JPS5856014B2 - Post-weld heat treatment method - Google Patents

Post-weld heat treatment method

Info

Publication number
JPS5856014B2
JPS5856014B2 JP1499780A JP1499780A JPS5856014B2 JP S5856014 B2 JPS5856014 B2 JP S5856014B2 JP 1499780 A JP1499780 A JP 1499780A JP 1499780 A JP1499780 A JP 1499780A JP S5856014 B2 JPS5856014 B2 JP S5856014B2
Authority
JP
Japan
Prior art keywords
welding
heat treatment
post
temperature
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1499780A
Other languages
Japanese (ja)
Other versions
JPS56112421A (en
Inventor
健治 岩井
英司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1499780A priority Critical patent/JPS5856014B2/en
Priority to DE8181300509T priority patent/DE3165473D1/en
Priority to EP19810300509 priority patent/EP0034057B1/en
Priority to CA000370283A priority patent/CA1189427A/en
Priority to AU66968/81A priority patent/AU544035B2/en
Publication of JPS56112421A publication Critical patent/JPS56112421A/en
Publication of JPS5856014B2 publication Critical patent/JPS5856014B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/06Extraction of hydrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Arc Welding In General (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 本発明は厚肉母材の溶接における後熱処理法に関し、特
に溶接金属中に残留した拡散性水素を後熱によって放散
させるに当り、後熱処理の停止時期を正しく判断し得る
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a post-heat treatment method for welding thick-walled base metals, and in particular, in dissipating diffusible hydrogen remaining in the weld metal by post-heat, it is necessary to correctly judge when to stop the post-heat treatment. It's about how to get it.

厚板の低合金鋼の溶接時に低温割れが発生し、しばしば
問題となることがあるが、現状ではこの種の割れ防止法
として中間応力除去鈍が行なわれている。
Low-temperature cracking often occurs when welding thick plates of low-alloy steel, and is often a problem, but intermediate stress relief blunting is currently used as a method to prevent this type of cracking.

しかし脱硫反応塔や石灰液化装置にみられるごとく、最
近の化学工業用装置の大型化の傾向は著るしく、溶接後
に行なわれる中間応力除去焼鈍の回数も非常に多くなっ
てきている。
However, as can be seen in desulfurization reaction towers and lime liquefaction equipment, there has recently been a remarkable tendency for equipment for the chemical industry to become larger, and the number of intermediate stress relief annealing operations performed after welding has also increased significantly.

このような中間応力除去焼鈍の繰返しは材料の強度低下
、靭性の劣下を引き起こすことはもちろん、製造工程の
障害にもなり、ひいては工期、工費の増大をまねくこと
にもなる。
Such repetition of intermediate stress relief annealing not only causes a decrease in the strength and toughness of the material, but also impedes the manufacturing process, resulting in an increase in construction time and construction costs.

本発明者等は、かねてより27−cr−IMo鋼厚板突
合わせ多層溶接部について研究を行ない、■問題となる
割れ(ま金属部に発生する横割れであるとと、■この割
れは溶接線方向の残留応力と拡散性水素によって最終層
直下で発生し、その後板の表面と裏面に向かって伝播成
長していくこと、■溶接施工条件が変化しても残留応力
はほとんど変化しないが溶接時の予熱バス間温度を上げ
れば拡散性水素は減少し、割れは発生しなくなること、
などを明らかにしている。
The inventors of the present invention have been conducting research on multilayer butt welds of 27-cr-IMo steel plates for some time, and have determined that (1) the problematic crack (or horizontal crack that occurs in the metal part), and (2) that this crack is due to welding. Residual stress in the linear direction and diffusible hydrogen are generated just below the final layer, and then propagate and grow toward the front and back surfaces of the plate. ■Residual stress hardly changes even if welding conditions change, but welding If the temperature between the preheating baths is increased, diffusible hydrogen will decrease and cracks will no longer occur;
etc. are revealed.

このことより、溶接部に含まれる拡散性水素のみに着目
し、これを低減することにより割れ防止を図ることが最
も有効な手段と考えられる。
From this, it is considered that the most effective means is to focus only on the diffusible hydrogen contained in the weld and reduce it to prevent cracking.

そこで本発明者等は、溶接直後に溶接部を比較的低温で
加熱することになり溶接部の拡散性水素を低減して割れ
防止を図る、いわゆる低温溶接後熱処理法に注目した。
Therefore, the present inventors focused on a so-called low-temperature post-weld heat treatment method in which the welded part is heated at a relatively low temperature immediately after welding, thereby reducing diffusible hydrogen in the welded part to prevent cracking.

この方法は溶接部の拡散性水素のみを低減して割れ防止
を図るものであるから、これを実用化するためには以下
の事柄について明らかにしておく必要があると考えた。
Since this method aims to prevent cracking by reducing only the diffusible hydrogen in the weld, we thought that it was necessary to clarify the following matters in order to put this method into practical use.

(1)実構造物に対する溶接施工条件と溶接直後の水素
濃度との関係。
(1) Relationship between welding conditions for actual structures and hydrogen concentration immediately after welding.

(2)低温溶接後熱処理時の水素濃度変化と処理条件と
の関係。
(2) Relationship between changes in hydrogen concentration during heat treatment after low-temperature welding and treatment conditions.

(3)割れが発生しなくなる限界水素濃度。(3) Critical hydrogen concentration at which cracks do not occur.

本発明者等は2【cr−IMo鋼を用いた厚板突合わせ
溶接を例にとって、上記(1)〜(3)の各事項を明ら
かにし、これをもとにして以下述べる様な研究を重ねた
The present inventors clarified each of the above (1) to (3) by taking thick plate butt welding using 2[cr-IMo steel as an example, and based on this, conducted the research described below. Layered.

その結果本発明の完成に到達し、適正後熱処理を行なう
ことによって割れ防止を画ることができ、中間応力除去
焼鈍省略への道を開くことに成功した。
As a result, the present invention has been completed, and cracking can be prevented by performing proper post-heat treatment, and the method has been successfully opened to omitting intermediate stress relief annealing.

即ち本発明の要点は、 (1)多層溶接終了直後の最終溶接層直下の残留水素濃
度(Co(ec/100g)、)を求める。
That is, the main points of the present invention are as follows: (1) Find the residual hydrogen concentration (Co (ec/100g)) immediately below the final weld layer immediately after multilayer welding is completed.

(2)溶接部の割れ防止限界水素濃度(Cor(cc/
100g)〕と前記〔Co〕との比(Ccr/Co)を
求める。
(2) Critical hydrogen concentration (Cor(cc/
100g)] and the above-mentioned [Co] (Ccr/Co).

(3)後熱処理の進行によって減少していく溶接金属内
の最大水素濃度(C(tX:/100g)、lと前記(
Co 、Iとの比(C/Co)を求める。
(3) The maximum hydrogen concentration in the weld metal (C(tX:/100g), which decreases with the progress of post-heat treatment, and
The ratio between Co and I (C/Co) is determined.

(4)当該溶接条件における溶接時の水素拡散パラメー
タ〔τ(cIit)〕に、 但しDl:最終層溶接終了後、熱処理開始までの最終層
直下の任意の水素拡散係数(crVSec)tn:最終
層溶接終了後、後熱処理開始までの所要時間(sec
) 後熱処理時の水素拡散係数(D p (c+yf/5e
c) 〕と後熱処理時間(t p (Sec) 、lの
積(Dp −t p(i’) 、)を加えた値〔τ+D
p−tp〕と前記(C/Co 、)との間の予め求めら
れた関係より〔C/co〕が〔Ccr/co〕になると
きの(Dp−tp、)u求める。
(4) Hydrogen diffusion parameter [τ (cIit)] during welding under the relevant welding conditions, where Dl: arbitrary hydrogen diffusion coefficient (crVSec) immediately below the final layer after final layer welding until the start of heat treatment; tn: final layer The time required from the end of welding to the start of post-heat treatment (sec
) Hydrogen diffusion coefficient during post-heat treatment (D p (c+yf/5e
c)] and the product of post-heat treatment time (t p (Sec), l (Dp - t p(i'),) [τ + D
(Dp-tp,)u when [C/co] becomes [Ccr/co] is determined from the predetermined relationship between [P-tp] and the above-mentioned (C/Co, ).

(5)後熱処理中、溶接部適所の温度を刻々と測定し、
その温度における水素拡散係数CDpi(凋/5eC)
)を知ると共に、該水素拡散係数と測温時間々隔との積
の累積値が、前記〔Dp−tp〕の値以上になると、こ
れを検知して後熱処理を完了する。
(5) During post-heat treatment, the temperature at the appropriate location of the welded part is measured moment by moment,
Hydrogen diffusion coefficient CDpi at that temperature (凋/5eC)
), and when the cumulative value of the product of the hydrogen diffusion coefficient and the temperature measurement time interval exceeds the value of [Dp-tp], this is detected and the post-heat treatment is completed.

