JPS5855904A - Manufacture of optical waveguide - Google Patents

Manufacture of optical waveguide

Info

Publication number
JPS5855904A
JPS5855904A JP56154379A JP15437981A JPS5855904A JP S5855904 A JPS5855904 A JP S5855904A JP 56154379 A JP56154379 A JP 56154379A JP 15437981 A JP15437981 A JP 15437981A JP S5855904 A JPS5855904 A JP S5855904A
Authority
JP
Japan
Prior art keywords
optical waveguide
gaas
atoms
optical
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56154379A
Other languages
Japanese (ja)
Inventor
Akira Mita
三田 陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56154379A priority Critical patent/JPS5855904A/en
Publication of JPS5855904A publication Critical patent/JPS5855904A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the light losses of wavelengths near a forbidden band with respect to a semiconductor laser of double heterostructure of GaAs compds. by implanting atoms smaller than component atoms by ions into the part for forming an optical wavequide from the surface of the crystal and annealing the same. CONSTITUTION:An n<+>-GaAs buffer layer 12, an n<+>-GaAlAs lower clad layer 13, an n<->-GaAs active layer and an optical waveguide part 14, a P-GaAlAs upper clad layer 15, and a p-GaAs upper clad layer 16 are laminated by a liquid phase epitaxial method on an n<+>-GaAs substrate 11, whereby a semiconductor laser of double heterostructure is obtained. When electricity is conducted to an electrode 17, light is released from a cleavage surface 18. Atoms B smaller than atoms GaAs for forming the part 14 are accelerated and are implanted from the layer 16 into an ion implanting part 19. Then the B doped in the part 19 is annealed by a laser light to remove excessive defects. Thus the optical wavequide which decreases a coefft. 22 of adsorption corresponding to laser oscillating light 24 shown by the arrow mark is obtained and the light losses are decreased.

Description

【発明の詳細な説明】 本発明は新規な構成を有するm−■族化合物半導体光導
波路の製作法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an m-■ group compound semiconductor optical waveguide having a novel configuration.

最近半導体レーザの性能ならびに信頼性が向上し、一方
、光通信あるいは光情報処理への応用が一般化するにお
よんで、半導体レーザを単体としてではなく附属する光
スィッチと一体化して集積化されたつルパルス発生器と
して使用するか%あるい燻分布フィードバック構造々ど
複雑な構造を採用することが現実の問題となっている。
Recently, the performance and reliability of semiconductor lasers have improved, and on the other hand, as their applications in optical communications and optical information processing have become commonplace, semiconductor lasers have become integrated with attached optical switches rather than as standalone devices. The actual problem is whether to use it as a pulse generator or to adopt a complex structure such as a feedback structure or a smoke distribution feedback structure.

しかるに、かかる目的のためには、第1図に示すように
、半導体レーザの発振部(1)からの発振光〆 (2)を光導波路(3)によって、たとえばスイッチ部
(4)に導υ゛くことが必要であるが、従来一般に用い
られていた光回路においては、液相エピタキシアル法な
どの方法によって基板結晶(5)の上にクラッド部(6
)を介してより小なる禁制帯幅(Eo)およびよシ大な
る屈折率(n)を有する活成層ならびに光導波# (7
)を設け、さらにその上部に上部クラッド部C8)°を
作成する方法によって形成され、その一部分に電極(9
)を製作して、電流を注入しレーザ発振を起させて、発
振光(2)を光導波部(7)の全体または相尚部分にわ
たって往復せしめて発振を起させ、さらに他の電極すな
わち変調用電極Onによって変調等を行なわヂんとする
ものであった。
However, for this purpose, as shown in FIG. However, in optical circuits commonly used in the past, a cladding portion (6) is formed on the substrate crystal (5) by a method such as liquid phase epitaxial method.
) and optical waveguide # (7
) and further create an upper cladding part C8)° on top of it, and an electrode (9) is formed on a part of it.
), a current is injected to cause laser oscillation, the oscillation light (2) is caused to reciprocate over the entire optical waveguide (7) or a corresponding part of the optical waveguide (7), and oscillation is caused. Modulation and the like were performed by the use electrode On.

