JPS5856095B2 - light detection circuit - Google Patents

light detection circuit

Info

Publication number
JPS5856095B2
JPS5856095B2 JP51089349A JP8934976A JPS5856095B2 JP S5856095 B2 JPS5856095 B2 JP S5856095B2 JP 51089349 A JP51089349 A JP 51089349A JP 8934976 A JP8934976 A JP 8934976A JP S5856095 B2 JPS5856095 B2 JP S5856095B2
Authority
JP
Japan
Prior art keywords
circuit
photodiode
period
resistor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51089349A
Other languages
Japanese (ja)
Other versions
JPS5315182A (en
Inventor
賢一 宇谷
一男 三笠
信右 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP51089349A priority Critical patent/JPS5856095B2/en
Publication of JPS5315182A publication Critical patent/JPS5315182A/en
Publication of JPS5856095B2 publication Critical patent/JPS5856095B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

【発明の詳細な説明】 本発明はホトダイオードを用いた光検出回路に関する。[Detailed description of the invention] The present invention relates to a photodetection circuit using a photodiode.

ホトダイオードにはPN接合による接合容量があるため
負荷抵抗の大小によって応答性が変るが、逆にこの接合
容量を利用した蓄積方式による光検出回路がある。
Since a photodiode has a junction capacitance due to a PN junction, its response changes depending on the magnitude of the load resistance, but on the other hand, there is a photodetection circuit using an accumulation method that utilizes this junction capacitance.

この方式においては光が断続せしめられるが、光検出回
路の出力波形は光の変化を微分したものとなる。
In this method, light is intermittent, but the output waveform of the photodetector circuit is a result of differentiating changes in light.

こへで応答速度を速めるようにすると、微分波形は大へ
ん鋭くなり幅のせまいパルス波形となる。
If the response speed is increased here, the differential waveform becomes very sharp and becomes a pulse waveform with a narrow width.

そこで光検出出力を基準電圧と比較するような場合、比
較回路の応答性が低いと光電出力のパルス幅がせま過ぎ
て比較回路が応答できなくなる。
Therefore, when comparing the photodetection output with a reference voltage, if the responsiveness of the comparison circuit is low, the pulse width of the photoelectric output is too narrow, making it impossible for the comparison circuit to respond.

本発明はホトダイオードによる蓄積方式の光検出回路に
おける上述したような問題点を解決することを目的とし
ている。
It is an object of the present invention to solve the above-mentioned problems in storage-type photodetection circuits using photodiodes.

まず本発明の意味と目的を明かにするため従来例につい
て説明する。
First, a conventional example will be explained in order to clarify the meaning and purpose of the present invention.

第3図に従来例の回路を示す。FIG. 3 shows a conventional circuit.

LEDは発光ダイオード、PDはホトダイオードで、L
EDの発する光をPDで検出する。
LED is a light emitting diode, PD is a photodiode, and L
The light emitted by the ED is detected by the PD.

LEDとPDとの間を検査すべきシートのようなものが
通っており、透過光量の変化によって欠点を検出する。
A sheet-like object to be inspected passes between the LED and the PD, and defects are detected by changes in the amount of transmitted light.

LEDの発光はチョッピングされるが、LEDと直列の
トランジスタT4がこのチョッピングのためのスイッチ
で外来矩形波パルスによって制御される。
The light emission of the LED is chopped, and the transistor T4 in series with the LED is a switch for this chopping and is controlled by an external square wave pulse.

第4図1がトランジスタT4の制御矩形波パルスで同図
LEDは発光ダイオードLEDの発光のスケジュールを
示す。
FIG. 4 1 shows the control rectangular wave pulse of the transistor T4, and the LED in the figure shows the light emission schedule of the light emitting diode LED.

T3はホトダイオードと直列のトランジスタでT4への
入力を反転した信号がベースに印加され、T4土は導通
遮断のタイミングが相反している。
T3 is a transistor connected in series with the photodiode, and a signal obtained by inverting the input to T4 is applied to the base, and the timing of the conduction cutoff of T4 is contradictory.

T3はホトダイオードPDと電源との間を導通遮断する
スイッチである。
T3 is a switch that disconnects conduction between the photodiode PD and the power source.

第4図IはホトダイオードPDに印加される電圧のスケ
ジュールを示す。
FIG. 4I shows the schedule of voltages applied to photodiode PD.

