JPS5855544A - Production of electric contact material - Google Patents

Production of electric contact material

Info

Publication number
JPS5855544A
JPS5855544A JP56153335A JP15333581A JPS5855544A JP S5855544 A JPS5855544 A JP S5855544A JP 56153335 A JP56153335 A JP 56153335A JP 15333581 A JP15333581 A JP 15333581A JP S5855544 A JPS5855544 A JP S5855544A
Authority
JP
Japan
Prior art keywords
alloy
contact material
powder
metal
internal oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56153335A
Other languages
Japanese (ja)
Inventor
Hirozo Matsumoto
浩造 松本
Kazuyo Mihashi
三橋 和代
Shigeru Oda
小田 繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric Corporate Research and Development Ltd
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric Corporate Research and Development Ltd, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP56153335A priority Critical patent/JPS5855544A/en
Publication of JPS5855544A publication Critical patent/JPS5855544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)

Abstract

PURPOSE:To manufacture an electric contact material excellent in resistance to welding at a low cost, by internally oxidizing Ag alloy impalpable powder solid-solutioning a metal in it more easily oxidizable than Ag, optionally heat- treating it at a high temperature, and then adopting a powder metallurgical process. CONSTITUTION:A metal M more easily oxidizable than Ag is properly Sn, In, Zn, Mn, Bi or these combination, and alloys comprising 8-11wt% Sn and the balance Ag, 10-15% Sn, 2-6% In and the balance Ag, etc. are especially suitable as an Ag-M alloy. This Ag-M alloy is formed into powder having a particle size below 150mu, preferably below about 100mu, and internally oxidized for approximately 1-10hr at about 250-750 deg.C. When the contents of Sn, etc. are large, further heating treatment at a high temperature is effective. The alloy powder is then mixed, crushed, formed into a compressed body, sintered in the atmospheric air, and then hot-pressed into the contact material.

Description

【発明の詳細な説明】 本発明は、電気接点材料、特に粉末冶金学的手法による
Ag−金属酸化物系接点材料の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrical contact material, and in particular to a method for producing an Ag-metal oxide based contact material by powder metallurgy.

近年、電磁開閉器の小形化、高性能化に伴い、電気接点
の性能向上、特に耐溶着性の一層の向上が期待されてい
る。このため、これらの機器に使用する接点はAg中に
OdやZn、Snなどを単独又社複合添加し、これを内
部酸化させることにより接点特性の向上を図っている。
In recent years, with the miniaturization and higher performance of electromagnetic switches, it is expected that the performance of electrical contacts, especially the welding resistance, will be further improved. Therefore, in the contacts used in these devices, Od, Zn, Sn, etc. are added singly or in combination to Ag, and this is internally oxidized to improve the contact characteristics.

特に、Ag−C!dQ系接点は、優れた特性を有し、最
も幅広く使用されている。しかし、公害対策、人体に対
する影譬及び経済性などの点から、これに代る接点材料
が要望されている。
Especially Ag-C! dQ type contacts have excellent characteristics and are most widely used. However, an alternative contact material is desired from the viewpoint of pollution control, impact on the human body, and economic efficiency.

一般に、耐溶着性に優れた接点材料を得るためには、A
g−金属酸化物系接点材料であるならば、Agマトリッ
クス中に分散する卑金属酸化物の蓋を増加させることが
必要である。しかしながら、現在主に使用されているA
g−金属酸化物系接点材料は、Agと固溶し合い且つA
gよシも酸化されやすい金属を添加し、内部酸化法によ
って添加金属の酸化物を析出させた分散析出型合金であ
る。
Generally, in order to obtain a contact material with excellent welding resistance, A
If it is a g-metal oxide based contact material, it is necessary to increase the cap of base metal oxide dispersed in the Ag matrix. However, currently mainly used A
g-The metal oxide contact material is a solid solution with Ag and
It is a dispersion precipitation type alloy in which a metal that is easily oxidized is added and the oxide of the added metal is precipitated by an internal oxidation method.