しかるに、このような構造をもつ半導体レーザにおいて
最大の障害となるポイントは、光導波路部における光吸
収による損失がきわめて大きくl Q 4CIR−1[
達し、そのためレーザ発振部において発生した発振光が
tlとんど失なわれ、発振閾値が著しく高くなるか、あ
るいは光回路として利用できる光導波路部の長さが著し
く短かくなるという欠点があった。しかもかかる光導波
路構造は、レーザ発振器のため要求される格子整合され
たダブルへテロ構造においては不可欠のものであり、こ
のような理由から第1図の如き構造をもつ光回路あるい
はレーザ発振器は、労開面を利用した通常の半導体レー
ザと比較して性能的に格段に劣シ、実用的なデバイスと
して登場することはできなかった。
However, the biggest problem with a semiconductor laser having such a structure is that the loss due to light absorption in the optical waveguide is extremely large.
As a result, the oscillation light generated in the laser oscillation section is almost always lost, resulting in a disadvantage that either the oscillation threshold becomes extremely high or the length of the optical waveguide section that can be used as an optical circuit becomes extremely short. . Moreover, such an optical waveguide structure is essential for the lattice-matched double heterostructure required for a laser oscillator, and for this reason, an optical circuit or laser oscillator having a structure as shown in FIG. Its performance was significantly inferior to that of normal semiconductor lasers that utilize labor-opening planes, and it was not possible to develop it as a practical device.

本発明は従来のダブルへテロ接合を用いた光導波路にお
けるかかる欠点を除去し、制作容易でしかも格段に光損
失を低下しうる光導波路の製作法を与えることを目的と
する。
It is an object of the present invention to eliminate such drawbacks in conventional optical waveguides using double heterojunctions, and to provide a method for manufacturing optical waveguides that is easy to manufacture and can significantly reduce optical loss.

本発明は■−■族化合物半導体の層状ダブルへテロ構造
力:ガらる光導波路において、光導波部ならびにクラッ
ド部にほぼ一様に組成原子の平均原子量よシ軽い原子量
あ原子を高速に加速して注入し、公知の方法によってア
ニールを行なうことKよって実現される。
The present invention is based on the layered double heterostructure force of a ■-■ group compound semiconductor: In a gala optical waveguide, atoms with an atomic weight lighter than the average atomic weight of the constituent atoms are accelerated almost uniformly in the optical waveguide and cladding portion at high speed. This can be achieved by implanting the wafer and annealing it by a known method.

本発明の特徴ならびに主要な利点をより一層明らかにす
るため、以下一実施例について説明する。
In order to further clarify the features and main advantages of the present invention, an example will be described below.

第2図に示す如く、n+ −G aA s基板結晶aυ
上に液相エピタキシアル法によってn+−GaAsバッ
ファ層02+ n+−GaAIAs下部クラyド層り1
31゜n  −GaAs活性層ならびに光導波路部(1
41,p−GaAJAs上部クラッドaり(15) s
 pG a A s上部被覆層αeを遂次形成し、半導
体レーザを形成する部分に電極aηならびに片面のみ臂
開面OQを形成する。
As shown in Figure 2, n+ -GaAs substrate crystal aυ
An n+-GaAs buffer layer 02+ an n+-GaAIAs lower cladding layer 1 is formed on top by liquid phase epitaxial method.
31゜n-GaAs active layer and optical waveguide section (1
41, p-GaAJAs upper cladding a (15) s
A pG a As upper covering layer αe is successively formed, and an electrode aη and an arm opening OQ on only one side are formed in a portion where a semiconductor laser is to be formed.