PDは発光ダイオードLEDが発光しない閾電圧が印加
され、発光期間中は電源から切離されている。
A threshold voltage at which the light emitting diode LED does not emit light is applied to the PD, and the PD is disconnected from the power supply during the light emitting period.

点線で示したコンデンサC1がホトダイオードPDの接
合容量を表わす。
A capacitor C1 indicated by a dotted line represents the junction capacitance of the photodiode PD.

発光ダイオードLEDが発光していない間ホトダイオー
ドPDに電圧が印加されているがPDには光電流が流れ
ていないから、容量C1が抵抗rを通して充電されるこ
とになり、PDの両端電圧は第4図PDでtlの期間に
おいて示されるように次第に上昇して電源電圧に到達す
る。
While the light emitting diode LED is not emitting light, a voltage is applied to the photodiode PD, but no photocurrent is flowing through the PD, so the capacitor C1 is charged through the resistor r, and the voltage across the PD is the fourth As shown in the period tl in Figure PD, the voltage gradually rises and reaches the power supply voltage.

次にLEDが発光している期間中PDは電源から切離さ
れているので、C1の充電電荷は光電流としてPDを通
して放電され、PDの両端電圧はOに戻る。
Then, since the PD is disconnected from the power supply during the period when the LED is emitting light, the charge on C1 is discharged through the PD as a photocurrent, and the voltage across the PD returns to O.

このため第4図PDのような波形となる。This results in a waveform as shown in FIG. 4 PD.

抵抗rには容量C1の充電電流が流れるため、rの両端
電圧は第4図rのような波形となる。
Since the charging current of the capacitor C1 flows through the resistor r, the voltage across r has a waveform as shown in FIG. 4 r.

このrの波形のピーク幅すは容量C1の容量と抵抗rと
によって定まる時定数rXc1で与えられる。
The peak width of this r waveform is given by a time constant rXc1 determined by the capacitance of the capacitor C1 and the resistor r.

C1の放電はPDの光電流として行われるので、放電時
の時定数はPDへの入射光の強さによって異り、入射光
が弱ければ長くなる。
Since the discharge of C1 is performed as a photocurrent of the PD, the time constant during discharge varies depending on the intensity of the incident light on the PD, and becomes longer as the incident light is weaker.

従ってLEDの点灯期間中にC1の電荷が放電し切らず
、残留電荷はPDの入射光が弱い程多しなり、第4図P
Dの波形の高さは低くなり、同図rのピークも低くなる
Therefore, the charge of C1 is not fully discharged during the lighting period of the LED, and the residual charge increases as the incident light of the PD becomes weaker.
The height of the waveform D becomes lower, and the peak of r in the figure also becomes lower.

このようにして第4図rのピークの高さがPDへの入射
光の強さを表わすことになるが、抵抗rの値が大き過ぎ
ると、C1への充電に時間がか\るためT3の導通期間
中にPDの両端電圧が電源電圧まで到達し得ないことに
なり、結果的には第4図rのピーク高さを減少させる。
In this way, the height of the peak in FIG. During the conduction period, the voltage across the PD cannot reach the power supply voltage, which results in a decrease in the peak height in FIG. 4r.

この傾向は特にPDへの入射光が強く第4図PDの波形
の高さが高くなる場合に強くなり、応答性が悪くなる。
This tendency becomes particularly strong when the incident light on the PD is strong and the height of the waveform of the PD in FIG. 4 becomes high, resulting in poor response.

従って抵抗rの値はT3の導通期間中にC1が充分に充
電飽和できるように選択される。
Therefore, the value of resistor r is selected such that C1 is fully charged and saturated during the conduction period of T3.

このため第4図rのピークの底の幅は最大に採っても時
間t1であり、底辺がtlの三角波に近い形となるに過
ぎない。
Therefore, even if the width of the bottom of the peak in FIG.

このような波形を比較回路に入れてそのピーク値を基準
値と比較する場合、比較回路の応答速度が低いと、正し
いピーク値を基準値と比較することができないから、比
較回路にも応答速度の速いものを採用しなければならな
くなる。
When putting such a waveform into a comparison circuit and comparing its peak value with a reference value, if the response speed of the comparison circuit is slow, it will not be possible to compare the correct peak value with the reference value. You will have to adopt a faster one.

