JPS5855816B2 - Catalyst manufacturing method - Google Patents

Catalyst manufacturing method

Info

Publication number
JPS5855816B2
JPS5855816B2 JP52062148A JP6214877A JPS5855816B2 JP S5855816 B2 JPS5855816 B2 JP S5855816B2 JP 52062148 A JP52062148 A JP 52062148A JP 6214877 A JP6214877 A JP 6214877A JP S5855816 B2 JPS5855816 B2 JP S5855816B2
Authority
JP
Japan
Prior art keywords
catalyst
nonionic surfactant
gas
same manner
dried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52062148A
Other languages
Japanese (ja)
Other versions
JPS53146989A (en
Inventor
昭一 市原
哲嗣 小野
知久 大幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP52062148A priority Critical patent/JPS5855816B2/en
Publication of JPS53146989A publication Critical patent/JPS53146989A/en
Publication of JPS5855816B2 publication Critical patent/JPS5855816B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は触媒の製造方法に関するものである。[Detailed description of the invention] The present invention relates to a method for producing a catalyst.

詳しく述べると不発明は触媒構成元素化合物をアルミナ
、シリカ−アルミナ、アルミナ−マグネシア、シリカ、
酸化チタンなどの耐火性、多孔質の無機担体に担持させ
、あるいは触媒構成元素化合物と無機担体とを成型せし
めてなる触媒を効率よく還元処理することよりなる触媒
の製造方法に関するものである。
To be more specific, in the invention, the catalyst constituent element compounds are alumina, silica-alumina, alumina-magnesia, silica,
The present invention relates to a method for producing a catalyst, which comprises efficiently reducing a catalyst supported on a refractory, porous inorganic carrier such as titanium oxide, or formed by molding a catalyst constituent element compound and an inorganic carrier.

さらに詳しく述べると本発明は上記の如く担持または成
型されてなる触媒構成元素化合物をポリオキシエチレン
系非イオン界面活性剤を含有する水媒体液中、アルカリ
金属ボロハイドライドにより効率よ(還元せしめる方法
に関するものである。
More specifically, the present invention relates to a method for efficiently (reducing) a catalyst constituent element compound supported or molded as described above with an alkali metal borohydride in an aqueous medium containing a polyoxyethylene nonionic surfactant. It is something.

触媒構成元素化合物の還元方法として従来から気相方法
では例えば水素ガスまたは水素−窒素ガスを用いて加熱
下還元させる方法があり、液相方法ではホルマリン、ギ
酸、ヒドラジンおよびアルカリ金属ボロハイドライドの
水媒体液に浸漬する方法が知られている。
Gas phase methods have conventionally been used to reduce catalyst constituent element compounds, such as reduction under heating using hydrogen gas or hydrogen-nitrogen gas, while liquid phase methods have used formalin, formic acid, hydrazine, and aqueous media of alkali metal borohydrides. A method of immersing it in liquid is known.

気相還元法は工業的に広く行われているが、装置が比較
的大型になり、高温で処理するため熱源を必要とし、経
済的に不利であると共に、危険で取扱に充分留意しなけ
ればならないという欠点を有している。
Although the gas phase reduction method is widely used industrially, it requires relatively large equipment and requires a heat source for processing at high temperatures, which is not only economically disadvantageous but also dangerous and requires careful handling. It has the disadvantage that it does not.

液相法においてホルマリン、ギ酸、ヒドラジンを用いる
方法は還元能に問題があり、また有害ガスの処理が必要
であり、また装置が腐食しやすいなどの欠点を有してい
る。
In the liquid phase method, methods using formalin, formic acid, and hydrazine have problems in reducing ability, require treatment of harmful gases, and have drawbacks such as easy corrosion of the equipment.

この点においてアルカリ金属ボロハイドライドを還元剤
として使用する方法は有害ガスを発生することが無く、
還元能も比較的硬れている方法として注目されている。
In this respect, the method of using alkali metal borohydride as a reducing agent does not generate harmful gases,
It is attracting attention as a method with relatively good reducing ability.

しかしながら実際にこのアルカリ金属ボロハイドライド
の水媒体液のみで触媒を還元処理すると、次式の反応に
より MBH4+2H20→4H2+MBO2 (M−アルカリ金属) 水素ガスが発生するが、この発生する水素ガスと触媒と
の接触効率が悪く、理論還元当量の数倍〜数10倍もの
アルカリ金属ボロハイドライドを使用しなければならな
い欠点を有している。
However, when the catalyst is actually reduced using only this aqueous medium of alkali metal borohydride, hydrogen gas (MBH4 + 2H20 → 4H2 + MBO2 (M-alkali metal)) is generated by the reaction of the following formula, but the reaction between this generated hydrogen gas and the catalyst is The contact efficiency is poor and the alkali metal borohydride must be used in an amount several times to several tens of times the theoretical reduction equivalent.

本発明は還元剤としてのアルカリ金属ボロハイドライド
使用上の前記欠点を解決することを目的とする方法であ
る。
The present invention is a method aimed at overcoming the aforementioned drawbacks of using alkali metal borohydrides as reducing agents.

すなわち、たとえば触媒構成元素化合物担持触媒の場合
について詳しく説明する。
That is, for example, the case of a catalyst supporting a catalyst constituent element compound will be explained in detail.

触媒構成元素化合物(以下触媒物質という)とポリエチ
レン系非イオン界面活性剤とを含有する水媒体液を、ア
ルミナ、シリカ−アルミナ、アルミナ−マグネシア、シ
リカ、酸化チタンなどの耐火性、多孔質の無機担体に担
持させ、そのままの状態または200℃以下で乾燥処理
して、該触媒物質担持組成物中に上記ポリエチレン系非
イオン界面活性剤を未分解のままで含有させ、ついでこ
の担持組成物をアルカリ金属ボロハイドライドの水媒体
液に浸漬し、担持組成物中の触媒物質を還元させる。
An aqueous medium containing a catalyst constituent element compound (hereinafter referred to as a catalyst substance) and a polyethylene nonionic surfactant is mixed with a fire-resistant, porous inorganic material such as alumina, silica-alumina, alumina-magnesia, silica, titanium oxide, etc. The polyethylene nonionic surfactant is supported on a carrier as it is or is dried at 200° C. or lower to contain the undecomposed polyethylene nonionic surfactant in the catalyst material supporting composition. The catalyst substance in the supported composition is reduced by immersion in an aqueous metal borohydride solution.