このために接点材料として製造し得る合金は限られ、た
とえAgに固溶しても添加元素が増加すると内部酸化が
不可能な場合が多く、耐溶着性の向上は望めない。また
、内部酸化後の合金は硬さが増加するため、塑性加工性
が低下するという問題点も有している。
For this reason, alloys that can be manufactured as contact materials are limited, and even if they are dissolved in Ag, internal oxidation is often impossible as the amount of added elements increases, and no improvement in welding resistance can be expected. Furthermore, since the hardness of the alloy after internal oxidation increases, there is also the problem that plastic workability decreases.

現在、従来のAg −OdO系接点とほぼ同等の性能を
示すものとして注目されてきたのは、Ag−an系合金
を内部酸化させたAg −SnOえ系接点で金を溶解調
製後、圧延加工によって数置の厚さの板にする。この後
、酸素分圧IKv/L:li以上の酸化性雰囲気下で2
50℃〜750℃に加熱保持して内部−酸化させる。こ
こで、8nを2重ikチ以上としているのは、これ未満
では優れた耐溶着性が得られないためである。15重t
%を越えると内部酸化が困難となる。なお、日n含有蓋
が増加してくると、合金の硬さが上昇し、塑性加工性が
低下するために打ち抜き加工などに問題が生じてくる。
Currently, Ag-SnO-based contacts, which are made by internally oxidizing Ag-an-based alloys, are attracting attention as having almost the same performance as conventional Ag-OdO-based contacts, which are made by melting gold and then being rolled. Make a board several orders of magnitude thick. After this, under an oxidizing atmosphere with an oxygen partial pressure IKv/L:
Internal oxidation is carried out by heating and maintaining at 50°C to 750°C. Here, the reason why 8n is set to 2 ik or more is because if it is less than this, excellent welding resistance cannot be obtained. 15 weight t
%, internal oxidation becomes difficult. Incidentally, as the amount of Ni-containing lid increases, the hardness of the alloy increases and the plastic workability decreases, causing problems in punching and the like.

一般に、Ag−an系合金においては、大気中において
内部酸化処理を行うとanの拡散速度が遅いために合金
の表面に8nO,の緻密な被膜が生じやすい。これを防
止するには高圧酸化が必要であるが、その場合に高圧の
酸化性雰囲気であっても内部酸化のための時間を非常に
長くすることが必要である。
Generally, when an Ag-an alloy is subjected to internal oxidation treatment in the atmosphere, a dense film of 8 nO is likely to be formed on the surface of the alloy because the diffusion rate of an is slow. To prevent this, high-pressure oxidation is required, but even in a high-pressure oxidizing atmosphere, it is necessary to provide a very long time for internal oxidation.

上述のように、Ag −8nO1系接点はムg −0’
dO系接点と同等の性能を有するとともに、人体に対し
ては無害であるという利点をもっている。しかし、溶解
加工法によるAg −8nO,系接点は、上述のように
、Sn含有量の増加に伴って塑性加工性が低下し、また
、該合金を内部酸化処理するのに高圧容器設備が必要で
あシ、しかも内部酸化処理時間が長いという欠点を持っ
ている。
As mentioned above, the Ag -8nO1 type contact is Mug -0'
It has the same performance as a dO type contact, and has the advantage of being harmless to the human body. However, as mentioned above, the plastic workability of Ag-8nO system contacts produced by melt processing decreases as the Sn content increases, and high-pressure vessel equipment is required to internally oxidize the alloy. Moreover, it has the disadvantage that the internal oxidation process takes a long time.

上記の溶解加工法とは別に、Ag粉末と金属酸化物、例
えばSnO,、In、O,、ZnO1Bi、O,などの
粉末とを混合し、粉末冶金学的手法によシ接点材料を製
造することが提案されているが、この場合においても金
属酸化物をAg中に分散させることは極めて困難である
Apart from the above-mentioned melt processing method, a contact material is manufactured by a powder metallurgy method by mixing Ag powder and a powder of a metal oxide such as SnO, In, O, ZnO, Bi, O, etc. However, even in this case, it is extremely difficult to disperse metal oxides in Ag.