本発明は上述した従来回路の欠点を解消するもので結果
的には第4図rのような鋭いピーク状の出力の代りに同
図Aに示すように矩形波に近い出力波形を得ることによ
って光検出回路以後の回路の応答速度を特に考慮しなく
てもよいようにしたもので、比較回路等が簡単になるの
である。
The present invention solves the above-mentioned drawbacks of the conventional circuit by obtaining an output waveform close to a rectangular wave as shown in Fig. 4A instead of the sharp peak-like output shown in Fig. 4R. This eliminates the need to take particular account of the response speed of the circuits after the photodetector circuit, which simplifies the comparator circuit and the like.

以下本発明の構成を第1図に示す実施例によって説明す
る。
The structure of the present invention will be explained below with reference to the embodiment shown in FIG.

第2図は第1図の回路の動作を示すタイムチャートであ
る。
FIG. 2 is a time chart showing the operation of the circuit shown in FIG.

第1図でも第3図の各部に対応する部分には同じ符号が
つけである。
In FIG. 1, parts corresponding to those in FIG. 3 are given the same reference numerals.

本発明の構造上の特徴は第3図に示した従来例の抵抗r
の所を並列的な二つの要素即ち短絡用のスイッチT1と
抵抗R2とに分け、ホトダイオードPDの接合容量C1
の充電電流を時間的に区分して当初R2の方に流し、後
期にスイッチT1の方を流すように切換えを行う所にあ
る。
The structural feature of the present invention is that the resistor r of the conventional example shown in FIG.
is divided into two parallel elements, namely a short-circuiting switch T1 and a resistor R2, and the junction capacitance C1 of the photodiode PD is
The charging current is divided in time so that it initially flows through R2, and at a later stage, it flows through switch T1.

しかして抵抗R2の値は第3図に示す従来例の抵抗rに
比し犬なるものである。
Therefore, the value of the resistor R2 is much smaller than the resistor r of the conventional example shown in FIG.

トランジスタT3とT4の導通遮断が相反し、発光ダイ
オードLEDの消灯期間中にホトダイオードPDの接合
容量C1が充電され、LEDの点灯によってPDの光電
流として上記C1の充電電荷が放電されることは従来例
と同じである。
Conventionally, the conduction and interruption of transistors T3 and T4 are contradictory, and the junction capacitance C1 of the photodiode PD is charged during the period when the light emitting diode LED is turned off, and when the LED is turned on, the charged charge of the above C1 is discharged as a photocurrent of the PD. Same as example.

第2図でIはT4の制御信号であり、T3の制御信号は
これを反転したものである。
In FIG. 2, I is the control signal for T4, and the control signal for T3 is an inversion of this.

この反転された信号を更に遅延回路りで時間tだけ遅延
させたものでスイッチとしてのトランジスタT1を制御
する。
This inverted signal is further delayed by a time t using a delay circuit to control the transistor T1 as a switch.

第2図T1がトランジスタT1の導通期間を示す。FIG. 2 T1 shows the conduction period of the transistor T1.

またT4が遮断でT3が導通している場合を考える。Also consider the case where T4 is cut off and T3 is conductive.

このときLEDは消灯しており、PDの接合容量が充電
されるのであるが、当初時間tの間はT1が未だ遮断で
あり、C1の充電電流はトランジスタT2のベース電流
として流れ、T2が導通してR2の両端に電圧が現われ
これが出力となる。
At this time, the LED is off and the junction capacitance of PD is charged, but T1 is still cut off during the initial time t, the charging current of C1 flows as the base current of transistor T2, and T2 becomes conductive. Then, a voltage appears across R2, which becomes the output.

第2図PDはホトダイオードPDの両端電圧で、T2の
ベース電流はエミッタホロワ抵抗R2があるためわずか
しか流れ得ないからC1の充電の時定数はきわめて犬で
あり、従ってPDの電圧上昇はゆっくりしている。
Figure 2 PD is the voltage across the photodiode PD, and since the base current of T2 can only flow slightly due to the emitter follower resistor R2, the charging time constant of C1 is extremely slow, and therefore the voltage of PD rises slowly. There is.