その際触媒物質と共存する上記ポリオキシエチレン系非
イオン界面活性剤の起泡性により、アルカリ金属ボロハ
イドライドから発生する水素ガスが上記ポリオキシエチ
レン系非イオン界面活性剤の泡の中に維持されるため、
水素ガスと触媒成分との接触時間が長くなり、従って接
触効率が良くなり、ポリオキシエチレン系非イオン界面
活性剤を用いない場合に比べてはるかに少量のアルカリ
金属ボロハイドライド使用量で十分な還元効果が認めら
れることが判明した。
At this time, due to the foaming property of the polyoxyethylene nonionic surfactant that coexists with the catalyst material, hydrogen gas generated from the alkali metal borohydride is maintained in the bubbles of the polyoxyethylene nonionic surfactant. In order to
The contact time between the hydrogen gas and the catalyst components is increased, and therefore the contact efficiency is improved, resulting in sufficient reduction with a much smaller amount of alkali metal borohydride than without polyoxyethylene nonionic surfactants. It was found that the effect was recognized.

還元後の触媒は水切り後水洗してアルカリ分と共にポリ
オキシエチレン系非イオン界面活性剤を除去することが
好ましい。
It is preferable that the reduced catalyst is drained and then washed with water to remove the polyoxyethylene nonionic surfactant along with the alkali content.

水洗後乾燥処理を行い完成触媒とするが乾燥は通常80
〜250℃で行う。
After washing with water, drying is performed to obtain the finished catalyst, but drying is usually done at 80%
Perform at ~250°C.

場合によってはさらに600℃以下の温度で焼成しても
良いが、通常は上記の乾燥処理、とくに200℃以下で
乾燥しそのまま完成触媒として使用するのが良い。
Depending on the case, it may be further calcined at a temperature of 600° C. or lower, but it is usually better to use the above drying treatment, particularly at a temperature of 200° C. or lower, and use it as it is as a finished catalyst.

次に成型触媒の場合は、粉末状の担体と、粉末状または
液状の触媒物質と必要量の水の中にポリオキシエチレン
系非イオン界面活性剤を溶解含有述※させ、必要により
成型助剤、例えばアルミナゾル、シリカゾルを添加し、
充分混合後押出成型機等の造粒機で成型し、乾燥後、担
持触媒の場合と同様アルカリ金属ボロハイドライドの水
媒体液で還元処理を施し、水洗し、乾燥して完成触媒と
するかまたは、粉末状の担体と粉末状または液状の触媒
物質と必要量の水または必要により成型助剤を添加し、
充分混合後、前記同様成型し、乾燥、焼成した成型触媒
に、ポリオキシエチレン系非イオン界面活性剤を含浸さ
せ、乾燥後アルカリ金属ボロハイドライドの水媒体液で
還元し、水洗乾燥して完成触媒とする。
Next, in the case of a shaped catalyst, a polyoxyethylene nonionic surfactant is dissolved in a powdered carrier, a powdered or liquid catalyst material, and the required amount of water.* If necessary, a shaping aid is added. , for example, by adding alumina sol or silica sol,
After thorough mixing, it is molded using a granulator such as an extrusion molding machine, and after drying, it is subjected to a reduction treatment in an aqueous medium of alkali metal borohydride as in the case of supported catalysts, washed with water, and dried to obtain a finished catalyst, or , adding a powdered carrier, a powdered or liquid catalyst material, and the required amount of water or a molding aid if necessary,
After thorough mixing, the molded catalyst was molded, dried and calcined in the same manner as above, impregnated with a polyoxyethylene nonionic surfactant, dried, reduced with an aqueous alkali metal borohydride solution, washed with water and dried to obtain the finished catalyst. shall be.

なお以上のポリオキシエチレン系非イオン界面活性剤の
使用例においては、いずれも触媒組成物中に含有させた
場合であるが、上記非イオン界面活性剤を還元剤のアル
カリ金属ボロハイドライドの水媒体液中に含有させても
その効果は発揮される。
In the above examples of use of polyoxyethylene nonionic surfactants, they are all contained in the catalyst composition, but the nonionic surfactant is used in an aqueous medium containing an alkali metal borohydride as a reducing agent. Even if it is contained in a liquid, its effect is exhibited.

本発明において使用されるポリオキシエチレン非イオン
界面活性剤は上記の如く起泡性があることが必要であり
、そのため平均分子量が500以上であることが必要で
あり、好ましくは1000以上である。
The polyoxyethylene nonionic surfactant used in the present invention needs to have foaming properties as described above, and therefore needs to have an average molecular weight of 500 or more, preferably 1000 or more.

この非イオン界面活性剤の使用量は担体11当り、通常
0.1〜5M’であり、好ましくは0.2〜20グであ
る。
The amount of the nonionic surfactant used is usually 0.1 to 5 M', preferably 0.2 to 20 g per carrier 11.

ポリオキシエチレン非イオン界面活性剤としては以下の
ものが挙げられる。
Examples of polyoxyethylene nonionic surfactants include the following.