さらに、Ag−an系合金の粉末を作製し、これを大気
中で内部酸化処理し、粉末冶金学的手法により接点材料
を製造する方法も提案されている。
Furthermore, a method has also been proposed in which a powder of an Ag-an alloy is produced, the powder is internally oxidized in the atmosphere, and a contact material is produced by a powder metallurgical method.

この方法は、種々の利点を有しているが、大気中で内部
酸化が可能なSn含有量は8重ikチ以下であシ、この
程度のSn含有量では十分な接点特性が得られないとい
う難点がある。
Although this method has various advantages, the Sn content that can be internally oxidized in the atmosphere is less than 8x, and sufficient contact characteristics cannot be obtained with this level of Sn content. There is a drawback.

したがって、本発明の目的は、従来技術の問題点を克服
し、耐溶着性に優れ且つ下記の特徴を有し、経済性に富
んだ電気接点材料の製造方法を提供することである。
Therefore, an object of the present invention is to overcome the problems of the prior art and to provide an economical method for producing an electrical contact material that has excellent welding resistance and the following characteristics.

(1)内部酸化処理の方法を簡略化できる。(1) The internal oxidation treatment method can be simplified.

■ Elnのようなムgに固溶し且つAgよシも酸化さ
れやすい金属の含有量を多くすることができ、安価な接
点が得られる。また、内部酸化が不可能な合金粉末にも
適用できる。
(2) It is possible to increase the content of metals such as Eln, which are solid-dissolved in Mug and which are easily oxidized, as well as Ag, resulting in inexpensive contacts. It can also be applied to alloy powders that cannot be internally oxidized.

■ 材料損失がほとんどない。■ There is almost no material loss.

■ 接点形状の選択を幅広くとることが可能である。■ It is possible to choose a wide range of contact shapes.

しかして、本発明によれば、Agに固溶し且りAgよシ
も酸化されやすい金属の少なくとも1種を含有するムg
−M合金粉末を大気中で内部酸化又は高温加熱処理し、
次いで混合、破粉砕、成形、焼結、熱間プレスの工程を
経ることからなる電気接点材料の製造方法を提供するこ
とによシ達成しようとするものである。
Therefore, according to the present invention, a mug containing at least one metal that is solid-dissolved in Ag and that is easily oxidized than Ag.
- M alloy powder is subjected to internal oxidation or high temperature heat treatment in the atmosphere,
This is achieved by providing a method for producing an electrical contact material, which comprises the steps of mixing, crushing, molding, sintering, and hot pressing.

Agとの合金である。このよりなAg合金の例としては
、Ag−an、Ag−工n1ムg −Zn 、ムg −
Mn 。
It is an alloy with Ag. Examples of such strong Ag alloys include Ag-an, Ag-Zn, Mug-Zn, and Ag-Zn.
Mn.

Ag −an−In系の本のがあげられる。特に好まし
いのは、ムg−s 〜11重量%Sn又1d Ag −
10〜15重t18n−2〜6重量%In合金である。
Examples include Ag-an-In books. Particularly preferred is Mug-s to 11% by weight Sn or 1dAg-
It is a 10-15 weight t18n-2-6 weight% In alloy.

本発明の方法において、ムg合金は150μm以下、好
ましくは100μm以下の粒度を有する粉末であること
が重要である。なぜならば、内部酸化処理時間が短縮さ
れると同時に、後述するように、この内部酸化した合金
粉末を成形、焼結した後、熱間プレスの工程を追加する
ことによシ最終接点材料はその理論密度に到達し、性能
も格段に向上することがわかったからである。
In the method of the invention, it is important that the mug alloy is a powder with a particle size of less than 150 μm, preferably less than 100 μm. This is because the internal oxidation treatment time is shortened, and at the same time, as will be described later, by adding a hot pressing process after forming and sintering this internally oxidized alloy powder, the final contact material is This is because it was found that the theoretical density was reached and the performance was significantly improved.