時間tが経つとトランジスタT1が導通ずるのでT2の
ベースから抵抗R2を経てアースへの回路は略短絡され
C1は急速に充電されPDの両端電圧は略瞬間的に電源
電圧に達する。
After time t has elapsed, transistor T1 becomes conductive, so that the circuit from the base of T2 to ground via resistor R2 is short-circuited, C1 is rapidly charged, and the voltage across PD almost instantaneously reaches the power supply voltage.

その後T4が導通しT3が遮断になると、LEDが点灯
してC1の電荷は光電流として放電されるので、PDの
両端電圧は急速に低下する。
After that, when T4 becomes conductive and T3 is cut off, the LED is turned on and the charge on C1 is discharged as a photocurrent, so that the voltage across the PD rapidly decreases.

他方抵抗R2の両端電圧を考えると、当初T2にベース
電流が流れてT2が導通しており、R2の上端電位はT
2のベースと略等しいから、それは電源電圧からPDの
両端電圧を引いたものに等しく、当然電源電圧であって
徐々に低下して行く変化を示す。
On the other hand, considering the voltage across the resistor R2, the base current flows through T2 and T2 is conducting, and the upper end potential of R2 is T2.
Since it is approximately equal to the base of 2, it is equal to the power supply voltage minus the voltage across the PD, which is naturally the power supply voltage and shows a change that gradually decreases.

この状態が第2図R2においてtの期間で示される。This condition is shown at period t in FIG. 2 R2.

その後T1が導通ずるとT2は遮断されるので、R2の
両端電圧はOになる。
After that, when T1 becomes conductive, T2 is cut off, so the voltage across R2 becomes O.

更にその後T4導通、T3遮断となってもR2の両端電
圧はOのま\であるから、結局R2の両端電圧は第2図
R2のような変形をし、略矩形波状となる。
Furthermore, even if T4 is made conductive and T3 is cut off, the voltage across R2 remains at O, so that the voltage across R2 eventually deforms as shown in R2 in FIG. 2 and becomes a substantially rectangular waveform.

この波形をより正しい矩形波に近づけるには、第2図で
tの期間におけるC1への充電電流をなるべく少くすれ
ばよく、そのためにはT2のベース電流を少くすればよ
いから、T2として電流増幅率の犬なるものを選び抵抗
R2を大きくすればよい。
In order to make this waveform closer to a correct rectangular wave, the charging current to C1 during period t in Fig. 2 should be reduced as much as possible, and for that purpose, the base current of T2 should be reduced, so as T2, the current should be amplified. All you have to do is choose a value that is close to the ratio and increase the resistance R2.

tの期間以後の所でC1は短絡的に充電されているもの
でtの期間の時定数は任意に大きく採っても支障がない
のである。
Since C1 is charged in a short-circuit manner after the period t, there is no problem even if the time constant for the period t is arbitrarily large.

本発明光検出回路は上述したような構成でホトダイオー
ドの接合容量を利用した蓄積方式のものであるが充電期
間中の充電の時定数を切換えるようにしたため、任意に
大きな時定数を採用することができて検出出力が矩形波
に近いものとなり、しかも応答速度は損われないのであ
り、光検出器以後の回路の応答速度について格別な考慮
を払う必要がなくなるのである。
The photodetection circuit of the present invention has the above-mentioned configuration and is of an accumulation type using the junction capacitance of a photodiode, but since the charging time constant during the charging period is switched, an arbitrarily large time constant can be adopted. As a result, the detection output becomes close to a rectangular wave, and the response speed is not impaired, so there is no need to pay special consideration to the response speed of the circuit after the photodetector.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の回路図、第2図は上記の動
作を示すタイムチャート、第3図は従来例の回路図、第
4図はその動作を示すタイムチャートである。 LED・・・・・・発光ダイオード、PD・・・・・・
ホトダイオード、C1・・・・・・上記PDの接合容量
を等価的に表わした容量。
FIG. 1 is a circuit diagram of an embodiment of the present invention, FIG. 2 is a time chart showing the above operation, FIG. 3 is a circuit diagram of a conventional example, and FIG. 4 is a time chart showing the operation. LED... Light emitting diode, PD...
Photodiode, C1... Capacity equivalent to the junction capacitance of the above PD.

