

次に本発明の効果な、実施例な用いて述ベムまず、本発
明が特KG&AIの如き化合物中導体のogxcな製造
するために考案され九ドライヱッチング装置である事は
前述した通りである。この場合要求される加工性能を、
再度ここで明確化すると、まず表面損傷又は汚染が極力
抑制され、加工I!面が極めて滑らかであり、更に加工
断面は成る時は極めて急峻で鏡面の如き平面である事が
必要である。これに対し、従来8l−LSI  K対し
て様様な点で優れてい友反応性イオンエツチング装置は
、エツチング直前もしくは直後大気中に晒す事なく試料
表面層の元素分析あるいは化学結合状態評価を行5手段
や、エツチングによりて発生する表面損傷の回復や、汚
染源の追求を行う手段を全く持ち会わせていなかっ九。
Next, the effects of the present invention will be described using examples. First, as mentioned above, the present invention is a dry etching apparatus devised for producing OGXC conductors in compounds such as KG&AI. In this case, the required machining performance is
To clarify again here, first of all, surface damage or contamination is suppressed as much as possible, and processing I! The surface must be extremely smooth, and the machined cross section must be extremely steep and mirror-like. In contrast, the friend-reactive ion etching system, which is superior to the conventional 8l-LSI K in various respects, can perform elemental analysis or chemical bond state evaluation of the sample surface layer without exposing it to the atmosphere immediately before or after etching. They had no means of repairing surface damage caused by etching or searching for the source of contamination9.

従うて従来の装置は第1図のエツチング室のみから構成
されてい九に過ぎないと言える。これに対し、本発明で
はまずエツチング直前に表面分析富にて試料表面状態の
正確な評価が可能な為、試料毎の表面前魁狸状繍のパラ
クキに関する情報が得られ、従ってかかるバラネキを補
正する為のエツチング条件の設定が容易となる。又、イ
オン衡撃が支配的である嫌なエツチングを過度に行って
表面損傷が着しい場合には、大気に晒す事なく、即ち試
料表面を清浄に保ったまま熱処理室において損傷回復が
可能であり、又回復後の不完全さ次第では°再度エツチ
ング時に戻して化学反応が支配的である様なエツチング
条件下で損傷を新たに加える事なく古い損傷層を除去す
る事ができる。この様に、本発明の装置では試料表面を
清浄に保ったままエツチングφ熱部U−表面分析をいろ
いろ組み合せることにより従来の装置では達成されなか
った化合物牛導体に鼠ましいエツチング加工を行う事が
可能であり、この事が本発明最大の効果であり、利点で
ある。
Therefore, it can be said that the conventional apparatus consists of only nine etching chambers as shown in FIG. In contrast, in the present invention, since it is possible to accurately evaluate the sample surface condition by surface analysis immediately before etching, it is possible to obtain information regarding irregularities in the front surface raccoon stitch for each sample, and to correct such irregularities. Etching conditions for etching can be easily set. In addition, if the surface is severely damaged due to excessive etching where ion equilibrium is dominant, the damage can be repaired in the heat treatment chamber without exposing the sample to the atmosphere, that is, while keeping the sample surface clean. Also, depending on the incompleteness after recovery, the old damaged layer can be removed by etching again without adding new damage under etching conditions where chemical reactions are dominant. In this way, the device of the present invention performs a delicate etching process on compound conductors, which could not be achieved with conventional devices, by combining etching φ hot part U-surface analysis in various ways while keeping the sample surface clean. This is the greatest effect and advantage of the present invention.

向、本発明実施例ではエツチング室に所謂イオンシャワ
ーエツチング方式を導入した。これは当方式がプラズマ
中のイオンの挙動を制御し易い構造である事に着目した
為である。その他エツチングの方式としては有磁場マイ
クロ波グ2ズマエッチング等も有望であり、本発明の装
置に採用する事は容易である。又、実施例ではtIK3
図の熱処理方式としてヒーターを用いた電気炉7二一ル
方式を採用したがその他レーザービーム7二−ル、電子
ビームアニールを用いる事も可能である。
In the embodiment of the present invention, a so-called ion shower etching method was introduced into the etching chamber. This is because we focused on the fact that this method has a structure that makes it easy to control the behavior of ions in plasma. Other etching methods such as magnetic field microwave and two-dimensional etching are also promising, and can be easily employed in the apparatus of the present invention. In addition, in the example, tIK3
Although an electric furnace 721 method using a heater was adopted as the heat treatment method shown in the figure, it is also possible to use a laser beam 721 method or an electron beam annealing method.