ポリエチレングリコールHO(CH2CH20)nH(
n=11〜900)、ポリオキシエチレングリコールア
ルキルエーテルRO(CH2CH20)nH(Rは炭素
数6〜30のアルキル基であり、n−3〜120)、ポ
リオキシエチレンーポリオキシプロピレンーポリオキシ
エチレンクリコールx1+x2 +x3 +x4+y1
+y2+y3+y4 = 20〜800)、ポリオキシ
エチレンアルキルアリ−(laま炭素数6〜12のアル
キル基でn=3〜120)1.l−”リオキシエチレン
アルキルエステルR−COO(C2H40)nHまたは
R COO(C2H40)n−□−CH2CH2COO−R
(Rは炭素数6〜24のアルキル基でありn=3〜12
0)、ポリオキシエチレンアルキルアミン30のアルキ
ル基でありn、 nlおよびn2は3〜120)、ポリ
オキシエチレンアルキルアマイド30のアルキル基であ
り、n、、nlおよびn2は3〜120)、ポリオキシ
エチレンソルビタンの脂肪酸エステル (Rは炭素数6〜24のアルキル基でありnは3〜60
) 本発明に用いられるアルカリ金属ボロハイドライドは、
そのアルカリ金属がナトリウム、カリウム、リチウムお
よびアンモニウムの化合物である。
Polyethylene glycol HO(CH2CH20)nH(
n=11-900), polyoxyethylene glycol alkyl ether RO(CH2CH20)nH (R is an alkyl group having 6 to 30 carbon atoms, n-3 to 120), polyoxyethylene-polyoxypropylene-polyoxyethylene Krikor x1+x2 +x3 +x4+y1
+y2+y3+y4 = 20-800), polyoxyethylene alkyl aryl (alkyl group having 6-12 carbon atoms, n = 3-120)1. l-”lioxyethylene alkyl ester R-COO(C2H40)nH or R COO(C2H40)n-□-CH2CH2COO-R
(R is an alkyl group having 6 to 24 carbon atoms, and n=3 to 12
0), the alkyl group of polyoxyethylene alkyl amine 30, n, nl and n2 are 3 to 120), the alkyl group of polyoxyethylene alkyl amide 30, n, nl and n2 are 3 to 120), poly Fatty acid ester of oxyethylene sorbitan (R is an alkyl group having 6 to 24 carbon atoms, and n is 3 to 60
) The alkali metal borohydride used in the present invention is
The alkali metals are compounds of sodium, potassium, lithium and ammonium.

この使用量は処理する触媒物質の化合物の形態により異
るが、例えば処理される触媒物質が塩化物、水酸化物の
場合には触媒物質1モルに対し、0.5モル以上、好ま
しくは2モル以上である。
The amount used varies depending on the form of the compound of the catalyst substance to be treated, but for example, if the catalyst substance to be treated is a chloride or hydroxide, it is 0.5 mol or more, preferably 2 mol or more, per 1 mol of the catalyst substance. It is more than a mole.

このアルカリ金属ボロハイドライドの水媒体液の量とし
ては触媒の細孔容積の1倍以上、好ましくは1.2〜4
倍であり、処理装置としては回転停止自由の構造を有す
るいわゆる回転ドラムを用い、このドラム装置内に触媒
物質と、還元剤の水媒体液を入れ、回転しつつ混合し、
ポリオキシエチレン系非イオン界面剤を起泡させながら
還元処理を行うのが接触効率の点で好ましい。
The amount of the aqueous medium of alkali metal borohydride is at least 1 times the pore volume of the catalyst, preferably 1.2 to 4 times the pore volume of the catalyst.
As a processing device, a so-called rotating drum having a structure in which rotation can be stopped freely is used, and a catalyst substance and an aqueous medium liquid of a reducing agent are placed in this drum device and mixed while rotating.
In terms of contact efficiency, it is preferable to perform the reduction treatment while foaming the polyoxyethylene nonionic surfactant.

またアルカリ金属ボロハイドライドの水媒体液のpHと
温度は、還元を効果的に行うため、pHはアルカリ側で
あることが必要で、pHが高いことが好ましく、また温
度は常温またはそれ以下の温度であることが望ましい。
In addition, the pH and temperature of the aqueous medium of alkali metal borohydride must be on the alkaline side in order to effectively carry out the reduction, preferably high pH, and the temperature must be at room temperature or lower. It is desirable that

本発明に使用される触媒物質としては白金、パラジウム
、ロジウム、イリジウム、ルテニウムなどの貴金属類化
合物がその目的から最適であるが、コバルト、ニッケル
、銅、鉄、クロム、銀、金、カドミウム、ゲルマニウム
、スズ、セレンなどの無機元素化合物の単独または混合
系よりなるものも挙げられる。
As catalyst materials used in the present invention, noble metal compounds such as platinum, palladium, rhodium, iridium, and ruthenium are most suitable for the purpose, but cobalt, nickel, copper, iron, chromium, silver, gold, cadmium, germanium, etc. Examples include those consisting of a single or mixed system of inorganic element compounds such as , tin, and selenium.

本発明方法によって製造された触媒は、一般産業廃ガス
中の一酸化炭素(CO)、炭化水素類(HC’)、窒素
酸化物(NOx)等の酸化もしくは還元による浄化用触
媒、自動車排ガス中のC01HC,NOx等の酸化もし
くは還元による浄化用触媒、水添触媒、有機合成用酸化
触媒、リホーミング触媒等として有用である。
The catalyst produced by the method of the present invention is a catalyst for purification by oxidation or reduction of carbon monoxide (CO), hydrocarbons (HC'), nitrogen oxides (NOx), etc. in general industrial waste gas, and a catalyst for purifying carbon monoxide (CO), hydrocarbons (HC'), nitrogen oxides (NOx), etc. in general industrial waste gas, and in automobile exhaust gas. It is useful as a purification catalyst by oxidation or reduction of CO1HC, NOx, etc., a hydrogenation catalyst, an oxidation catalyst for organic synthesis, a reforming catalyst, etc.

以下実施例などにより、本発明をさらに具体的に説明す
るが、本発明はこれらによって限定されるものではない
ことは言うまでもない。
The present invention will be explained in more detail below with reference to Examples, but it goes without saying that the present invention is not limited thereto.