しかるのち、先導波路となる半導体レーザ以外の部分K
B原子をイオン注入法によって注入し、光導波路部なら
びにクラッド部の相当部分を図示0の如く#1ぼ均一に
ドープしうる如くする・しかるのち、公知の炉、レーザ
光束あるいは電子線をもってするアニール法によって過
剰な欠陥を除去すると、#I3図に示す如く最初の吸収
曲11#f)Kおける吸収端は若干短波長側に移動して
曲1s123の如くなり、注入原子によって生起された
損傷のため附加的な吸収(2)は増大するが、レーザ発
振光の波長(矢印で示す)(24に対応する吸収係数は
格段に低下し10乃至10zclL−4の程度となり、
実用的な光導波路を得る仁とができる。
After that, the part K other than the semiconductor laser which becomes the guiding waveguide is
B atoms are implanted by the ion implantation method so that the optical waveguide section and a considerable part of the cladding section are uniformly doped with #1 as shown in the figure 0. Then, annealing is performed using a known furnace, laser beam, or electron beam. When excessive defects are removed by the method, the absorption edge in the first absorption curve 11#f)K moves slightly to the shorter wavelength side and becomes curve 1s123, as shown in Figure #I3, and the damage caused by the implanted atoms is removed. Therefore, the additional absorption (2) increases, but the absorption coefficient corresponding to the wavelength of the laser oscillation light (indicated by the arrow) (24) significantly decreases to about 10 to 10zclL-4,
It is possible to obtain a practical optical waveguide.

上述の実施例において、BにかえてAjまたはP゛を注
入しても足性的にはtlぼ一様の結果が得られる。特K
BあるいはAIとPを同一原子比だけ注入を行なうと、
第3図に示す押傷による吸収は減少する傾向を示す。
In the above-mentioned embodiment, even if Aj or P' is injected instead of B, the same result in terms of tl can be obtained. Special K
When B or AI and P are implanted in the same atomic ratio,
As shown in FIG. 3, the absorption due to pressure injuries tends to decrease.

注入すべきB、AIまたけP原子の原子数は状況によっ
て異なるが、光導波部の吸収端をはt1!′20〜3 
QmeV移動せしめれば充分であり、実験の一例では5
 * 10” atom/camの程度である。
The number of P atoms to be implanted across B and AI varies depending on the situation, but the absorption edge of the optical waveguide is t1! '20~3
It is sufficient to move QmeV, and in an example of an experiment, 5
* Approximately 10” atoms/cam.

おけるGaAa−GaA/As3元系ダブルへテロ構造
のみでなく、たとえばInP−InGaAsP4元系ダ
ブルへテロ構造においても実現することができ、この場
合は組成の平均よ)軽い原子の注入を行なえばよい。
It can be realized not only in the GaAa-GaA/As ternary double heterostructure, but also in the InP-InGaAsP quaternary double heterostructure, for example, by implanting atoms that are lighter than the average composition. .

かかる構造を有する半導体レーザと結合された低損失光
導波路は、たとえば分布定数型の反射器を用いてプレー
ナ型の半導体レーザに用いられたり、あるいは光導波路
部分と光スィッチを挿入してモードロッカーとして動作
せしめ、集積化されたくりかえし光パルス列発生器を実
現しりるなど広汎な用途を有する。
A low-loss optical waveguide coupled to a semiconductor laser having such a structure can be used, for example, in a planar semiconductor laser using a distributed constant reflector, or as a mode locker by inserting an optical waveguide section and an optical switch. It has a wide range of applications, including realizing an integrated repeating optical pulse train generator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光回路の模式的断面図で、1は半導体レ
ーザの発振部、2は発振光、3は光導波路、4Fiスイ
ッチ部、5は基板結晶、6はクラッド部、7は活性層な
らびに光導波部、8J−を上部クラッド部、9は電極、
10は変調用電極である。 絡2図は本発明の実施例の模式的断面図で、11Fin
+−GaAs基板結晶、12はn+−GaAaバッファ
層、13はn+−GmA/As下部クラッド層、14は
n−−GaAs活性層ならびに光導波路層、15はf)
−GaλjAs上部クラッド層、16は戸−GaAs上
部被覆層、17は電極、18は労開面、19はB原子注
入部である。
Figure 1 is a schematic cross-sectional view of a conventional optical circuit, where 1 is the oscillation part of the semiconductor laser, 2 is the oscillation light, 3 is the optical waveguide, 4 is the Fi switch part, 5 is the substrate crystal, 6 is the cladding part, and 7 is the active part. layer and optical waveguide section, 8J- is the upper cladding section, 9 is the electrode,
10 is a modulation electrode. Figure 2 is a schematic cross-sectional view of an embodiment of the present invention.
+-GaAs substrate crystal, 12 is n+-GaAa buffer layer, 13 is n+-GmA/As lower cladding layer, 14 is n--GaAs active layer and optical waveguide layer, 15 is f)
16 is a GaAs upper cladding layer, 17 is an electrode, 18 is an opening surface, and 19 is a B atom implantation part.