という点に存在する。It exists in that sense.

本発明の実施に当って、例えば〔Co〕の値を求ぬる方
法等の具体的手法については、種々のやり方があるが、
本発明は、それらの具体的方法を制限するものではなく
、要は前記(1)〜(5)の手順に従って後熱処理終了
時点を判断することを要旨とするものであるから、以下
述べる具体的展開は、代表的手法を説明するに過ぎず、
特許請求の範囲に記載した実施態様以外の方法を採用す
ることも本発明の範囲に含まれる。
In carrying out the present invention, there are various methods for calculating the value of [Co], etc.
The present invention does not limit these specific methods, and the gist of the present invention is to determine the end point of post-heat treatment according to the steps (1) to (5) above. The expansion is merely an illustration of a typical method;
It is also within the scope of the present invention to employ methods other than those described in the claims.

以下本発明を述べるが、記述の手順は2 a c r−
=IMo鋼について行なった基礎的な試験方法に触れた
後、試1験結果及び本発明の詳細な説明する。
The present invention will be described below, and the description procedure will be as follows:
= After touching on the basic test method conducted on IMo steel, the test 1 results and the present invention will be explained in detail.

〔試験方法〕〔Test method〕

■ 供試材と溶接条件 溶接母材としてA8TM A387 GR22CL、2
の200mmt圧延材を使用した。
■ Test materials and welding conditions A8TM A387 GR22CL, 2 as the welding base material
A 200 mmt rolled material was used.

その化学組成と機械的性質を第1表に示す。Its chemical composition and mechanical properties are shown in Table 1.

またサブマージアーク溶接条件を第2表に示す。Further, submerged arc welding conditions are shown in Table 2.

* フラックスはMP29Aを中心としたが、最近開発
された低水素系フラックスMF29AXを利用したもの
もある。
*The flux is mainly MP29A, but there is also one that uses the recently developed low hydrogen flux MF29AX.

第3表には溶接金属の化学組成と機械的性質を示す。Table 3 shows the chemical composition and mechanical properties of the weld metal.

厚板溶接部の溶接直後の水素濃度分布の測定溶接完了後
最終ビードをパス間温度迄冷却した直後の水素濃度の板
厚方向での分布について、溶接時の予熱、パス間温度と
板厚を変えて測定し、溶接部水素濃度分布に及ぼすこれ
らの影響を実験的に明らかにした。
Measurement of hydrogen concentration distribution immediately after welding of thick plate welds The distribution of hydrogen concentration in the thickness direction of the plate immediately after the final bead is cooled to the interpass temperature after welding is completed, and the preheating during welding, interpass temperature, and plate thickness. The effects of these changes on the hydrogen concentration distribution in the weld were experimentally clarified.

なお、ここで得た水素濃度分布は突筒で述べる溶接直後
の水素濃度分布を推定するために作成した有限要素法プ
ログラムの信頼性を確認するための計算値との比較デー
タとして使用した。
The hydrogen concentration distribution obtained here was used as comparison data with calculated values to confirm the reliability of the finite element method program created to estimate the hydrogen concentration distribution immediately after welding described in the section.

拡散性水素の測定に使用した溶接継手の形状、寸法を第
1図1に、又水素定量用テストピースの採取位置を第1
図2に示す(尚図中に示す各長さの単位は關であり、1
は冷媒及びドライアイスを入れる容器を示し、2は切り
出された溶接金属テストピースである)。
The shape and dimensions of the welded joint used to measure diffusible hydrogen are shown in Figure 1, and the sampling position of the test piece for hydrogen determination is shown in Figure 1.
As shown in Figure 2 (the units of each length shown in the figure are angles, 1
2 indicates a container containing refrigerant and dry ice, and 2 is a cut out weld metal test piece).

3 有限要素法による溶接時の水素拡散の解析実施工溶
接時の水素拡散の取り扱いにあたっては、溶接熱履歴を
再現することが前提となる。
3 Analysis of hydrogen diffusion during welding using the finite element method When handling hydrogen diffusion during welding, it is a prerequisite to reproduce the welding thermal history.

しかし本研究で対象とする板厚は50關以上の厚板であ
り、溶接はかなりの多層溶接となり、しかもサブマージ
アーク溶接は入熱が太きいために実構造物の溶接時に生
じる熱履歴を試験板で再現すること6ま不可能に近くな
る。
However, the target of this research is a thick plate with a thickness of 50 mm or more, and the welding involves quite a number of layers, and submerged arc welding has a large heat input, so we tested the thermal history that occurs when welding an actual structure. It would be nearly impossible to reproduce it on a board.

そこで取扱いの容易な有限要素法に基づいて解析を行な
った。
Therefore, we conducted an analysis based on the easy-to-use finite element method.

溶接はI−開先を1層あたり2パスで溶接するものとし
て、溶接部の溶は込み率を60%とし、第2図に示すよ
うに要素分割を行なった。
Welding was performed by welding the I-groove in two passes per layer, with a weld penetration rate of 60%, and elemental division as shown in FIG. 2.

図中の6は第1パス溶接部で、溶着部4と溶は込み部5
からなる。
6 in the figure is the first pass welding part, which is the welding part 4 and the welding part 5.
Consisting of

又6′は第12パス溶接部で、溶着部4′と溶は込み部
5′からなる。
Further, 6' is a 12th pass welding part, which consists of a welded part 4' and a welded part 5'.

ここで各パス溶接時に61溶接部に一定量の水素が溶解
するものとし、これと溶は込み部分に残留している水素
量の和を、溶着部と溶は込み部の重量和で除し、その平
均値を各パス溶接時の初期水素として溶着部と溶は込み
部に均等に与えた。
Here, it is assumed that a certain amount of hydrogen is dissolved in the 61 welded part during each pass welding, and the sum of this and the amount of hydrogen remaining in the welded part is divided by the sum of the weights of the welded part and the welded part. The average value was used as the initial hydrogen for each pass of welding, and was applied equally to the welded part and the welded part.

また外部境界接点の水素濃度は解析を通じて常に零に保
たれるものとした。
It was also assumed that the hydrogen concentration at the external boundary contact point was always kept at zero throughout the analysis.

一方、水素拡散の解析の前提となる溶接熱履歴を求める
計算は、入熱40 KJ/Cr1l 、熱効率65%と
し、これを溶着部と溶は込み部分に均等に分配投与して
行なった。
On the other hand, calculations for determining the welding heat history, which is a prerequisite for the analysis of hydrogen diffusion, were carried out by assuming a heat input of 40 KJ/Cr1l and a thermal efficiency of 65%, and distributing this evenly to the welded part and the welded part.

第3図に本解析に使用したプログラムのフロ−チャート
を示す。
FIG. 3 shows a flowchart of the program used in this analysis.

解析にあたっての1回あたりの時間増分は冷却速度の変
化と対応させて1秒から10秒の範囲で行なった。
The time increment per analysis was in the range of 1 second to 10 seconds, corresponding to the change in cooling rate.

また、次パスへの移行は開先面より母材側に10mm、
板表面より15關内部に入った位置での温度が所定の温
度になったときに行なうようにし、このときの温度をパ
ス間温度として整理した。
In addition, the transition to the next pass is 10 mm from the groove surface to the base material side.
The test was performed when the temperature at a position 15 degrees inside the plate surface reached a predetermined temperature, and the temperature at this time was organized as the interpass temperature.

なお、板厚が大きい場合には溶接の進行に合わせて測温
点の板厚方向での位置を数ケ所変えて温度制御した。
In addition, when the plate thickness was large, the temperature was controlled by changing the position of the temperature measuring point at several locations in the plate thickness direction as welding progressed.

これは第1図に示した試験体を使用した種々の試験では
、このような位置にCA熱電対を挿入して溶接熱サイク
ルを制御しており、計算条件をこの条件と一致させるた
めである。
This is because in various tests using the specimen shown in Figure 1, CA thermocouples are inserted in these positions to control the welding thermal cycle, and the calculation conditions are made to match these conditions. .

次に計算に使用した熱的諸定数と水素拡散係数の温度依
存性をそれぞれ第4図および第5図に示す。
Next, the temperature dependence of the thermal constants and hydrogen diffusion coefficient used in the calculations are shown in FIGS. 4 and 5, respectively.

熱伝達率A1熱伝達率B1比熱Cについては図に示す温
度依存性を考慮し、密度は一定とした。
Regarding the heat transfer coefficient A1, the heat transfer coefficient B1, and the specific heat C, the temperature dependence shown in the figure was taken into consideration, and the density was set constant.

水素の拡散係数の温度依存性は図中**の折線で示した
値を使用して解析を行なった。
The temperature dependence of the hydrogen diffusion coefficient was analyzed using the value shown by the broken line ** in the figure.