上記のAg−M合金粉末は、次いで大気中で内部酸化処
理に付される。この処理は、250〜750℃の温度で
1〜10時間、好ましくは数時間性なわれる。しかし、
酸化されやすい金属が多くなると(例えば8n含有蓋が
8%以上になると)、外部酸化(酸化物(SnO−被膜
が粉末粒表面に生成する)の進行が大きくなるために十
分な接点特性を得るこ′とが不可能となる。しかし、金
属含有量の増加にしたがって耐消耗、耐溶着性が良好と
なり、しかもAg量の低下によってコストが低下するの
で、外部酸化したものでも何らかの処理を行なって特性
を向上させることが要求される。この処理は、Ag−M
合金粉末が十分に内部酸化されているか否かにかかわら
ず、高温にて加熱酸化することによって達成される。
The above Ag-M alloy powder is then subjected to internal oxidation treatment in the atmosphere. This treatment is carried out at a temperature of 250 DEG to 750 DEG C. for 1 to 10 hours, preferably several hours. but,
When the amount of metal that is easily oxidized increases (for example, when the 8N content becomes 8% or more), the progress of external oxidation (oxide (SnO-film is formed on the powder grain surface) increases) to obtain sufficient contact characteristics. However, as the metal content increases, the wear resistance and welding resistance improve, and the cost decreases due to the decrease in the Ag content, so even if the material is externally oxidized, some kind of treatment is necessary. It is required to improve the properties of Ag-M.
Regardless of whether or not the alloy powder is sufficiently internally oxidized, this can be achieved by heating and oxidizing it at high temperatures.

次いで、内部酸化処理粉末は、ボールミル、ライカイ機
等の混合機で数十時間混合、破粉砕される。上述したよ
うに、酸化物(例えば日nOよ)の被膜が粉末粒表面に
生成したとしても、ボールミル処理することによって酸
化物被膜が破壊され、粉砕されてムg粉末と均一に混合
されることになり、接点特性が向上される。
Next, the internally oxidized powder is mixed and crushed for several tens of hours in a mixer such as a ball mill or a Laikai machine. As mentioned above, even if an oxide film (for example, NiO) is formed on the surface of the powder grain, the oxide film is destroyed by ball milling, and the powder is pulverized and mixed uniformly with the mug powder. and the contact characteristics are improved.

上記の混合、破粉砕されたAg−M合金粉末は、所望の
形状に成形される。成形は、一般に1〜10ton/7
、好ましくは2〜5ton/−の加圧下で行われる。成
形物は、次いで大気中で焼結される。
The above-mentioned mixed and crushed Ag-M alloy powder is molded into a desired shape. Molding is generally 1 to 10 tons/7
, preferably under a pressure of 2 to 5 tons/-. The molding is then sintered in air.

焼結温度は、一般に500℃〜1000℃、好ましくは
700℃〜900℃であシ、1〜10時間、好ましくは
2〜5時間処理される。焼結物はさらに熱間プレス処理
に付されて接点材料とされる。通常このプレス処理は、
400〜600℃の温度で5〜10 ton /dの加
圧下に5〜20秒間実施される。もちろん、上記の各条
件は、得ようとする接点材料の性能に応じて適宜変更す
ることができることはいうまでもない。
The sintering temperature is generally 500°C to 1000°C, preferably 700°C to 900°C, and the treatment is carried out for 1 to 10 hours, preferably 2 to 5 hours. The sintered product is further subjected to hot pressing treatment to form a contact material. This pressing process is usually
It is carried out for 5 to 20 seconds at a temperature of 400 to 600°C and under a pressure of 5 to 10 ton/d. Of course, it goes without saying that each of the above conditions can be changed as appropriate depending on the desired performance of the contact material.

本発明の方法によれば、内部酸化処理が大気中でできる
ので酸化処理時間が大幅に短縮できる。
According to the method of the present invention, since the internal oxidation treatment can be performed in the atmosphere, the oxidation treatment time can be significantly shortened.