以上実施例を用いて本発明の詳細な説明し九が本発明の
特許の権利は前記実施例にとどまる事なく、特許請求の
範囲に示す全ての複合ドライエツチング装置に及ぶ。
Although the present invention has been described in detail using the embodiments above, the patent rights of the present invention are not limited to the embodiments described above, but extend to all composite dry etching apparatuses shown in the claims.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例の構成概略図、絡2図は第1図の
エツチング室の具体的構造説明図、1s3肖、図におい
て17 、32 、42は試料、11はグツズ!嵐、 
19は四重極層質量分析針、易はRHEIロ31i!m
気F7=−1−143はAg3.454:!X!I源、
46は紫外線源、Iはエネルギー分析器である。 lr 1 図 才2胆
Fig. 1 is a schematic diagram of the configuration of an embodiment of the present invention, and Fig. 2 is an explanatory diagram of the specific structure of the etching chamber shown in Fig. 1. storm,
19 is the quadrupole layer mass spectrometry needle, and RHEI Ro 31i! m
Qi F7=-1-143 is Ag3.454:! X! I source,
46 is an ultraviolet light source, and I is an energy analyzer. lr 1 illustrious 2 bold

Claims (1)

【特許請求の範囲】 1、 真空鋏置内にてエツチングガスとしての気相と、
被エッチ/グ基板としての固相との閏の、物理的もしく
は化学的相互作用をせしむる手段を設げ九エツチング装
置にお−・て、該エツチング装置が準備室・エツチング
室alIli11処置童ψ及び表面分析室の4WLから
構成され前記エツチング室は少なくとも前記気相・固相
間の物理的もしくは化学的相互作用をせしむる手段E、
骸相互作用に関与する1次もしくは2次粒子の質量分析
手段を備え、tIIl記熱J611室は少なくとも基板
を加熱する手段と、基板加熱時に発生する、基板構成元
素の化学量論比の変動を補償する手段と、基板表面層の
結晶状態を評価する手段を備え、前起宍函分析*lは少
なくとも、基板1a函層の構成元素もしくは表wa着′
yc素の同定及び化学結合状態の分析を可能ならしめる
手段を備え、更に前記準備室・エツチング室・熱部*i
ii及び表面分析室は、各々の結合11K挿入されたグ
ードパ羨ノにより遮断されて独立に真空排気され、基板
は−−ドeI2ツク機構によりて前記4皇間を移送可能
ならしめられている事を特徴とする複合ドライエツチン
グ装置。 1 前記エツチングガスがハーグ/化物であり、前記気
相・固相間相互作用をせしむる手Rか°、イオンシャワ
ーエツチング装置であり、前記1次もしくは2次粒子の
質量分析手段が四重量臘質量分析針であり、前記結晶状
態を評価する手段が、高速反射層電子線回折装置であり
、前記基板表面層の構成元素もしくはllI函吸着元素
の同定及び化学結合状態の分析を可能ならしめる手段が
、オージン電子分光装置もしくは光電子分光装置である
。 特許請求の範囲第1項記載の複合ドライエツチング装置
[Claims] 1. A gas phase as an etching gas in a vacuum scissors apparatus;
The etching apparatus is equipped with a means for promoting physical or chemical interaction with the solid phase as the substrate to be etched, and the etching apparatus is connected to the preparation room and the etching room alIli11. ψ and a surface analysis chamber 4WL;
Equipped with means for mass spectrometry of primary or secondary particles involved in shell interactions, the tIIl heat recording chamber J611 is equipped with at least means for heating the substrate and for detecting fluctuations in the stoichiometric ratio of the constituent elements of the substrate that occur when heating the substrate. Equipped with a means for compensating and a means for evaluating the crystalline state of the substrate surface layer, the pre-destructive box analysis
It is equipped with a means to enable the identification of the yc element and the analysis of the chemical bonding state, and further includes the preparation room, etching room, and heating section*i.
ii and the surface analysis chamber are isolated by the GoodPanel inserted in each coupling 11K and evacuated independently, and the substrate is made to be able to transfer the four chambers by the two-door mechanism. A composite dry etching device featuring: 1. The etching gas is a Hague compound, the gas phase/solid phase interaction is induced by an ion shower etching device, and the primary or secondary particle mass spectrometry means is a A mass spectrometry needle is used, and the means for evaluating the crystalline state is a high-speed reflective layer electron beam diffraction device, which makes it possible to identify the constituent elements of the substrate surface layer or the elements adsorbed on the III box and to analyze the chemical bonding state. The means is an Osin electron spectrometer or a photoelectron spectrometer. A composite dry etching apparatus according to claim 1.
JP15438181A 1981-09-29 1981-09-29 Composite dry etching device Granted JPS5856336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15438181A JPS5856336A (en) 1981-09-29 1981-09-29 Composite dry etching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15438181A JPS5856336A (en) 1981-09-29 1981-09-29 Composite dry etching device