4 27Cr−IMo鋼溶接継手の水素拡散系数の決定 水素拡散係数は、第1図に示した拘束試験体を使用して
溶接直後の水素濃度分布と低温溶接後熱処理後の水素濃
度分布を実測し、それらの値と同一条件下で得られる計
算値とから求めた。
4 Determination of hydrogen diffusion coefficient of 27Cr-IMo steel welded joint The hydrogen diffusion coefficient was determined by actually measuring the hydrogen concentration distribution immediately after welding and after low-temperature post-weld heat treatment using the restrained test specimen shown in Figure 1. , was determined from those values and calculated values obtained under the same conditions.

5 横割れ防止限界水素濃度を決定するための割れ試験 溶接後浴接部に残留する拡散性水素をどの程度まで低減
すれば割れが防止できるかという、割れ防止限界水素濃
度を求めるために、第6図に示す拘束試験体を使用して
割れ試験を行なった。
5 Cracking test to determine the critical hydrogen concentration to prevent horizontal cracking In order to determine the critical hydrogen concentration to prevent cracking, the amount of diffusible hydrogen remaining in the bath contact area after welding must be reduced to prevent cracking. A cracking test was conducted using the restrained test specimen shown in Figure 6.

尚図中の数字は關単位で示し、h(板厚)、Xo(開先
角度)及びR(開先底部の曲率半径)を第4表に示す如
く変化させ、夫々併記する条件で割れ試験を行なった。
The numbers in the figure are in units of angle, and the cracking test was conducted under the conditions listed in Table 4 by changing h (plate thickness), Xo (groove angle), and R (radius of curvature at the bottom of the groove) as shown in Table 4. I did this.

低温溶接後熱処理は、焼鈍炉を使用して処理温度を18
0〜205°Cとほぼ一定にし、処理時間を変えて行な
った。
For low-temperature post-weld heat treatment, an annealing furnace is used to increase the treatment temperature to 18
The temperature was maintained at a constant temperature of 0 to 205°C, and the treatment time was varied.

低温溶接後熱処理終了後約2週間室温に放置しておき、
その後溶接部の縦断面を切り出して、割れの有無を磁粉
探傷試験とエツチングによって肉眼観察により判定した
After low-temperature welding and heat treatment, leave it at room temperature for about two weeks.
Thereafter, a longitudinal section of the welded part was cut out, and the presence or absence of cracks was determined by visual observation using magnetic particle testing and etching.

次に、割れ試験時に得られた、溶接終了後から低温溶接
後熱処理終了後試験体の温度が100℃に冷却するまで
の温度履歴の実測値を使用して、後熱処理時の水素拡散
の解析を行ない、試験体が100℃に冷却した時の溶接
部水素濃度分布を求めた。
Next, we analyzed the hydrogen diffusion during post-heat treatment using the measured temperature history obtained during the cracking test from the end of welding until the temperature of the specimen cooled to 100°C after the end of low-temperature post-weld heat treatment. The hydrogen concentration distribution in the weld zone was determined when the specimen was cooled to 100°C.

そして、割れ試験結果とそれに対応する水素濃度分布と
から、割れ防止限界水素濃度を明らかにした。
From the cracking test results and the corresponding hydrogen concentration distribution, we determined the critical hydrogen concentration for preventing cracking.

6 使用フラックスに応じた低温溶接後熱処理条件の決
定のための初期水素量の測定 第7図1に示すようなテストピース(単位は全て7/L
Oを使用して1パス溶接を矢印方向に行なった後、直ち
に水冷を行ない、さらに液体窒素中に挿入して水素を固
定した。
6. Measurement of the initial amount of hydrogen to determine the heat treatment conditions after low-temperature welding according to the flux used. 7. Test piece as shown in Figure 1 (all units are 7/L).
After performing one-pass welding using O in the direction of the arrow, it was immediately cooled with water and further inserted into liquid nitrogen to fix the hydrogen.

その後、水素定量用のテストピースを同図2に示すごと
く4個取り出し、真空容器に封入して室温で約20日間
放置し、その後真空抽出装置で拡散性水素を定量した。
Thereafter, four test pieces for hydrogen determination were taken out as shown in FIG. 2, sealed in a vacuum container and left at room temperature for about 20 days, and then diffusible hydrogen was determined using a vacuum extraction device.

〔試験結果及び本発明の手段〕[Test results and means of the present invention]

1 溶接直後の水素濃度と溶接施工条件との関係最終溶
接パスがパス間温度に冷却されたときの溶接部水素濃度
分布の実測値と計算値とを、第8図に示す。
1 Relationship between hydrogen concentration immediately after welding and welding conditions Figure 8 shows the measured values and calculated values of the hydrogen concentration distribution in the weld when the final welding pass is cooled to the interpass temperature.

図中の○・△・口開が実測値を示しており、曲線(ま解
析結果を示している。
○, △, and opening in the figure indicate actual measured values, and curves (marked) indicate analysis results.

同図に示されているごとく、実測値と計算値とはいずれ
も最終層直下附近でピークを示し、予熱・パス間濃度が
低い程、また板厚が増す程その値は大きくなることがわ
かる。
As shown in the figure, both the measured value and the calculated value show a peak just below the final layer, and it can be seen that the lower the preheat/interpass concentration and the higher the plate thickness, the larger the value becomes. .

また、全般的に計算値は実測値とよく一致しており、解
析プログラムの信頼性が高い。
In addition, the calculated values generally agree well with the measured values, and the reliability of the analysis program is high.

既に述べたように、実施工においては板幅が太きいため
に、溶接時の冷却速度を試験板で再現しようとすれば大
きな試験板が必要となるが、大プログラムを使用すれば
、このような場合についても容易に溶接時の水素濃度分
布を求めることが可能である。
As mentioned above, in actual work, the width of the plate is wide, so if you want to reproduce the cooling rate during welding with a test plate, you will need a large test plate, but if you use a large program, you can do this. Even in such cases, it is possible to easily determine the hydrogen concentration distribution during welding.

次に最終ビード直下の水素濃度と溶接施工条件との関係
を求めておくことは、横割れ防止の観点から重要である
Next, it is important to determine the relationship between the hydrogen concentration directly below the final bead and the welding conditions from the perspective of preventing transverse cracking.

そこで各パス溶接直後のビード直下の水素濃度を考える
と、それはアーク柱からの溶解水素と溶は込み部近傍の
残留水素によって決まるが、このうち後者は、各パス溶
接時のアーク柱からの溶解水素とそのパスまでの溶接熱
履歴によって決まることは容易に推測できる。
Therefore, when considering the hydrogen concentration directly below the bead immediately after each pass welding, it is determined by the dissolved hydrogen from the arc column and the residual hydrogen near the welding part. It can be easily inferred that it is determined by hydrogen and the welding heat history up to the pass.

ここで各パス溶接時のアーク柱からの溶解水素は一定と
考えられ、また各パス溶接時の熱履歴は、別途研究の結
果からほぼ同一とみなしてよいことが判っている。
Here, the dissolved hydrogen from the arc column during each pass welding is considered to be constant, and the thermal history during each pass welding has been found to be almost the same from the results of separate research.

したがって多層盛溶接時の最終ビード込み部直下の水素
濃度は、初層溶接直後の溶接部平均水素濃度と最終層付
近の1回の溶接熱履歴が与えられれば決定できるものと
考えられる。
Therefore, it is considered that the hydrogen concentration immediately below the final bead part during multilayer welding can be determined if the average hydrogen concentration in the weld immediately after the first layer welding and the heat history of one welding near the final layer are given.

Fick の第二法則によると、ある点の微小時間△
ti中の水素濃度変化は、その点の拡散係数をDiとす
ればDi・△tiに比例することが知られている。
According to Fick's second law, the minute time △ at a certain point
It is known that the change in hydrogen concentration in ti is proportional to Di·Δti, where Di is the diffusion coefficient at that point.

したがって1回の溶接熱履歴によって溶接部から拡散放
出される水素量は、熱履歴を微小時間△ti で分割し
、各△ti に対応するDi・△tiを求めこれを加
算して得られる2Di・△ti によって決まると考え
られる。
Therefore, the amount of hydrogen diffused and released from the weld due to one welding thermal history is 2Di, which is obtained by dividing the thermal history into minute times △ti, finding Di・△ti corresponding to each △ti, and adding these.・It is thought to be determined by △ti.

そこで最も横割れの発生しやすい最終層直下付近に着目
し、溶接熱履歴として最終溶接パスのものを使用して2
Di・△tiを求め、これと最終溶接パスの溶は込み部
直下の水素濃度との関係を求めた。
Therefore, we focused on the area directly below the final layer where transverse cracking is most likely to occur, and used the final welding pass as the welding heat history.
Di·Δti was determined, and the relationship between this and the hydrogen concentration directly below the welding groove in the final welding pass was determined.