Claims (1)

【特許請求の範囲】 1 ホトダイオードを用いその接合容量を利用した蓄積
方式の回路構成であって、上記ホトダイオードの充電期
間における充電の時定数を同期間中において切換え、時
定数を前期において犬とし、後期において小とした光検
出回路。 2 相互に並列であって共にホトダイオードに直列であ
る2つの回路の抵抗が異り、ホトダイオードの充電期間
中の前期においては抵抗の犬なる回路を、後期において
は抵抗の小なる回路を通して充電が行われ、抵抗の犬な
る回路の両端電圧が出力信号となる特許請求の範囲第1
項記載の光検出回路。 3 ホトダイオードに直列な抵抗の異る2つの回路のう
ち抵抗の犬なる方はエミッタホロワ抵抗を有するトラン
ジスタのベースからエミッタを経て上記ホロワ抵抗を通
る回路であり、出力信号が上記エミッタホロワ抵抗の両
端に得られるものであり、抵抗の小なる方の回路はトラ
ンジスタのコレクタからエミッタを経る回路であって、
この回路のトランジスタのベースに2つの抵抗の異る回
路の切換えをする制御信号が印加されるようになってい
る特許請求の範囲第1項又は第2項記載の光検出回路。
[Scope of Claims] 1. A storage-type circuit configuration using a photodiode and utilizing its junction capacitance, wherein the charging time constant during the charging period of the photodiode is switched during the same period, and the time constant is set to dog in the earlier period, The light detection circuit was made smaller in the later stage. 2 The resistances of the two circuits that are parallel to each other and both in series with the photodiode are different, and charging is performed through a dog circuit of resistance in the early period of the charging period of the photodiode, and through a circuit with a small resistance in the latter period. Claim 1, wherein the voltage across the resistor circuit is the output signal.
The photodetection circuit described in section. 3 Of the two circuits with different resistances in series with the photodiode, the dog resistor is a circuit that passes from the base of the transistor having an emitter-follower resistor through the emitter and through the follower resistor, and the output signal is applied to both ends of the emitter-follower resistor. The circuit with smaller resistance is the circuit that runs from the collector to the emitter of the transistor,
3. The photodetection circuit according to claim 1, wherein a control signal for switching between two circuits having different resistances is applied to the base of a transistor in this circuit.
JP51089349A 1976-07-26 1976-07-26 light detection circuit Expired JPS5856095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51089349A JPS5856095B2 (en) 1976-07-26 1976-07-26 light detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51089349A JPS5856095B2 (en) 1976-07-26 1976-07-26 light detection circuit

Publications (2)

Publication Number Publication Date
JPS5315182A JPS5315182A (en) 1978-02-10
JPS5856095B2 true JPS5856095B2 (en) 1983-12-13

Family

ID=13968221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51089349A Expired JPS5856095B2 (en) 1976-07-26 1976-07-26 light detection circuit

Country Status (1)

Country Link
JP (1) JPS5856095B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55106676U (en) * 1979-01-19 1980-07-25

Also Published As

Publication number Publication date
JPS5315182A (en) 1978-02-10

Similar Documents

Publication Publication Date Title
JP5232128B2 (en) Optical receiving circuit and optical coupling device
SE8703111D0 (en) ELECTRONIC CONNECTOR
CA1123064A (en) Optically coupled field effect transistor switch
US4649282A (en) Smoke sensing apparatus of the light scattering type
JPS5856095B2 (en) light detection circuit
US3483429A (en) Low cost,solid state photocontrol circuit
US3996475A (en) Photoelectric controlling
KR100187388B1 (en) Photocoupler capable of effecting phase control with an embedded junction capacitor
US4182963A (en) Pulse shaping circuit
US3131316A (en) Threshold circuit utilizing series capacitor-diode combination and employing diode clamp to maintain information transmission
US3535529A (en) Sensitive light sensor biased into the avalanche mode by means of a plurality of current sources
JPH039393Y2 (en)
CN219997175U (en) Alternating voltage zero crossing detection circuit
JP2530719B2 (en) Photoelectric smoke detector
JPS62250719A (en) Semiconductor relay circuit
JPH039394Y2 (en)
JPS6010042Y2 (en) Light emitting circuit of photoelectric switch
SU1647691A2 (en) Time relay
US3586885A (en) Square wave generator
JP3151366B2 (en) Light detection circuit
Takahashi et al. Light-detectable function of the negative resistance characteristic presented by an optocoupler
SU1401551A1 (en) Photosensor
SU446113A1 (en) Optoelectronic trigger
SU445139A1 (en) Integrator
JP3196232B2 (en) Optical sensor