実施例 1 内径125關、長さ185朋の一方の円形部分が開放状
態のポリエチレン製円筒容器で、開放部を上にし、底部
を下にして円筒部を水平から30°傾げ、この状態で回
転停止自由な触媒含浸装置中に、まず平均直径3關、平
均長さ5間で、細孔容積が0.66 cc/@、表面積
が110m/f嵩比重0.66f/ccの円柱状活性ア
ルミナ200ccを入れた。
Example 1 A polyethylene cylindrical container with an inner diameter of 125 mm and a length of 185 mm with one circular part open, the open part facing up and the bottom facing down, with the cylindrical part tilted 30 degrees from the horizontal, and rotated in this state. In a stop-free catalyst impregnation device, a cylindrical activated alumina with an average diameter of 3 mm, an average length of 5 mm, a pore volume of 0.66 cc/@, a surface area of 110 m/f and a bulk specific gravity of 0.66 f/cc was first prepared. I put 200cc in it.

一方白金とパラジウムの重量比が5対2で、かつ全貴金
属量として0.072fを含む塩化白金酸と塩化パラジ
ウムの水溶液100CC中へ、平均分子量8500のプ
ルロニック系酸化プロピレン(PO)、i化エチレン(
EO)のフロック共重合体で、全分子中のEO重量が8
0%の高分子非イオン界面活性剤0.41を添加した。
On the other hand, pluronic propylene oxide (PO) with an average molecular weight of 8500, ethylene i (
EO), the weight of EO in the whole molecule is 8.
0.41% of polymeric nonionic surfactant was added.

該活性アルミナの入っている含浸装置を1分間に20回
の回転数になるように設定し、装置を回転させながら、
該水溶液を入れ、次いで担体から約5CrIL離れた位
置から、直径10mvtのノズルより毎分201の10
0 ’Cの熱風を送入し乾燥した。
The impregnating device containing the activated alumina was set at a rotation speed of 20 times per minute, and while rotating the device,
The aqueous solution was added, and then from a position approximately 5 CrIL from the carrier, 10 mV/min of 201
It was dried by blowing hot air at 0'C.

熱風送人後約20分で担体表面がほぼ乾燥したので、回
転を停止し、該担持物を取出し、150℃で約3時間乾
燥した。
Approximately 20 minutes after blowing hot air, the surface of the carrier was almost dry, so rotation was stopped, the carrier was taken out, and dried at 150° C. for about 3 hours.

次いで前記含浸装置中に34m9のナトリウムボロハイ
ドライド(Na BH4)を含む150CCの25℃水
溶液を用意し、この中へ該乾燥担持物を投入し、毎分1
0回転で回転させつつ30分間還元処理させた。
Next, 150 cc of 25°C aqueous solution containing 34 m9 of sodium borohydride (Na BH4) was prepared in the impregnating apparatus, and the dried support was introduced into this solution at a rate of 1 min.
Reduction treatment was performed for 30 minutes while rotating at 0 rotations.

この還元の進行中水素が発生すると共に担持組成物は細
かい泡の中に包まれながら還元が行われた。
During this reduction, hydrogen was generated and the supported composition was enveloped in fine bubbles as the reduction was carried out.

該還元担持物を水洗し、再び150℃で3時間乾燥し、
完成触媒を得た。
The reduced support was washed with water and dried again at 150°C for 3 hours,
A finished catalyst was obtained.

なお上記NaBH4の使用量は還元当量の5倍に相当す
る値である。
Note that the amount of NaBH4 used is a value equivalent to five times the reduction equivalent.

比較例 1 実施例1と同様の方法において高分子非イオン界面活性
剤を用いないで触媒担持乾燥組成物を得た。
Comparative Example 1 A catalyst-supported dry composition was obtained in the same manner as in Example 1 without using a polymeric nonionic surfactant.

次いで実施例1同様の方法で102m9のナトリウムボ
ロハイドを含む水溶液を用いて還元し、水洗乾燥して完
成触媒を得た。
Next, the catalyst was reduced in the same manner as in Example 1 using an aqueous solution containing 102 m9 of sodium borohydride, washed with water and dried to obtain a completed catalyst.

なお、このNaBH4の使用量は還元当量の15倍に相
当する値である。
Note that the amount of NaBH4 used is a value equivalent to 15 times the reduction equivalent.

実施例 2 実施例1と同様の触媒含浸装置に、平均直径3.3間で
、細孔容積0.66CC/P、かつ表面積が95m”/
S’、嵩比重0.669/CCの球状活性アルミナ20
0CCを入れた。
Example 2 A catalyst impregnation device similar to Example 1 was equipped with a pore volume of 0.66 CC/P and a surface area of 95 m''/P with an average diameter of 3.3 mm.
S', spherical activated alumina 20 with bulk specific gravity 0.669/CC
I put 0CC.

一方、白金として0.16Pに相当する塩化白金酸を含
んでなる水溶液80ccへ平均分子量19000のテト
ロニック系の含窒素の酸化プロピレン(PO)、酸化エ
チレン(EO)のブロック共重合体で全分子中のEOの
重量が70%の高分子非イオン界面活性剤を0.8z添
加して実施例1と同様の方法で触媒担持乾燥組成物を得
た。
On the other hand, to 80 cc of an aqueous solution containing chloroplatinic acid corresponding to 0.16P as platinum, a block copolymer of tetronic nitrogen-containing propylene oxide (PO) and ethylene oxide (EO) with an average molecular weight of 19,000 was added to all molecules. A catalyst-supported dry composition was obtained in the same manner as in Example 1 by adding 0.8z of a polymeric nonionic surfactant containing 70% by weight of EO.

次いで実施例1と同様の方法で110■のナトリウムボ
ロハイドライドを含む120ccの水溶液を用いて還元
し、水洗、乾燥して完成触媒を得た。
The catalyst was then reduced in the same manner as in Example 1 using 120 cc of an aqueous solution containing 110 ml of sodium borohydride, washed with water, and dried to obtain a finished catalyst.

なおこのNaBH,の使用量は還元当量の7倍に相当す
る値である。
Note that the amount of NaBH used is a value equivalent to seven times the reduction equivalent.