第9図はJDi・△tiをτと置いて横軸に示し、縦軸
は最終パス溶接直後の最終ビード直下の水素濃度を、初
層溶接直後の溶接部平均水素濃度で無次元化して示して
いる。
In Figure 9, the horizontal axis shows JDi・△ti with τ, and the vertical axis shows the hydrogen concentration directly under the final bead immediately after the final pass welding, which is made dimensionless by the weld zone average hydrogen concentration immediately after the first layer welding. ing.

尚ここでは1層1パス溶接の場合を基準にして述べるが
、1層をn回のパス数で溶接するときは、横軸の目盛を
士して表示すれば一般論として展開することができる(
以下同様)。
Note that this discussion will be based on the case of one-layer, one-pass welding, but when one layer is welded with n passes, it can be generalized by displaying the scale on the horizontal axis. (
Same below).

同図中に示されている計算結果は板厚、板幅、予熱・パ
ス間温度などの溶接施工条件を広範囲に変化させて得ら
れた値であるが、図より明らかなように溶接直後の最終
パス直下の水素濃度と、溶接条件によって決まる溶接熱
履歴と水素拡散係数とから求まる水素拡散パラメータτ
、との関係はほぼ一本の曲線で表わせることがわかる。
The calculation results shown in the figure are values obtained by varying the welding conditions such as plate thickness, plate width, preheating and interpass temperature over a wide range, but as is clear from the figure, The hydrogen diffusion parameter τ is determined from the hydrogen concentration immediately below the final pass, the welding thermal history determined by the welding conditions, and the hydrogen diffusion coefficient.
It can be seen that the relationship between , and can be expressed by almost a single curve.

同図を使用すれば、水素レベルの異なるフラックスを使
用して初層溶接直後の溶接部平均水素濃度Co、o
が変化した場合、あるいは材料が変化して水素の拡散係
数が変化した場合でも同様の計算を繰返し行なう必要が
なくなり、Co、oの値、あるいは最終層付近の1回の
溶接熱履歴と水素拡散係数がかわっていれば、直ちに最
終パス溶接直後の最終パス直下における水素濃度が求め
られる。
Using the same figure, it is possible to use fluxes with different hydrogen levels to calculate the average hydrogen concentration Co, o
It is no longer necessary to repeat the same calculation even if the hydrogen diffusion coefficient changes due to a change in the material or the Co, o values, or the welding heat history and hydrogen diffusion in the vicinity of the final layer. If the coefficient has changed, the hydrogen concentration immediately after the final pass welding can be found immediately below the final pass.

次に水素拡散パラメーターτと溶接施工条件との関係を
述べる。
Next, the relationship between the hydrogen diffusion parameter τ and welding conditions will be described.

上記ではビードの温度がパス温度に達すると次パスの溶
接を行なっていく場合の結果を示したが、実施工におい
ては圧力容器の大きさなどによってパス間時間が長くな
り、温度が低下する場合があるので、第10図に示すよ
うにガス・バーナーなどを利用した補助加熱によってパ
ス間温度が保持されるような処置がとられている。
The above shows the results when the next pass welding is performed when the bead temperature reaches the pass temperature, but in actual work, the time between passes becomes longer depending on the size of the pressure vessel, etc., and the temperature decreases. Therefore, as shown in FIG. 10, measures are taken to maintain the interpass temperature by auxiliary heating using a gas burner or the like.

図中、7はターニングローラ、8は溶接トーチ、9はガ
スバーナ、10は管体を示す。
In the figure, 7 is a turning roller, 8 is a welding torch, 9 is a gas burner, and 10 is a tube body.

そこで、溶接ビードの温度がバス間温度に達してから次
パスの溶接が行なわれるまでの間は補助加熱によってパ
ス間温度に保持されるとして、水素拡散パラメーターτ
におよぼす補助加熱の影響を検討した。
Therefore, assuming that the weld bead temperature reaches the inter-pass temperature and is maintained at the inter-pass temperature by auxiliary heating until the next pass welding is performed, the hydrogen diffusion parameter τ
The effect of auxiliary heating on

補助加熱を行なえば1回の溶接熱履歴から定まるパラメ
ーターτの値は、第9図に示したτの値に補助加熱によ
る寄与、すなわち溶接ビードの温度がパス間温度に達し
てから次パスの溶接が行なわれるまでの時間△ta
とパス間温度における水素拡散係数りとの積D・△ta
を加えたものになる。
If auxiliary heating is performed, the value of the parameter τ, which is determined from the heat history of one welding, will be determined by the contribution of auxiliary heating to the value of τ shown in Figure 9, that is, after the temperature of the weld bead reaches the interpass temperature, Time until welding △ta
and the hydrogen diffusion coefficient at the interpass temperature D・△ta
will be added.

なお、△ta の値は板厚、パス間温度および溶接速度
などの溶接条件と溶接母材寸法、例えば圧力容器の胴体
周溶接継手の場合には胴体の径によって変化する。
Note that the value of Δta varies depending on welding conditions such as plate thickness, interpass temperature, and welding speed, and dimensions of the weld base material, such as the diameter of the body in the case of a circumferential welded joint of a pressure vessel.

第11図は、無限板幅の継手をパス間温度200℃で溶
接する場合に、各パス溶接時にビ−ドの温度がパス間温
度に達してから次パスの溶接が行なわれるまでは補助加
熱によってパス間温度に一定保持されるとして求めた、
パス間時間とτとの関係を示している。
Figure 11 shows that when welding a joint with infinite plate width at an inter-pass temperature of 200°C, auxiliary heating is applied after the bead temperature reaches the inter-pass temperature during each pass welding until the next pass welding. Assuming that the interpass temperature is maintained constant by
It shows the relationship between inter-pass time and τ.

図中の破線は最終パス溶接直後からビードの温度がバス
間温度に冷却するまでの時間とそのときの溶接熱履歴か
ら求まるτの値、すなわち第9図で示したΣDi・△t
iとの関係を示している。
The broken line in the figure is the value of τ determined from the time from immediately after the final pass welding until the bead temperature cools to the inter-bus temperature and the welding heat history at that time, that is, ΣDi・△t shown in Figure 9.
It shows the relationship with i.

ここで予■ 熱は図中に示すように板厚50間と100mmの場合に
は溶接部の両側を板厚相当分だけ200℃に局部予熱す
るものとした。
Here, as shown in the figure, in the case of plate thicknesses between 50 mm and 100 mm, both sides of the welded portion were locally preheated to 200° C. by an amount equivalent to the plate thickness.

このとき得られたτの値は図からも明らかなように、板
厚が50mmの場合で0.041 Cl1t、板厚が1
00mmの場合で0.022cIItとなった。
As is clear from the figure, the value of τ obtained at this time is 0.041 Cl1t when the plate thickness is 50 mm, and 1
In the case of 00mm, it was 0.022cIIt.

しかるに均−予熱を行なうものとしてτの値を求めても
板厚が50間の場合で0.043cIIt、板厚が10
0mmの場合で0.023crItとなり、局部予熱の
場合とはとんと変化がなかった。
However, even if the value of τ is calculated assuming uniform preheating, it is 0.043 cIIt when the plate thickness is between 50 mm and 10 mm.
In the case of 0 mm, it was 0.023 crIt, which was not much different from the case of local preheating.

このことより、板厚板多層盛溶接時には、溶接完了まで
の長時間の間に熱伝達によって熱が放散してしまうため
に、最初の予熱は最終層の溶接熱履歴にあまり影響をお
よぼさないことがわかる。
This means that during multi-layer welding of thick plates, the initial preheating has little effect on the welding heat history of the final layer, as heat is dissipated by heat transfer over a long period of time until welding is complete. It turns out that there isn't.

そこで板厚250關の場合の最終溶接パス直後からパス
間温度に冷却するまでの時間とΣDi・△tiとの関係
は、■ 予熱なしで、しかも最後の10パスだけの溶接を行なう
ものとして求めた。
Therefore, the relationship between ΣDi・△ti and the time from immediately after the final welding pass until cooling to the interpass temperature for a plate thickness of about 250 mm is determined by ■ assuming that welding is performed without preheating and only the last 10 passes. Ta.

また破線から伸びる直線は、ビードの温度がパス間温度
に達してから次パスの溶接が行なわれるまでの時間△t
aと補助加熱によるτの増大、すなわちD・△taとの
関係を示している。
A straight line extending from the broken line indicates the time Δt from when the bead temperature reaches the interpass temperature until the next pass welding is performed.
It shows the relationship between a and the increase in τ due to auxiliary heating, that is, D·Δta.

したがってこの直線の勾配はパス間温度における水素拡
散係数となる。
Therefore, the slope of this straight line becomes the hydrogen diffusion coefficient at the interpass temperature.