Claims (1)

【特許請求の範囲】[Claims] GaAnあるいはそれと類縁の性状を有する■−■族化
合物牛導体を材料とし、基板結晶上に積層状に構成され
九光導波郁ならびにクラッド部を有する構造をもつ半導
体光導波路において、結晶表面よシ光導波部を形成する
原子の平均原子量よシも小なる原子量を有する■族また
は■族の原子を高速に加速したイオンを注入し、公知の
方法によって7ニールを行なうことによシ、光導波部の
禁制帯幅附近大せしめ、これによって光導波路の禁制帯
幅附近の波長の光損失を格段に低減せしめる光導波路の
製作法。
In a semiconductor optical waveguide that is made of GaAn or a ■-■ group compound conductor with properties similar to it, and has a structure in which it is laminated on a substrate crystal and has nine optical waveguides and a cladding part, the optical waveguide is An optical waveguide can be formed by implanting ions made by accelerating atoms of the group II or group II, which have an atomic mass smaller than the average atomic mass of the atoms forming the wave part, and performing 7-nealing using a known method. A method for manufacturing an optical waveguide that increases the forbidden band width of the optical waveguide, thereby significantly reducing optical loss at wavelengths near the forbidden band width of the optical waveguide.
JP56154379A 1981-09-29 1981-09-29 Manufacture of optical waveguide Pending JPS5855904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56154379A JPS5855904A (en) 1981-09-29 1981-09-29 Manufacture of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56154379A JPS5855904A (en) 1981-09-29 1981-09-29 Manufacture of optical waveguide

Publications (1)

Publication Number Publication Date
JPS5855904A true JPS5855904A (en) 1983-04-02

Family

ID=15582856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56154379A Pending JPS5855904A (en) 1981-09-29 1981-09-29 Manufacture of optical waveguide

Country Status (1)

Country Link
JP (1) JPS5855904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156014A (en) * 1983-12-27 1985-08-16 Omron Tateisi Electronics Co Production of flush type optical waveguide device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156014A (en) * 1983-12-27 1985-08-16 Omron Tateisi Electronics Co Production of flush type optical waveguide device

Similar Documents

Publication Publication Date Title
US4639275A (en) Forming disordered layer by controlled diffusion in heterojunction III-V semiconductor
CN1246942C (en) Laser diode chip with waveguide
JPS5816349B2 (en) Double Hetero Kouzousouchi
JP2000338453A (en) Semiconductor light pulse compression waveguide element
US3654497A (en) Semiconductor lasers utilizing internal saturable absorbers
US3733561A (en) High power, fundamental transverse mode operation in double heterostructure lasers
WO2003096494A2 (en) Monolithically integrated high power laser optical device
JPS5855904A (en) Manufacture of optical waveguide
US4686679A (en) Window VSIS semiconductor laser
EP0412582A1 (en) A semiconductor laser
Kirkby et al. High peak power from (GaAl) As–GaAs double‐heterostructure injection lasers
EP0270170A1 (en) Semiconductor laser and method of manufacturing same
Houghton et al. Low-loss optical waveguides in MBE-grown GaAs/GaAlAs heterostructures
US4779280A (en) Semiconductor laser equipped with means for reinjecting the spontaneous emission into the active layer
Wakao et al. Catastrophic degradation level of visible and infrared GaAlAs lasers
JPS58219789A (en) Embedded type optical semiconductor device
JPS6377186A (en) Manufacture of semiconductor laser
JPH0193191A (en) Manufacture of semiconductor laser
JP2000286508A (en) Semiconductor device and manufacture thereof
GB2109155A (en) Semiconductor laser manufacture
JP2001053381A (en) Semiconductor laser and manufacture thereof
JPH01170082A (en) Double-hetero structure semiconductor laser with device
JPH04186687A (en) Semiconductor laser
JP2875440B2 (en) Semiconductor laser device and method of manufacturing the same
JPS58219772A (en) Laser type light emission device and method of producing same