実施例 3 実施例2と同様の方法において分子非イオン界面活性剤
を用いないで触媒担持乾燥組成物を得た3次いで実施例
2と同様の方法で、155■のナトリウムボロハイドラ
イドと実施例2で用いたと同じ高分子非イオン界面活性
剤を含む水溶液を用いて還元し、水洗、乾燥して完成触
媒を得た。
Example 3 A dry catalyst-supported composition was obtained in the same manner as in Example 2 without the use of a molecular nonionic surfactant. Then, in the same manner as in Example 2, 155 μ of sodium borohydride and Example 2 were prepared. The catalyst was reduced using an aqueous solution containing the same polymeric nonionic surfactant used in , washed with water, and dried to obtain a finished catalyst.

なおこのNaBH4の使用量は還元当量の10倍に相当
する値である。
Note that the amount of NaBH4 used is a value equivalent to 10 times the reduction equivalent.

比較例 2 実施例2と同様の方法において高分子非イオン界面活性
剤を用いないで触媒担持乾燥組成物を得た。
Comparative Example 2 A catalyst-supported dry composition was obtained in the same manner as in Example 2 without using a polymeric nonionic surfactant.

次いで実施例2と同様の方法で233m9のナトリウム
ボロハイドライドのみを含む水洗液を用いて還元し、水
洗、乾燥して完成触媒を得た。
Next, the catalyst was reduced in the same manner as in Example 2 using a washing solution containing only 233 m9 of sodium borohydride, washed with water, and dried to obtain a finished catalyst.

なおとのNaBH4の使用量は還元当量の15倍に相当
する値である。
The amount of NaBH4 used was a value equivalent to 15 times the reduction equivalent.

実施例 4 実施例1と同様の触媒含浸装置に、平均直径3間で、細
孔容積0.49 cc/I?、かつ表面積が145m/
′?、嵩比重0.74 ? /ccの球状活性アルミナ
200CCを入れた。
Example 4 A catalyst impregnation apparatus similar to Example 1 was used with an average diameter of 3 and a pore volume of 0.49 cc/I? , and the surface area is 145 m/
′? , bulk specific gravity 0.74? 200 cc of spherical activated alumina was added.

一方、パラジウムとして0.2fに相当する硝酸パラジ
ウムと硝酸0.21を含んでなる水溶液90CC中へ平
均分子量1100のポリオキシエチレンンルビタンモノ
ラウレートで全分子中のエチレンオキサイドの付加モル
数が17の非イオン界面活性剤(商品名、花王アトラス
社エマゾール1130)を0.4S’添加して実施例1
と同様の方法で触媒担持組成物を得た。
On the other hand, polyoxyethylene rubitan monolaurate with an average molecular weight of 1100 was added to 90 CC of an aqueous solution containing palladium nitrate corresponding to 0.2 f as palladium and 0.21 nitric acid, and the number of moles of ethylene oxide added in the total molecules was 17. Example 1 by adding 0.4S' of a nonionic surfactant (trade name, Emazol 1130, Kao Atlas Co., Ltd.)
A catalyst-supported composition was obtained in the same manner as described above.

次いで、実施例1と同様の方法で1.27 Pのナトリ
ウムボロハイドライドを含む120CCの水溶液を用い
て還元し、1時間水洗し以下実施例1同様に乾燥して完
成触媒を得た。
Next, it was reduced using a 120 CC aqueous solution containing 1.27 P sodium borohydride in the same manner as in Example 1, washed with water for 1 hour, and then dried in the same manner as in Example 1 to obtain a finished catalyst.

なおこのN a B H,の使用量は還元当量の7倍に
相当する値である。
Note that the amount of N a B H used is a value equivalent to seven times the reduction equivalent.

比較例 3 実施例4と同様の方法において、高分子非イオン界面活
性剤を用いないで触媒担持乾燥組成物を得た。
Comparative Example 3 A catalyst-supported dry composition was obtained in the same manner as in Example 4 without using a polymeric nonionic surfactant.

次いで実施例4と同様の方法で1.82Pのナトリウム
ボロハイドライドを含む水溶液120ccを用いて還元
し、水洗、乾燥して完成触媒を得た。
Next, the catalyst was reduced in the same manner as in Example 4 using 120 cc of an aqueous solution containing 1.82P sodium borohydride, washed with water, and dried to obtain a finished catalyst.

なおこのNa BH,の使用量は還元当量の10倍に相
当する値である。
Note that the amount of Na BH used is a value equivalent to 10 times the reduction equivalent.

実施例 5 実施例1〜4および比較例1〜3で得られた触媒につい
て、次の初期の低温活性性能試験を行つた。
Example 5 The catalysts obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were subjected to the following initial low temperature activity performance test.

この試験は250Cの触媒を内径26山のステンレス製
反応管に充填し、触媒層を窒素ガスを用いて120℃に
予熱した後−酸化炭素(CO)1容量%、プロピL/
7500 p prns酸素(02)2.5容量%、炭
酸ガス(CO2)10容量%、一酸化窒素(NO) 1
000 ppm、水蒸気10容量%、残り窒素(N2)
よりなる混合ガスを電気炉で予熱し、5V24000h
r ’(STP)で1分間に40°Cづつ入口温度を
上昇させ、流出ガスを刻刻プロピレンについては連続式
水素炎イオン電流方式(FID法)炭化水素分析計、C
Oについては非分散型赤外分析計(NDIR法)によっ
て測定分析した。
In this test, a 250C catalyst was packed into a stainless steel reaction tube with an inner diameter of 26 peaks, and the catalyst bed was preheated to 120C using nitrogen gas.
7500 p prns Oxygen (02) 2.5% by volume, Carbon dioxide (CO2) 10% by volume, Nitric oxide (NO) 1
000 ppm, water vapor 10% by volume, remaining nitrogen (N2)
Preheat the mixed gas in an electric furnace and heat it at 5V24000h.
r' (STP) to increase the inlet temperature by 40°C per minute, and the outflow gas was chopped.For propylene, a continuous flame ion current method (FID method) hydrocarbon analyzer, C
O was measured and analyzed using a non-dispersive infrared analyzer (NDIR method).