同図より補助加熱を考慮すればパス間時間はγに大きな
影響をおよぼすことが明らかである。
It is clear from the figure that the inter-pass time has a large effect on γ when auxiliary heating is taken into consideration.

同様にパス間温度が150℃の場合と250℃の場合を
第12図に示す。
Similarly, FIG. 12 shows cases where the interpass temperature is 150°C and 250°C.

同図を第11図と比較すると、補助加熱のτの値におよ
ぼす影響はパス間温度が高い程大きくなり、また150
℃ではあまりその効果61期待できないことがわかる。
Comparing this figure with Figure 11, the effect of auxiliary heating on the value of τ becomes larger as the inter-pass temperature increases;
It can be seen that the effect 61 cannot be expected much at ℃.

以上述べてきたことより、任意の溶接施工条件下での溶
接直後の水素濃度は、第11図あるいは第12図より求
まるτを第9図のτと等量すれば第9図から直ちに求め
られる。
From what has been stated above, the hydrogen concentration immediately after welding under any welding conditions can be immediately determined from Figure 9 by equalizing τ found from Figure 11 or Figure 12 with τ in Figure 9. .

2 低温溶接後熱処理時の水素濃度変化と処理条件との
関係 2−1 初期水素濃度分布の影響 ビード横割れは水素濃度のピーク位置付近で最も発生し
やすいので、横割れ防止の観点から低温溶接後熱処理時
の水素濃度のピーク値の変化と処条件との関係を明らか
にしておくことが重要である。
2 Relationship between changes in hydrogen concentration during heat treatment after low-temperature welding and processing conditions 2-1 Effect of initial hydrogen concentration distribution Transverse bead cracking is most likely to occur near the peak position of hydrogen concentration, so low-temperature welding is recommended from the perspective of preventing transverse cracking. It is important to clarify the relationship between the change in the peak value of hydrogen concentration during post-heat treatment and the treatment conditions.

事項では、この関係におよぼす溶接後の水素濃度分布の
影響について述べる。
In this section, we will discuss the influence of the hydrogen concentration distribution after welding on this relationship.

第14図は第13図に示したような低温溶接後熱処理時
の水素濃度のピーク値を処理条件との関係で示している
FIG. 14 shows the peak value of hydrogen concentration during the low-temperature post-weld heat treatment shown in FIG. 13 in relation to the treatment conditions.

第14図において縦軸の値は溶接後熱処理経過中に順次
減少且つ変化していく溶接金属内水素濃度分布の中から
求められる任意時刻における最大水素濃度値(以下ピー
ク値ということがある)Cと、第9図で示した溶接直後
の最終ビード直下における水素濃度Coとの比を表わし
ており、横軸は溶接時の水素拡散パラメーターτの値と
、後熱処理温度における水素拡散係数と処理時間との積
り、・t、との和を表わしている。
In Fig. 14, the value on the vertical axis is the maximum hydrogen concentration value (hereinafter sometimes referred to as peak value) at any time determined from the hydrogen concentration distribution in the weld metal that gradually decreases and changes during the course of post-weld heat treatment. and the hydrogen concentration Co directly under the final bead immediately after welding shown in Figure 9. The horizontal axis represents the value of the hydrogen diffusion parameter τ during welding, the hydrogen diffusion coefficient at the post-heat treatment temperature, and the treatment time. It represents the product of , and the sum of ・t.

したがって同図は低温溶接後熱処理時の水素濃度のピー
ク値の変化と処理条件との関係におよぼす初期水素濃度
分布の影響、すなわち最終パス溶接直後にビードの温度
がパス間温度に達した直後の水素濃度分布の影響を、C
/Coと(τ+D、・1.)との関数で表わしたもので
ある。
Therefore, the figure shows the influence of the initial hydrogen concentration distribution on the relationship between the change in the peak value of hydrogen concentration during heat treatment after low-temperature welding and the treatment conditions, that is, the effect of the initial hydrogen concentration distribution on the relationship between the change in the peak value of hydrogen concentration during heat treatment after low-temperature welding, i.e., immediately after the bead temperature reaches the interpass temperature immediately after the final pass welding. The influence of hydrogen concentration distribution is expressed as C
It is expressed as a function of /Co and (τ+D, ·1.).

初期水素濃度分布は溶接時の予熱・パス間温度を種々変
化させることによって変えた。
The initial hydrogen concentration distribution was varied by varying the preheating and interpass temperatures during welding.

同図より初期水素濃度分布が変化しても水素濃度のピー
ク値の変化と処理条件との関係は、C/Coと(τ+D
、・1.)との関係で整理すればほぼ一本の曲線で表わ
せることがわかる。
From the same figure, even if the initial hydrogen concentration distribution changes, the relationship between the change in the peak value of hydrogen concentration and the processing conditions is as follows: C/Co and (τ+D
,・1. ), it can be seen that it can be represented by almost a single curve.

2−2 板厚の影響 第15図に低温溶接後熱処理時の水素濃度のピーク値と
処理条件との関係におよぼす板厚の影響を示す。
2-2 Effect of plate thickness Figure 15 shows the influence of plate thickness on the relationship between the peak value of hydrogen concentration and treatment conditions during heat treatment after low-temperature welding.

同図より明らかなように、低温溶接後熱処理の初期にお
いては板厚の影響が現われていないが、これは水素濃度
のピーク位置が最終ビード直下にあり、そのような位置
での水素拡散が板表面の影響を大きく受けるためである
As is clear from the figure, the influence of plate thickness does not appear in the early stage of heat treatment after low-temperature welding, but this is because the peak position of hydrogen concentration is directly below the final bead, and hydrogen diffusion at such a position is likely to occur in the plate. This is because it is greatly affected by the surface.

また、後熱処理が進むにしたがって徐々に板厚の影響が
出てくることが示されているが、これは水素濃度のピー
ク位置が徐々に内部に人っていくためである。
Furthermore, it has been shown that as the post-heat treatment progresses, the influence of the plate thickness gradually becomes apparent, and this is because the peak position of hydrogen concentration gradually moves toward the inside.

なお割れ防止低温溶接後熱処理条件から判断して、割れ
防止のためのτ十り、・t、の値は高々1.5dまでで
ある。
Note that, judging from the heat treatment conditions after low-temperature welding to prevent cracking, the value of τ+,·t, for preventing cracking is up to 1.5 d at most.

したがって板厚が100mmを越える場合の割れ防止条
件は、板厚が100mmの場合のC/ Coと(r+D
Therefore, the conditions for preventing cracking when the plate thickness exceeds 100 mm are C/Co and (r+D) when the plate thickness is 100 mm.
.

tp)との関係を使用すれば求められる。It can be obtained by using the relationship with tp).

2−3 開先幅の影響 第16図にC/Coと(T +D p ・t p )と
の関係におよぼす溶接部開先幅の影響を示す。
2-3 Effect of groove width Figure 16 shows the effect of the weld groove width on the relationship between C/Co and (T + D p ·t p ).

同図より明らかなように、開先幅が大きくなるにしたが
って水素濃度変化は遅れるが、この原因は開先幅が大き
くなると溶接線直角方向の水素濃度勾配が小さくなるた
めである。
As is clear from the figure, as the groove width increases, the change in hydrogen concentration is delayed, but this is because as the groove width increases, the hydrogen concentration gradient in the direction perpendicular to the weld line becomes smaller.

溶接部の水素拡散を考える場合に、溶接部から母材への
拡散を無視し、板厚方向だけの一次元拡散として議論さ
れることがよくあるが、第15図と第16図の結果を見
ると、板厚よりもむしろ開先幅の影響が大きいので、こ
のような議論は無意味であることが明らかである。
When considering hydrogen diffusion in welds, it is often discussed as one-dimensional diffusion only in the plate thickness direction, ignoring diffusion from the weld to the base metal, but the results shown in Figures 15 and 16 are It is clear that this kind of discussion is meaningless, as the groove width has a greater influence than the plate thickness.

第16図に61開先幅が36朋までの結果が示されてい
るが、一般的に下向き溶接の場合の開先幅は溶接能率を
確保する意味から溶接部の横収縮量を考慮した上で板厚
によらずほぼ一定になるように設計される。
Figure 16 shows the results for 61 groove widths up to 36mm, but generally the groove width for downward welding is determined by taking into account the amount of lateral shrinkage of the welded part in order to ensure welding efficiency. It is designed to be almost constant regardless of plate thickness.

したがって板厚が300朋程度になっても開先幅は最大
36mwとして考えても差しつかえないものと思われる
Therefore, it seems safe to assume that the maximum groove width is 36 mw even if the plate thickness is about 300 mm.

しかるに横向き溶接の場合には板厚が大きくなるにした
がって開先幅は大きくなり、36山を超える場合も考え
られる。
However, in the case of horizontal welding, the groove width increases as the plate thickness increases, and there may be cases where the groove width exceeds 36 grooves.