また、8nのような酸化性金属の含有量が多くなっても
十分な接点性能を有する電気接点材料を得ることができ
る。
Moreover, even if the content of an oxidizing metal such as 8n is increased, an electrical contact material having sufficient contact performance can be obtained.

さらに、従来の内部酸化の限度以上に合金元累を添加で
きるので、経済性に富んだ接点材料が得られる。さらに
、接点性能は、従来のAg −0(10接点とはぼ同等
か又はそれ以上である。特に、金属酸化物が細かく且つ
均一に分散しているために耐溶着性に優れている。しか
も、公害性がない接点材料が得られる。
Furthermore, since the alloying element can be added in an amount exceeding the limit of conventional internal oxidation, a contact material with high economic efficiency can be obtained. Furthermore, the contact performance is almost the same as or better than the conventional Ag-0 (10) contact.In particular, the metal oxide is finely and uniformly dispersed, so it has excellent welding resistance. , a non-polluting contact material can be obtained.

以下、比較例及び実施例によシ本発明をさらに例示する
The present invention will be further illustrated below using comparative examples and examples.

比較例 Ag −Eln合金を溶解後、圧延加工して1箇の板を
得た。これを素材とし、大気中で温度と時間の組合せを
変化させて内部酸化処理実験を行った。
Comparative Example After melting the Ag-Eln alloy, it was rolled to obtain one plate. Using this material, internal oxidation treatment experiments were conducted in the atmosphere by varying the combination of temperature and time.

この実験によって、日nが8チ未満の合金では750℃
以下の温度で数十時間保持すると、わずかに内部酸化す
ることが認められた。8%以上のものでは表面に8nO
,の被膜が発生しゃすくなシ、内部酸化はほとんどでき
なかった。また、6〜8チ8n含有量のものも表面に薄
いSnO,の被膜が認められた。Ag8afiBm合金
の場合、750℃x 64hrの処理でもその内部酸化
深さはiiopm程度であった。これは、通常必要とさ
れる内部酸化深さの5〜10%に相当する厚さでしかな
い。
Through this experiment, it was found that the temperature of 750°C for alloys with n less than 8
Slight internal oxidation was observed when kept at the following temperature for several tens of hours. If it is 8% or more, 8nO is added to the surface.
However, no internal oxidation occurred. A thin SnO film was also observed on the surface of the samples containing 6 to 8 8n. In the case of Ag8afiBm alloy, the internal oxidation depth was about iiopm even after treatment at 750°C for 64 hours. This is only a thickness corresponding to 5-10% of the normally required internal oxidation depth.

実施例1 15重量% 8n以下のムg−an系合金をアトマイズ
法によって150pm 以下の粒度を持つへg−8n系
合金粉末を製造した。この粉末を大気中750℃以下の
温度で数時間酸化処理した後、ボールミルでI時間混合
、破粉砕した。次いで、以下の工程によ多接点を製作し
た。
Example 1 A mug-an alloy powder having a particle size of 150 pm or less was produced by atomizing a mug-an alloy powder having a grain size of 150 pm or less. This powder was oxidized in the air at a temperature of 750° C. or lower for several hours, then mixed and crushed in a ball mill for I hour. Next, multiple contacts were manufactured using the following steps.

成形(3ton/cIl)→焼結(800℃×2時間、
大気中)→熱間プレス(530℃、7.3ton/gJ
、9秒) 製作した接点を定格75ムの電磁接触器に組込んで、次
の条件で接点試験を行った。
Molding (3 ton/cIl) → Sintering (800°C x 2 hours,
In the atmosphere)→Hot press (530℃, 7.3ton/gJ
, 9 seconds) The manufactured contact was assembled into an electromagnetic contactor with a rating of 75 μm, and a contact test was conducted under the following conditions.