得られた結果をHC,COそれぞれにつき、50%、9
0%浄化率の入口温度(℃)でまとめて示す。
The obtained results were adjusted to 50% and 9% for HC and CO, respectively.
The figures are summarized in inlet temperature (°C) at 0% purification rate.

哀 実施例に比べて比較例の触媒は、NaBH4を多く
使用しているにもかかわらずいずれも各浄化温度が高く
、低温活性に劣っていることが認められた。
It was found that compared to the examples, the catalysts of the comparative examples had higher purification temperatures, and were inferior in low-temperature activity, despite using a large amount of NaBH4.

実施例 6 実施例1〜4および比較例1〜3で得られた触媒につい
て次の初期活性試験を行った。
Example 6 The following initial activity test was conducted on the catalysts obtained in Examples 1 to 4 and Comparative Examples 1 to 3.

この試験は12CCのサンプルを内径18mmのステン
レス反応管に充填し、CO1容量%、プロパン500p
pJ02 2容量%、水蒸気10容量%、残り窒素より
なる混合ガスを、ガス入口温度300℃〜450℃の範
囲で、空間速度50000hr’(STP)で導入し、
それぞれの測定温度(設定値)で5〜15分間保って定
常状態を得、その時点での流出ガスを実施例5同様の分
析計でHCとCOを測定分析した。
In this test, a 12CC sample was filled into a stainless steel reaction tube with an inner diameter of 18mm, CO was 1% by volume, and propane was 500p.
A mixed gas consisting of 2% by volume of pJ02, 10% by volume of water vapor, and the remainder nitrogen was introduced at a space velocity of 50,000 hr' (STP) at a gas inlet temperature of 300°C to 450°C,
Each measurement temperature (set value) was maintained for 5 to 15 minutes to obtain a steady state, and the outflow gas at that point was analyzed for HC and CO using an analyzer similar to Example 5.

その結果を第2表に示す。なお表中の数値はそれぞれ、
HC,Coの浄化率(%)を示すものである。
The results are shown in Table 2. The numbers in the table are
It shows the purification rate (%) of HC and Co.

実施例に比べて比較例の触媒はいずれもHCの活性に劣
っている。
The catalysts of the comparative examples are all inferior in HC activity compared to the examples.

実施例 7 実施例1および比較例1と同様の方法で得られた触媒に
ついてエンジン排気ガスによる低温活性試験を行った。
Example 7 Catalysts obtained in the same manner as in Example 1 and Comparative Example 1 were subjected to a low-temperature activity test using engine exhaust gas.

試験は触媒1,81をダウンフロータイブの触媒コンバ
ーターに充填し、台上エンジンのマニホールド出口から
1.2mの所に設置し、他方市販の4気筒1800cc
のエンジンを負圧と回転数を調整することにより、CO
2容量%、HCl600〜1800ppm(メタン換算
)、024容量%、空間速度28000hr−1(ST
P)にしてバイパスに流しておき、バルブを切換えるこ
とにより入口温度280〜290℃の一定温度の上記エ
ンジン排気ガスを触媒コンバーターに通し11時間と流
出ガスの濃度変化をCO,HC,CO2等について堀場
製作所製MEXA−18型分析計で測定記録した。
The test was conducted by filling a down-flow type catalytic converter with catalyst 1.81 and installing it 1.2 m from the manifold outlet of a bench engine.
By adjusting the negative pressure and rotation speed of the engine, CO
2% by volume, HCl 600-1800ppm (methane equivalent), 024% by volume, space velocity 28000hr-1 (ST
By switching the valve, the engine exhaust gas at a constant inlet temperature of 280 to 290°C is passed through the catalytic converter for 11 hours and changes in the concentration of the outflow gas are measured for CO, HC, CO2, etc. The measurements were recorded using a Horiba MEXA-18 analyzer.

得られた結果をHC,Coそれぞれにつき50%浄化率
に到る時間(秒)でまとめて示す。
The obtained results are summarized in terms of the time (seconds) required to reach a 50% purification rate for each of HC and Co.

実施例5の結果と同様に本発明の触媒は比較例の触媒に
くらべ実ガステストにおいてもすぐれていることが認め
られる。
Similar to the results of Example 5, it is recognized that the catalyst of the present invention is superior to the catalyst of the comparative example in the actual gas test.

実施例 8 実施例2.3および比較例2でえられた触媒を無水フタ
ール酸製造プラントの廃ガス浄化装置でその浄化活性試
験を行った。
Example 8 The catalysts obtained in Example 2.3 and Comparative Example 2 were tested for purification activity in an exhaust gas purification device of a phthalic anhydride production plant.

この試験は130CCの触媒を直径53間のステンレス
製反応管に充填し、電熱加熱により170〜270℃ま
での間で所定の温度に順次昇温設定し、空間速度350
00hr ’(STP)で触媒層を出てくる廃ガスの
臭気によりその浄化性能を判定するものである。
In this test, 130 cc of catalyst was packed into a stainless steel reaction tube with a diameter of 53 mm, and the temperature was set to be raised sequentially from 170 to 270 ℃ by electric heating, and the space velocity was set to 350 ℃.
The purification performance is determined based on the odor of the exhaust gas coming out of the catalyst layer at 00 hr' (STP).

その結果、本発明にかかる触媒はガス入口温度230℃
において廃気ガス中の臭気を感じられない程度に良好な
浄化性能を示したのに則し、比較例2の触媒は260℃
にしてようやく臭気が感じられない程度の浄化性能を示
した。
As a result, the catalyst according to the present invention has a gas inlet temperature of 230°C.
In accordance with the fact that the catalyst of Comparative Example 2 showed good purification performance to the extent that no odor was felt in the exhaust gas, the catalyst of Comparative Example 2 was heated at 260°C.
Finally, the purification performance was such that the odor could not be detected.