そこで次に開先幅が36間よりも大きくなる場合のC/
Coと(τ+D、・1.)との関係について考察を加え
る。
Therefore, next, C/ when the groove width is larger than 36
Let us consider the relationship between Co and (τ+D, ·1.).

板厚が大きくなると板厚方向の拡散よりも板幅方向の拡
散が大きくなるので、今仮に水素の拡散がFickの第
二法則にしたがって板幅方向にのみ拡散するものとする
と、低温溶接後熱処理時の溶接中央部の水素濃度Cと初
期水素濃度Coとの比は簡単にC/ C。
As the plate thickness increases, diffusion in the plate width direction becomes larger than diffusion in the plate thickness direction, so if we assume that hydrogen diffuses only in the plate width direction according to Fick's second law, heat treatment after low temperature welding The ratio between the hydrogen concentration C at the center of the weld and the initial hydrogen concentration Co is simply C/C.

Φ(W/ψ丁り、−1,)と表わされる。It is expressed as Φ(W/ψ, -1,).

ここでのは誤差関数を表わしている。Here it represents the error function.

この関数を使用して、第16図に示したh=150關、
W=36mmの場合の結果をC/ Coと 4u/Wとの関係で整理しなおせ ば、開先幅が36mm以上の場合の開先幅の影響を近似
的に表わすことができるものと考えられる。
Using this function, h = 150 as shown in Figure 16,
If the results for W = 36 mm are rearranged in terms of the relationship between C/Co and 4u/W, it is thought that it is possible to approximately express the influence of the groove width when the groove width is 36 mm or more. .

第17図の実線はこのようにして得られた低温溶接後熱
処理時の水素濃度変化と処理条件、および開先幅の関係
を示している。
The solid line in FIG. 17 shows the relationship between the change in hydrogen concentration during the heat treatment after low-temperature welding obtained in this way, the treatment conditions, and the groove width.

しかし、この関係に6′!板厚方向の拡散がW二36關
の場合を除いて十分に考慮されておらず、開先幅が36
關よりも大きくなるほど過小評価され、その結果C/
Coの値は真の値よりも大きな値を与えることになる。
However, 6′ in this relationship! Diffusion in the plate thickness direction has not been sufficiently considered except in the case of W236, and the groove width is 36.
The larger the ratio, the more it will be underestimated, resulting in C/
The value of Co will give a value larger than the true value.

しかし上述したように、開先幅に対して板厚が十分に犬
きければ板厚方向の拡散は板幅方向の拡散に比較してか
なり小さくなると考えられ、近似的にこの関係が成り立
つものと考えられる。
However, as mentioned above, if the plate thickness is sufficiently smaller than the groove width, the diffusion in the plate thickness direction is considered to be considerably smaller than the diffusion in the plate width direction, and it is assumed that this relationship holds approximately. Conceivable.

そこで第16図に示したh二150mm%W30mmの
場合のC/ Coと(τ+D −t )との関係をC/
Coと4 v+1)、−t、ンWとの関係で整理しな
おし、第17図の破線で示した。
Therefore, the relationship between C/Co and (τ+D −t) in the case of h2150mm%W30mm shown in Fig. 16 is expressed as C/Co.
The relationship between Co and 4v+1), -t, and NW is rearranged and shown by the broken line in FIG.

同図の実線と破線を比較すると明らかなように、C/C
oと4%ンwとの関 係はWの変化に対してあまり変化しない。
As is clear from comparing the solid line and broken line in the same figure, C/C
The relationship between o and 4% w does not change much as W changes.

したがって本図の実線を開先幅が36間以上の場合に適
用して低温溶接後熱処理条件を求めると、安全側にしか
も正確に近い条件が得られることになる。
Therefore, if the solid line in this figure is applied to cases where the groove width is 36 mm or more to determine the low temperature post-weld heat treatment conditions, conditions on the safe side and close to accuracy will be obtained.

3 27−Cr−lMo鋼突合わせ溶接部の横割れ防止
限界水素濃度 第18図に、溶接条件と低温溶接後熱処理条件との組み
合わせを変えて行なった割れ試験の結果と、各試験条件
下での水素濃度分布を示す。
3. The critical hydrogen concentration for preventing transverse cracking in 27-Cr-lMo steel butt welds Figure 18 shows the results of cracking tests conducted with different combinations of welding conditions and low-temperature post-weld heat treatment conditions, and the shows the hydrogen concentration distribution.

低温割れの防止は100℃までの冷却時間によって決ま
る、と言われているので、ここでもその考え方に立って
、割れ防止限界水素濃度を試験体が100’CJとなっ
たときの値で表わすことにした。
It is said that the prevention of cold cracking is determined by the cooling time to 100°C, so based on this idea, the critical hydrogen concentration for preventing cracking is expressed as the value when the test specimen reaches 100'CJ. I made it.

図中の曲線は、試験体を100℃に冷却したときの水素
濃度分布を示しており、破線は割れが発生した場合を、
実線は割れが発生し■ なかった場合を示す。
The curve in the figure shows the hydrogen concentration distribution when the specimen is cooled to 100°C, and the broken line indicates the case where cracking occurs.
The solid line indicates the case where no cracking occurred.

同図より、24 Cr−IMo鋼突合わせ溶接部の割れ
防止限界水素濃度は、ピーク値で約3.3ec/gにな
ることがわかる。
From the figure, it can be seen that the critical hydrogen concentration for preventing cracking in the 24 Cr-IMo steel butt weld is approximately 3.3 ec/g at its peak value.

4 低温溶接後熱処理による割れ防止条件割れ防止低温
溶接後熱処理条件は、溶接部の形状・寸法、フラックス
の水素レベル、溶接施工条件などの因子によって変化す
ることは、既に述べてきたことから明らかであるが、こ
れを具体的に求める手順を以下に示す。
4 Conditions for preventing cracking by heat treatment after low-temperature welding Preventing cracking It is clear from what has already been stated that the conditions for heat treatment after low-temperature welding vary depending on factors such as the shape and dimensions of the weld, the hydrogen level of the flux, and the welding conditions. However, the specific procedure for determining this is shown below.

(1)溶接部の板厚と溶接時の予熱・パス間温度、パス
間時間を任意に与え、それに対して定まる溶接時の水素
拡散を支配するパラメーターτの値を、第11図あるい
は第12図を使用して求める。
(1) Given the plate thickness of the welding part, the preheating/interpass temperature during welding, and the interpass time, the value of the parameter τ that governs hydrogen diffusion during welding, which is determined based on the thickness, is determined as shown in Fig. 11 or 12. Find it using the diagram.

(2)そのτに対して定まる溶接直後の水素濃度Coを
第9図より求める。
(2) Find the hydrogen concentration Co immediately after welding, which is determined by τ, from FIG.

ここでCo、oは初層溶接直後の溶接部平均水素濃度を
表わしており、サブマージアーク溶接時のフラックスと
してMF29Aを使用すれば、47.4eC7100g
となる。
Here, Co and o represent the average hydrogen concentration in the weld immediately after first layer welding, and if MF29A is used as the flux during submerged arc welding, 47.4eC7100g
becomes.

(3)前節で明らかとなった割れ防止限界水素濃度Cc
r =3.3e(7100g )と溶接直後の水素濃
度Coとの比Ccr/Coの値を求める。
(3) Critical hydrogen concentration Cc for preventing cracking revealed in the previous section
The value of the ratio Ccr/Co between r = 3.3e (7100 g) and the hydrogen concentration Co immediately after welding is determined.

但しCcr 自体は材料や溶接条件によって変化する。However, Ccr itself changes depending on the material and welding conditions.

(4)第16図あるいは第17図の縦軸に(3)で求め
たCcr/Coの値をプロットし、それに必要な処理条
件(τ+D、・tp、)を、板厚と開先幅に応じて横軸
より読み取る。
(4) Plot the value of Ccr/Co obtained in (3) on the vertical axis of Fig. 16 or Fig. 17, and apply the processing conditions (τ + D, · tp,) necessary for it to the plate thickness and groove width. Read from the horizontal axis accordingly.

(5) (4)で求めた(τ+D、・1.)より(1
)で求めたτの値を差し引くと、(1)及び(4)で指
定した板厚、予熱・パス間温度、パス間時間、開先幅に
対する低温溶接後熱処理条件■)、・t、が求まる。
(5) From (τ+D,・1.) obtained in (4), (1
), the low-temperature post-weld heat treatment conditions for the plate thickness, preheating/interpass temperature, interpass time, and groove width specified in (1) and (4) are obtained. Seek.