負荷電圧: AC!200Vs 3φ、5Q Hz負荷
電流: 375A、s〜(0,1秒通1t)力率:Co
θψ−0,35 開閉頻度:36060時間 上記の試験条件による結果の比較を下表に示す。
Load voltage: AC! 200Vs 3φ, 5Q Hz Load current: 375A, s ~ (0.1 seconds 1t) Power factor: Co
θψ−0,35 Opening/closing frequency: 36,060 hours A comparison of the results under the above test conditions is shown in the table below.

以上の結果から、Ag−8重量%8n合金の場合には内
部酸化が可能なため、粉末の混合、被粉砕処理の有無に
かかわらず優れた接点特性が得られるが、Ag−11重
量%8n合金の場合には混合、被粉砕処理の効果が顕著
であり、その接点性能は従来のムg −13% Gao
接点のものより上回ってお)、その有用性が認められる
From the above results, in the case of Ag-8 wt% 8n alloy, internal oxidation is possible, so excellent contact characteristics can be obtained regardless of powder mixing and pulverization treatment, but Ag-11 wt% 8n In the case of alloys, the effects of mixing and pulverization are remarkable, and the contact performance is better than that of conventional Mg-13% Gao
(exceeded that of the contact point), its usefulness is recognized.

実施例2 アトマイズ法によって、11重量%Sn、4.5重量%
ェn1残部がAgよシなるAg−8n系合金を150μ
m以下の粒度の合金粉末とした。これを700℃で16
時間の内部酸化処理に付し、次いでボールミルにて混合
、被粉砕処理を加時間行なった。
Example 2 11% by weight Sn, 4.5% by weight by atomization method
150μ of Ag-8n alloy in which the remainder of n1 is Ag.
The alloy powder had a particle size of less than m. This was heated to 700℃ for 16
The mixture was subjected to internal oxidation treatment for hours, and then mixed and pulverized in a ball mill for an additional period of time.

その後、以下の工程で接点を製作した。After that, the contacts were manufactured using the following steps.

成形(3ton/、−j )→焼結(800℃、2時間
、大気中)→熱間プレス(7t、on/d、550℃、
9秒) 得られた接点を26Aの電磁接触器に組込んで以下の条
件で接点試験を行った。
Molding (3 tons/, -j) → Sintering (800°C, 2 hours, in the atmosphere) → Hot pressing (7 tons, on/d, 550°C,
(9 seconds) The obtained contact was assembled into a 26A electromagnetic contactor and a contact test was conducted under the following conditions.

負荷電圧:ム0220V、3φ、5QHz負荷電流:1
50A、5〜(0,1秒通電)力 °率 : cosψ
−0,35 開閉頻度:360回/時間 次の結果が得られた。
Load voltage: 0220V, 3φ, 5QHz Load current: 1
50A, 5~(0.1 seconds energization) Power factor: cosψ
-0,35 Opening/closing frequency: 360 times/hour The following results were obtained.

消耗量(W/ 10000回) : 180寿命値  
(回)     : 56,000特許出願人  株式
会社g士電機総合研究所同     富士電機製造株式
会社
Wear amount (W/10,000 times): 180 life value
(Times): 56,000 Patent applicants: G-Shi Electric Research Institute Co., Ltd. Fuji Electric Manufacturing Co., Ltd.

Claims (1)