実施例 9 微粉末状酸化チタン1kgに刻し、バインダーとしてシ
リカとして20%を含むシリカゾル300ccを加え、
ニーダ−を用いてよく混合し押出成型機で押出し成型し
、150°Cで3時間乾燥後、空気中で600℃で3時
間焼成し、直径3間、平均長さ5mmの酸化チタン担体
を製造した。
Example 9 1 kg of finely powdered titanium oxide was chopped, 300 cc of silica sol containing 20% silica was added as a binder,
Mix thoroughly using a kneader, extrude using an extruder, dry at 150°C for 3 hours, and then sinter in air at 600°C for 3 hours to produce a titanium oxide carrier with a diameter of 3 mm and an average length of 5 mm. did.

この担体は嵩比重1グ/cc、細孔容積0.2 cc/
f、表面積15 rri’/ ?であった。
This carrier has a bulk specific gravity of 1 g/cc and a pore volume of 0.2 cc/cc.
f, surface area 15 rri'/? Met.

この担体200CCを実施例1と同様の触媒含浸装置に
入れ、一方白金として0.2S’に相当する塩化白金酸
を含む水溶液80CC中へ平均分子量11000のプル
ロニック系のPO,EOブロック共重合体で、全分子中
のEO重量が80%の高分子非イオン界面活性剤0.2
Pを添加して、あとは実施例1と同様の方法で触媒担持
乾燥組成物を得た。
200 CC of this support was placed in the same catalyst impregnation apparatus as in Example 1, and on the other hand, a Pluronic PO, EO block copolymer having an average molecular weight of 11,000 was added to 80 CC of an aqueous solution containing chloroplatinic acid equivalent to 0.2 S' as platinum. , a polymeric nonionic surfactant with an EO weight of 80% in the total molecule 0.2
A catalyst-supported dry composition was obtained in the same manner as in Example 1 except that P was added.

次いで実施例1と同様の方法で140m9のナトリウム
ボロハイドライドを含む150CCの水溶液を用いて還
元し、水洗、乾燥して完成触媒を得た。
Next, in the same manner as in Example 1, the catalyst was reduced using a 150 CC aqueous solution containing 140 m9 of sodium borohydride, washed with water, and dried to obtain a finished catalyst.

なおこのNaBH4の使用量は還元当量の7倍に相当す
る値である。
Note that the amount of NaBH4 used is a value equivalent to seven times the reduction equivalent.

比較例 4 実施例9と同様の方法において高分子非イオン界面活性
剤を用いないで触媒担持乾燥組成物を得た。
Comparative Example 4 A catalyst-supported dry composition was obtained in the same manner as in Example 9 without using a polymeric nonionic surfactant.

次いで実施例9同様の方法で292■のナトリウムボロ
ハイドを含む水溶液を用いて還元し、水洗、乾燥して完
成触媒を得た。
Next, the catalyst was reduced in the same manner as in Example 9 using an aqueous solution containing 292 ml of sodium borohydride, washed with water, and dried to obtain a finished catalyst.

なおこのNaBH4の使用量は還元当量の15倍に相当
する値である。
Note that the amount of NaBH4 used is a value equivalent to 15 times the reduction equivalent.

実施例 10 実施例9と比較例4でえられた触媒について、次の酸化
窒素の還元試験を行った。
Example 10 The catalysts obtained in Example 9 and Comparative Example 4 were subjected to the following nitrogen oxide reduction test.

この試験は15ccの触媒を内径18間のステンレス製
反応管に充填し、一酸化窒素(NO)200ppm、ア
ンーE=ア(NH3) 200 p pm、酸素(0□
)4容量%、水蒸気10容量%、残り窒素よりなる混合
ガスをガス入口温度200 ’C〜250°Cで、空間
速度20000hr ’(STP)で導入し、それぞ
れの測定温度で定常状態を得、その時点での流出ガスを
NOについてケミルミ方式によって測定分析した。
In this test, 15 cc of catalyst was packed in a stainless steel reaction tube with an inner diameter of 18 mm, and 200 ppm of nitrogen monoxide (NO), 200 ppm of NH3, and 0
) A mixed gas consisting of 4% by volume, 10% by volume of water vapor, and the remainder nitrogen was introduced at a gas inlet temperature of 200'C to 250°C and a space velocity of 20,000hr' (STP), and a steady state was obtained at each measurement temperature. The effluent gas at that point was measured and analyzed for NO using the Chemilumi method.

NO浄化率(%)について得られた結果をまとめて示す
The results obtained regarding the NO purification rate (%) are summarized.

実施例 11 微粉末状にした硝酸ニッケル111グと無水クロム酸2
30yを平均粒径50μの微粉末状活性アルミナ775
グに加え、良く混合した後10%のアルミナ分を含むア
ルミナゾル400S’を加えてニーダ−で充分混練した
Example 11 Finely powdered nickel nitrate 111g and chromic anhydride 2
30y is finely powdered activated alumina 775 with an average particle size of 50μ.
After mixing well, alumina sol 400S' containing 10% alumina was added and thoroughly kneaded with a kneader.

これを押出成型機により成型し、100℃で乾燥し、さ
らに空気中で500℃で3時間焼成し、直径3 mm1
平均長さ6關のベレットとした。
This was molded using an extrusion molding machine, dried at 100°C, and further baked in air at 500°C for 3 hours to give a diameter of 3 mm1.
It was made into a beret with an average length of 6 mm.

この組成比はニッケルとクロムの原子比が1:6で、酸
化ニッケルと酸化クロムの合計重量が20重量%であっ
た。
The composition ratio was such that the atomic ratio of nickel to chromium was 1:6, and the total weight of nickel oxide and chromium oxide was 20% by weight.