ここでり、とt、は、それぞれ処理温度における水素の
拡散係数と処理時間を表わしており、水素拡散係数と温
度の関係を使用すれば、任意の処理温度に対する処理時
間が求められる。
Here, , and t represent the hydrogen diffusion coefficient and processing time at the processing temperature, respectively, and by using the relationship between the hydrogen diffusion coefficient and temperature, the processing time for any processing temperature can be found.

これらの関係をとりまとめたのが第19図である。FIG. 19 summarizes these relationships.

第20図は圧力容器本体の周継手を多層溶接したときの
後熱処理状況を示す説明図で、ターニングローラ7上で
矢印方向に回転する管体1はバーナ9A、9Bによって
2箇所で加熱され、T1〜T6の6箇所で測温されてい
る。
FIG. 20 is an explanatory diagram showing the post-heat treatment situation when the circumferential joint of the pressure vessel main body is welded in multiple layers. The tube body 1 rotating in the direction of the arrow on the turning roller 7 is heated at two locations by burners 9A and 9B. Temperatures were measured at six locations, T1 to T6.

尚バーナや測温点の数、又測温位置や測温方法も制限さ
れないが精度を高めるためにはバーナや測温点の数が多
い程良い。
Note that the number of burners and temperature measurement points, temperature measurement positions, and temperature measurement methods are not limited, but in order to improve accuracy, the greater the number of burners and temperature measurement points, the better.

又管の内外から後熱すれば、拡散性水素の放出率が一層
向上する。
Also, if the tube is post-heated from the inside and outside, the release rate of diffusible hydrogen will be further improved.

第21図は各バーナ9A、9Bの加熱によって各測温点
で温度を測定する場合における経過時間(1p1)と各
温度における水素拡散係数(D、i)の関係を示すグラ
フで、理解の便のためバーナ9A、9Bと測温点の位置
関係を示している。
Figure 21 is a graph showing the relationship between the elapsed time (1p1) and the hydrogen diffusion coefficient (D, i) at each temperature when the temperature is measured at each temperature measurement point by heating each burner 9A, 9B. Therefore, the positional relationship between the burners 9A and 9B and the temperature measurement points is shown.

即ち(D、i)はT1→T3゜T4→T6にいくにした
がって下る様なパターンを示している。
That is, (D, i) shows a pattern that descends as it goes from T1→T3°T4→T6.

こうして管体を回転しながら後熱処理を行ないながら刻
々と温度を測定しその温度における各々のDpiと夫々
の測温時間々隔の積の累積値を求めていく。
In this way, while rotating the tube and performing post-heat treatment, the temperature is measured moment by moment, and the cumulative value of the product of each Dpi and each temperature measurement time interval at that temperature is determined.

その累積値が上記(5)で定めたり、・tp値に至った
ときを検知する。
It is detected when the cumulative value is determined in (5) above or reaches the tp value.

このときピーク位置における拡散性水素濃度が前記Cr
を下まわるので、上記検知に基づいて後熱処理を完了す
ればよい。
At this time, the diffusible hydrogen concentration at the peak position is
Therefore, it is sufficient to complete the post-heat treatment based on the above detection.

又管体の周溶接ではなく、突き合わせ溶接や圧力容器に
対するノズルの取り付は溶接では、溶接線の全長に亘っ
て均一に加熱することができるので、測温点は任意の1
点としてもよく、その測温値を代表値とする。
In addition, when welding butt welding or attaching a nozzle to a pressure vessel instead of circumferential welding of the pipe body, it is possible to heat uniformly over the entire length of the weld line, so the temperature measurement point can be placed at any one point.
It may also be a point, and the measured temperature value is taken as the representative value.

本発明は上記の如く構成されているので、後熱処理の完
了時期を正しく判断することができる。
Since the present invention is configured as described above, it is possible to accurately determine when the post-heat treatment is completed.

従って後熱不十分による割れや、後熱過多に伴なう不経
済が回避され、品質管理の向上に大きく寄与することが
できた。
Therefore, cracks caused by insufficient post-heating and uneconomical effects caused by excessive post-heating were avoided, making a significant contribution to improving quality control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は試験溶接の条件とテストピースの採取位置を示
す斜視図、第2図は要素分割法を示す説明図、第3図は
有限要素法における解析のプログラムを示すフロー図、
第4図は熱的諸定数の温度依存性を示すグラフ、第5図
は水素拡散係数と温度の関係を示すグラフ、第6図は割
れ防止限界水素濃度を決定する為の開先条件を示す説明
図、第7図は1パス溶接によって溶接部に溶解する拡散
性水素量の測定法を示す斜視図、第8図は溶接後最終ビ
ードがパス間温度に達したときの水素濃度分布の実測値
と計算値の比較図、第9図は最終パス溶接直後の溶は込
み部直下の水素濃度と溶接時の水素拡散パラメータ(τ
)との関係図、第10図は溶接時のパス間温度を保持す
るためのガス・バーナーによる補助加熱を示す説明図、
第11゜12図は補助加熱を考慮したときの溶接施工条
件と水素拡散パラメーターτとの関係、第13図は水素
拡散係数を求める為の水素濃度分布の実測値と計測値の
一例を示すグラフ、第14図は低温溶接の後熱処理時の
水素濃度変化と処理条件に及ぼす溶接直後の水素濃度分
布の影響を示すグラフ、第15図は同上における板厚の
影響を示すグラフ、第16図は低温溶接後熱処理時の水
素濃度変化と処理条件との関係に及ぼす開先幅の影響を
示すグラフ、第17図は開先幅が361n71を超える
場合の水素濃度変化と後熱処理条件との関係図、第18
図は割れ防止限界水素濃度を決定するための割れ試験結
果と水素濃度分布図、第19図は種々の材料に対する割
れ防止低温溶接後熱処理条件の決定方法を示すフロー図
、第20図は後熱処理状況の一例を示す説明図、第21
図は経時的に水素拡散係数が変化する場合の状況を示す
グラフである。
Figure 1 is a perspective view showing test welding conditions and test piece sampling positions, Figure 2 is an explanatory diagram showing the element division method, and Figure 3 is a flow diagram showing the analysis program in the finite element method.
Figure 4 is a graph showing the temperature dependence of various thermal constants, Figure 5 is a graph showing the relationship between hydrogen diffusion coefficient and temperature, and Figure 6 is a graph showing the groove conditions for determining the critical hydrogen concentration to prevent cracking. Explanatory drawing, Fig. 7 is a perspective view showing a method for measuring the amount of diffusible hydrogen dissolved in the welded part by one pass welding, and Fig. 8 is an actual measurement of the hydrogen concentration distribution when the final bead reaches the interpass temperature after welding. Figure 9, a comparison diagram of the values and calculated values, shows the hydrogen concentration directly below the melt welding area immediately after the final pass welding and the hydrogen diffusion parameter (τ) during welding.
), Figure 10 is an explanatory diagram showing auxiliary heating by a gas burner to maintain the interpass temperature during welding,
Figures 11 and 12 are graphs showing the relationship between welding conditions and the hydrogen diffusion parameter τ when auxiliary heating is taken into account, and Figure 13 is a graph showing an example of actual and measured values of the hydrogen concentration distribution for determining the hydrogen diffusion coefficient. , Fig. 14 is a graph showing changes in hydrogen concentration during heat treatment after low-temperature welding and the effect of the hydrogen concentration distribution immediately after welding on the processing conditions, Fig. 15 is a graph showing the effect of plate thickness in the above, Fig. 16 is A graph showing the influence of groove width on the relationship between hydrogen concentration change and treatment conditions during low-temperature post-welding heat treatment, and Figure 17 is a diagram showing the relationship between hydrogen concentration change and post-heat treatment conditions when the groove width exceeds 361n71. , 18th
The figure shows the cracking test results and hydrogen concentration distribution diagram for determining the limit hydrogen concentration for preventing cracking. Figure 19 is a flow diagram showing the method for determining the low-temperature post-welding heat treatment conditions for preventing cracking for various materials. Figure 20 is the post-heat treatment. Explanatory diagram showing an example of the situation, No. 21
The figure is a graph showing the situation when the hydrogen diffusion coefficient changes over time.