Publications (2)

Publication Number Publication Date
JPS5856336A true JPS5856336A (en) 1983-04-04
JPH0324776B2 JPH0324776B2 (en) 1991-04-04

Family

ID=15582895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15438181A Granted JPS5856336A (en) 1981-09-29 1981-09-29 Composite dry etching device

Country Status (1)

Country Link
JP (1) JPS5856336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693777A (en) * 1984-11-30 1987-09-15 Kabushiki Kaisha Toshiba Apparatus for producing semiconductor devices
JPH02166747A (en) * 1988-12-20 1990-06-27 Nec Corp Manufacture of semiconductor device
EP1731806A1 (en) * 2005-06-10 2006-12-13 Applied Films Corporation Dual gate isolating valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693777A (en) * 1984-11-30 1987-09-15 Kabushiki Kaisha Toshiba Apparatus for producing semiconductor devices
JPH02166747A (en) * 1988-12-20 1990-06-27 Nec Corp Manufacture of semiconductor device
EP1731806A1 (en) * 2005-06-10 2006-12-13 Applied Films Corporation Dual gate isolating valve

Also Published As

Publication number Publication date
JPH0324776B2 (en) 1991-04-04

Similar Documents

Publication Publication Date Title
US5587039A (en) Plasma etch equipment
US6238582B1 (en) Reactive ion beam etching method and a thin film head fabricated using the method
US5627105A (en) Plasma etch process and TiSix layers made using the process
US5145554A (en) Method of anisotropic dry etching of thin film semiconductors
CN106463318A (en) Ion implantation source with textured interior surfaces
Chen et al. Application of magnetic neutral loop discharge plasma in deep silica etching
JP3084243B2 (en) Method of depositing dielectric layer by PECVD method
JPS5856336A (en) Composite dry etching device
CN116110775A (en) Surface pretreatment process for improving quality of oxide film generated by remote plasma
KR930001889B1 (en) Ion beam exposure mask
Nagamachi et al. Focused ion‐beam direct deposition of metal thin film
US5236537A (en) Plasma etching apparatus
US5133830A (en) Method of pretreatment and anisotropic dry etching of thin film semiconductors
RU2476373C1 (en) Method of making superconducting single-photon detectors
Clausing et al. Measurement and modification of first‐wall surface composition in the Oak Ridge tokamak (ORMAK)
JP3418045B2 (en) Dry etching method
JPH04196321A (en) Method and device for forming film
JPH07335618A (en) Plasma processing method and plasma processing device
Bartolf et al. Symbiotic Optimization of the Nanolithography and RF-Plasma Etching for Fabricating High-Quality Light-Sensitive Superconductors on the 50 nm Scale
JP2600243B2 (en) High purity metal deposition method
JPS62291031A (en) Plasma processing device
JP2909087B2 (en) Thin film forming equipment
JPS60236233A (en) Forming method of minute pattern by ion beam
Herman et al. High vacuum growth and processing systems
JPH08148469A (en) Plasma device and plasma processing method by use thereof