このペレツ)200CCを実施例1と同様の触媒含浸装
置に入れ、一方パラジウムとして0.11に相当する硝
酸パラジウムと0.11の硝酸を含有してなる水溶液8
0CC中へ実施例9で用いたと同じ高分子非イオン界面
活性剤0.41を添加して実施例1と同様の方法で硝酸
パラジウムを担持させた。
200 CC of these pellets were placed in the same catalyst impregnating apparatus as in Example 1, and on the other hand, an aqueous solution 8 containing palladium nitrate corresponding to 0.11% of palladium and nitric acid of 0.11%.
Palladium nitrate was supported in the same manner as in Example 1 by adding 0.41 g of the same polymeric nonionic surfactant used in Example 9 into OCC.

次いで実施例1と同様の方法で3.27fのナトリウム
ボロハイドライドを含む120CCの水溶液を用いて還
元し、水洗、乾燥して完成触媒を得た。
Next, in the same manner as in Example 1, the catalyst was reduced using a 120 CC aqueous solution containing 3.27 f of sodium borohydride, washed with water, and dried to obtain a finished catalyst.

なおとのNaBH4の使用量は還元当量の3倍に相当す
るf直である。
The amount of NaBH4 used is equivalent to three times the reducing equivalent.

この触媒をドラフト出口に設置した排風機と接続した反
応器に充填し、エナメル電線焼付炉廃ガスの燃焼テスト
を行った。
This catalyst was charged into a reactor connected to an exhaust fan installed at the draft outlet, and a combustion test was performed on waste gas from an enameled wire burning furnace.

この廃ガス中の平均可燃物濃度はナフサ870ppm、
クレゾール1240ppmフェノール1100ppを含
有していた。
The average combustible concentration in this waste gas is naphtha 870 ppm,
It contained 1240 ppm of cresol and 1100 ppm of phenol.

このエナメル線焼付炉廃ガスを350℃、空間速度20
000hr ’(STP)で触媒層を通した結果、処
理ガス中の各成分濃度は痕跡程度となった。
This enameled wire baking furnace waste gas is heated at 350℃ and at a space velocity of 20
As a result of passing through the catalyst layer for 000 hr' (STP), the concentration of each component in the treated gas was at a trace level.

なお上記有害成分の分析はガスクロマトグラフに依って
行ったものである。
The above analysis of harmful components was conducted using a gas chromatograph.

Claims (1)

【特許請求の範囲】[Claims] 1 触媒構成元素化合物をポリオキシエチレン系非イオ
ン界面活性剤の水性媒体中でアルカリ金属ボロハイドラ
イドにより還元することを特徴とする触媒の製造方法。
1. A method for producing a catalyst, which comprises reducing a catalyst constituent element compound with an alkali metal borohydride in an aqueous medium of a polyoxyethylene nonionic surfactant.
JP52062148A 1977-05-30 1977-05-30 Catalyst manufacturing method Expired JPS5855816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52062148A JPS5855816B2 (en) 1977-05-30 1977-05-30 Catalyst manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52062148A JPS5855816B2 (en) 1977-05-30 1977-05-30 Catalyst manufacturing method

Publications (2)

Publication Number Publication Date
JPS53146989A JPS53146989A (en) 1978-12-21
JPS5855816B2 true JPS5855816B2 (en) 1983-12-12

Family

ID=13191718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52062148A Expired JPS5855816B2 (en) 1977-05-30 1977-05-30 Catalyst manufacturing method

Country Status (1)

Country Link
JP (1) JPS5855816B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183036A (en) * 1984-02-29 1985-09-18 Hitachi Zosen Corp Heat resistant oxidizing catalyst
KR101295415B1 (en) * 2012-04-23 2013-08-09 주식회사 엘지화학 Method of fabricating core-shell particles and core-shell particles fabricated by the method
EP2848336B1 (en) * 2012-05-11 2017-04-26 LG Chem, Ltd. Method for manufacturing hollow metal nanoparticles
CN105126925A (en) * 2015-09-18 2015-12-09 苏州顺唐化纤有限公司 Catalyst for hydrogenation synthesis reaction

Also Published As

Publication number Publication date
JPS53146989A (en) 1978-12-21

Similar Documents

Publication Publication Date Title
AU768826B2 (en) Process for converting carbon monoxide and water in a reformate stream and apparatus therefore
Chen et al. Encapsulating uniform Pd nanoparticles in TS-1 zeolite as efficient catalyst for catalytic abatement of indoor formaldehyde at room temperature
JP4897669B2 (en) Ammonia decomposition method
CN104785302B (en) Denitrifying catalyst with selective catalytic reduction and its preparation method and application
JP4833435B2 (en) Hydrothermal catalytic steam reforming of hydrocarbons
JP3924322B2 (en) Hazardous gas removal agent
JPH03181321A (en) Method for removing nitrogen oxides in waste combustion gas
JP2847018B2 (en) Carbon dioxide reduction reaction catalyst
JP3593358B2 (en) Reformed gas oxidation catalyst and method for oxidizing carbon monoxide in reformed gas using the catalyst
CN110327929B (en) Cobalt-aluminum hydrotalcite derived composite oxide and preparation method and application thereof
CN115193430A (en) Ammonia decomposition catalyst and ammonia decomposition method using same
TW312631B (en)
Calla et al. Investigation of alumina-supported Au catalyst for CO oxidation by isotopic transient analysis and X-ray absorption spectroscopy
WO1998002377A1 (en) Process for preparing hydrogen-containing gas for fuel cell
US3953369A (en) Method for the production of a platinum catalyst used for purification of exhaust and waste gases
CN108993593B (en) Catalyst for efficiently decomposing formaldehyde and preparation method and application thereof
JP4203926B2 (en) Method and apparatus for removing nitrous oxide, etc. from exhaust gas
US8945497B2 (en) Catalyst and process
Xu et al. Pt–Co bimetals supported on UiO-66 as efficient and stable catalysts for the catalytic oxidation of various volatile organic compounds
JPS5855816B2 (en) Catalyst manufacturing method
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JPH10212104A (en) Method for purifying hydrogen for fuel cell
JP2894788B2 (en) Method for producing carrier with double-chain structure type mineral metal for gas adsorption
CN112973727A (en) Catalyst for cyclohexane oxidation, preparation method and application thereof
JPS6123023B2 (en)