Claims (1)

【特許請求の範囲】 1 多層溶接終了直後の最終溶接層直下の残留水素濃度
(Co(cq/100g))を予め求め、次にこれと溶
接部割れ防止限界水素濃度(Cc 1(eC/’io。 g)〕との比CCcr/Co、lを求め、溶接後熱処理
実施中に変化する溶接金属中の最大水素濃度値(C(e
c/loog)) と前記(Co(ec/100g)
、lの比〔C/co〕と、当該溶接条件下における次式
で示される溶接時の水素拡散パラメータ〔τに)〕に、
後熱処理時の水素拡散係数〔Dp(crIt/5eC)
〕と後熱処理時間(t p (sec) )7)積を加
えた値(r+Dp−tp(crIt))との間の予め求
められた関係より、 前記(C/Co、lが(Cc r/Co−’)になると
きのDp−tpを求めておき、 後熱処理中溶接部適所の温度を刻々と測定し、その温度
における水素拡散係数〔Dpi(CrVSeC)〕を知
ると共に、該水素拡散係数と測温時間々隔との積の累積
値が、前記Dp−tpの値以上になると、これを検知し
て後熱処理を完了することを特徴とする溶接後熱処理法
。 但しDi=最終溶接終了後、後熱処理開始までの最終層
直下の任意の水素拡散係数(crIVSeC)tn:最
終層溶接終了後、後熱処理開始までの所要時間(sec
) 2 与えられた溶接条件より、拡散水素パラメータ〔τ
〕及び初層溶接直後の溶接部の残留水素濃度(Co、o
(ec/100g)、lを予め求めておき、(?’1と
CCo/Co、o〕との関係より〔Co〕を求める特許
請求の範囲第1項記載の後熱処理法。 3 厚肉円筒の周溶接完了部を、該円筒を回転させつつ
1以上のバーナーによって加熱することによって後熱処
理を施しつつ溶接部の任意の点の温度を刻々と計測して
該点における水素拡散係数Dpi を知ると共に、該水
素拡散係数と測温時間間隔との積の累積値が1)p−t
p以上になるとこれを検知して後熱処理を完了する特許
請求の範囲第1又は2項記載の後熱処理法。 4 突合せ溶接線をその片側より複数の固定バーナーで
加熱することによって後熱処理を施しつつその溶接線の
他側の任意の点の温度を刻々と計測して該点における水
素拡散係数Dpi を知ると共に、該水素拡散係数と
測温時間々隔との積の累積値がDp−tp以上になると
これを検知して後熱処理を完了する特許請求の範囲第1
又は2項記載の後熱処理法。
[Claims] 1. The residual hydrogen concentration (Co (cq/100g)) immediately below the final weld layer immediately after the completion of multilayer welding is determined in advance, and then this and the critical hydrogen concentration for preventing weld cracking (Cc 1 (eC/') io.g)], and calculate the maximum hydrogen concentration value (C(e
c/loog)) and the above (Co(ec/100g)
, l [C/co] and the hydrogen diffusion parameter [τ] during welding, which is expressed by the following formula under the welding conditions:
Hydrogen diffusion coefficient during post-heat treatment [Dp (crIt/5eC)
] and the value (r+Dp-tp(crIt)), which is the product of the post-heat treatment time (tp (sec))7), and the above (C/Co, l is (Ccr/ Calculate Dp-tp when it becomes Co-'), measure the temperature at the appropriate location of the weld every moment during post-heat treatment, find out the hydrogen diffusion coefficient [Dpi (CrVSeC)] at that temperature, and also calculate the hydrogen diffusion coefficient. A post-weld heat treatment method characterized in that when the cumulative value of the product of and the temperature measurement time interval becomes equal to or greater than the value of Dp-tp, this is detected and the post-heat treatment is completed.However, Di = end of final welding Arbitrary hydrogen diffusion coefficient (crIVSeC) immediately below the final layer until the start of post-heat treatment (crIVSeC) tn: Time required from the end of final layer welding to the start of post-heat treatment (sec
) 2 From the given welding conditions, the diffusion hydrogen parameter [τ
] and the residual hydrogen concentration (Co, o
(ec/100g), l is determined in advance, and [Co] is determined from the relationship between (?'1 and CCo/Co, o]. The post-heat treatment method according to claim 1. 3 Thick-walled cylinder The circumferentially welded part of the cylinder is heated by one or more burners while rotating the cylinder to perform post-heat treatment, and the temperature at any point of the welded part is measured moment by moment to determine the hydrogen diffusion coefficient Dpi at that point. In addition, the cumulative value of the product of the hydrogen diffusion coefficient and the temperature measurement time interval is 1) p-t
The post-heat treatment method according to claim 1 or 2, wherein the post-heat treatment is completed by detecting this when the temperature exceeds p. 4. While performing post-heat treatment by heating the butt weld line from one side with a plurality of fixed burners, the temperature at an arbitrary point on the other side of the weld line is measured moment by moment, and the hydrogen diffusion coefficient Dpi at that point is determined. , when the cumulative value of the product of the hydrogen diffusion coefficient and the temperature measurement time interval becomes Dp-tp or more, this is detected and the post-heat treatment is completed.
Or the post-heat treatment method described in item 2.
JP1499780A 1980-02-09 1980-02-09 Post-weld heat treatment method Expired JPS5856014B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1499780A JPS5856014B2 (en) 1980-02-09 1980-02-09 Post-weld heat treatment method
DE8181300509T DE3165473D1 (en) 1980-02-09 1981-02-06 Method for postweld heat treatment
EP19810300509 EP0034057B1 (en) 1980-02-09 1981-02-06 Method for postweld heat treatment
CA000370283A CA1189427A (en) 1980-02-09 1981-02-06 Method for postweld heat treatment
AU66968/81A AU544035B2 (en) 1980-02-09 1981-02-06 Method for post weld heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1499780A JPS5856014B2 (en) 1980-02-09 1980-02-09 Post-weld heat treatment method

Publications (2)

Publication Number Publication Date
JPS56112421A JPS56112421A (en) 1981-09-04
JPS5856014B2 true JPS5856014B2 (en) 1983-12-13

Family

ID=11876561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1499780A Expired JPS5856014B2 (en) 1980-02-09 1980-02-09 Post-weld heat treatment method

Country Status (5)

Country Link
EP (1) EP0034057B1 (en)
JP (1) JPS5856014B2 (en)
AU (1) AU544035B2 (en)
CA (1) CA1189427A (en)
DE (1) DE3165473D1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400814B1 (en) 2007-01-13 2008-07-15 Furukawa Electric North America, Inc. Wall-mountable optical fiber and cable management apparatus
JP2013193124A (en) * 2012-03-22 2013-09-30 Hitachi Zosen Corp Welding method of structural steel, and welded steel structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR929700A (en) * 1942-01-30 1948-01-05 Process for removing hydrogen from steel
BE843847A (en) * 1975-07-09 1976-11-03 METHOD FOR DETERMINING THE ADVANCEMENT OF A THERMAL TREATMENT

Also Published As

Publication number Publication date
AU544035B2 (en) 1985-05-16
EP0034057A2 (en) 1981-08-19
EP0034057A3 (en) 1981-10-07
EP0034057B1 (en) 1984-08-15
DE3165473D1 (en) 1984-09-20
JPS56112421A (en) 1981-09-04
AU6696881A (en) 1981-08-20
CA1189427A (en) 1985-06-25

Similar Documents

Publication Publication Date Title
CN110396590B (en) Local heat treatment method for large pressure container
CN104625322B (en) Large non-standard device thick-plate all-position welding method
JPH0216371B2 (en)
Ramakrishnan et al. Studies on fracture toughness of cold wire addition in narrow groove submerged arc welding process
JPS5856014B2 (en) Post-weld heat treatment method
JP2002301577A (en) Method of joining martensitic stainless steel
Wright et al. Creep and creep-fatigue of Alloy 617 weldments
Mičian et al. The repair of foundry defects in steel castings using welding technology
Takahashi et al. Relations Between Occurrence of Transverse Cracks and Parameters of Residual Stress and Diffusible Hydrogen Concentration: Prevention of Transverse Cracks in Heavy Section Butt
Manimozhi et al. HAZ hydrogen cracking of 9Cr-0.5 Mo-1.7 W steels
Rogerson Defects in welds: Their prevention and their significance
Carlone et al. The influence of pre-heating on the weldability of pure copper by FSW
Takahashi et al. Omission of intermediate postweld heat treatment (PWHT) by utilizing low-temperature PWHT for welds in pressure vessels
Odebiyi et al. Effect of parallel heating on properties of a welded AISI 8438 steel
Lazor et al. Effect of microalloying on weld cracking in low carbon steels
García-García et al. Microstructural and Mechanical Characterization of Autogenous GTAW Weld in High-Manganese Austenitic Steel Ti-Containing with Thermal Analysis
Perdomo et al. Failures Related to Welding
Chen et al. Numerical Simulation of Weld Thermal History for Pulsed GMAW Process
Betini et al. Study of the thermal diffusivity variation in thin duplex steel plates welded by GTAW process
JPS595860B2 (en) Method for determining embrittlement of austenitic stainless steel weld metal
Lejeail The working out of a design rule in case of structures submitted to thermal striping
Morgan-Warren et al. Effect of travel speed on solidification cracking in autogenous tungsten inert gas arc welding of low-alloy steel sheet
JPS5831270B2 (en) Austenite silicone stainless steel
Syväniemi The development of orbital welding process for P235GH tubes in P265GH, P275NL2 and P355NL2 tubesheets
Barrett An alternate test for the physical properties of arc-weld metal.