【特許請求の範囲】 (1)  Ag に固溶し且つムgよシも酸化されやす
い金属Mの少なくとも1種を含有するAg−M系合金粉
末を大気中で内部酸化又は高温加熱処理し、次いで、混
合、被粉砕、成形、焼結、熱間プレスの工程を経ること
からなる電気接点材料の製造方法。 (2、特許請求の範囲第1項記載の製造方法において、
Agに固溶し且つ五gよシも酸化されやすい金属Vがa
n、In、 Zn、 Mn、 Bi又はこれらの組合せ
からなることを特徴とする電気接点材料の製造方法。 (3)特許請求の範囲第1項記載の製造方法において、
ムg−M合金は、8〜11重量$8n、残部がAg、又
If 10〜15重量%、anと2〜6重tS工nと、
残部がムgからなるものであることを特徴とする電気接
点材料の製造方法。 (4)特許請求の範囲第1〜4項のいずれかに記載の製
造方法において、Ag−M合金粉末が150μm以下の
粒度を有することを特徴とする電気接点材料の製造方法
[Scope of Claims] (1) Ag-M alloy powder containing at least one metal M that is dissolved in Ag and is easily oxidized is subjected to internal oxidation or high-temperature heat treatment in the atmosphere, Next, a method for producing an electrical contact material, which comprises the steps of mixing, pulverizing, molding, sintering, and hot pressing. (2. In the manufacturing method described in claim 1,
The metal V, which is solid-dissolved in Ag and is easily oxidized, is a
A method for producing an electrical contact material, characterized in that the material is made of n, In, Zn, Mn, Bi or a combination thereof. (3) In the manufacturing method according to claim 1,
The Mug-M alloy has a weight of 8 to 11% by weight, the balance is Ag, and if 10 to 15% by weight, an and 2 to 6 weights of tS engineering.
A method for producing an electrical contact material, characterized in that the remainder consists of mug. (4) A method for producing an electrical contact material according to any one of claims 1 to 4, wherein the Ag-M alloy powder has a particle size of 150 μm or less.
JP56153335A 1981-09-28 1981-09-28 Production of electric contact material Pending JPS5855544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56153335A JPS5855544A (en) 1981-09-28 1981-09-28 Production of electric contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56153335A JPS5855544A (en) 1981-09-28 1981-09-28 Production of electric contact material

Publications (1)

Publication Number Publication Date
JPS5855544A true JPS5855544A (en) 1983-04-01

Family

ID=15560227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56153335A Pending JPS5855544A (en) 1981-09-28 1981-09-28 Production of electric contact material

Country Status (1)

Country Link
JP (1) JPS5855544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621835A (en) * 1985-06-26 1987-01-07 Tanaka Kikinzoku Kogyo Kk Manufacture of ag-nio electric contact point material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621835A (en) * 1985-06-26 1987-01-07 Tanaka Kikinzoku Kogyo Kk Manufacture of ag-nio electric contact point material
JPH0475297B2 (en) * 1985-06-26 1992-11-30

Similar Documents

Publication Publication Date Title
US5160366A (en) Silver-metal oxide composite material and process for producing the same
US4141727A (en) Electrical contact material and method of making the same
US3954459A (en) Method for making sintered silver-metal oxide electric contact material
CA1339713C (en) Semi-finished produit for making electric contacts, made of a composite material based on silver and tinoxide and power-metallurgical process ofprooducing the semi-finished produit
JPS6112841A (en) Sintered contact material for electric power low voltage open-close instrument and manufacture
CN109593981B (en) Preparation method of silver tin oxide contact material for improving sintering property of ingot blank
US5286441A (en) Silver-metal oxide composite material and process for producing the same
JPH0135914B2 (en)
KR960031028A (en) Silver-tin oxide base sintered material for electrical contacts and method of making same
JPS5855544A (en) Production of electric contact material
CN109500392B (en) Preparation method of silver zinc oxide contact material for improving sintering property of ingot blank
JPS6148573B2 (en)
JP2905043B2 (en) Manufacturing method of permanent magnet powder material
JPS621835A (en) Manufacture of ag-nio electric contact point material
JPS63149341A (en) Production of silver-base metal oxide contact material
JPS619541A (en) Sintered contact material for electric power low voltage open-close instrument
US3799770A (en) Electrical contact material containing silver,cadmium oxide,tin and cobalt
JPH0252681B2 (en)
US3778257A (en) Light-duty electrical contacts of silver and ruthenium oxide
JPS6049705B2 (en) Method for manufacturing silver-tin oxide electrical contact material
JPS6021304A (en) Manufacture of electrical contact material
JPS5810979B2 (en) Gin - Sankabutsu Keiden Kisetsu Tenzairiyou
KR910002952B1 (en) Making process for contact of air circuit breaker
JPS6021303A (en) Manufacture of electrical contact material
JPS6337175B2 (en)