JPS5855447B2 - infrared gas analyzer - Google Patents

infrared gas analyzer

Info

Publication number
JPS5855447B2
JPS5855447B2 JP52101490A JP10149077A JPS5855447B2 JP S5855447 B2 JPS5855447 B2 JP S5855447B2 JP 52101490 A JP52101490 A JP 52101490A JP 10149077 A JP10149077 A JP 10149077A JP S5855447 B2 JPS5855447 B2 JP S5855447B2
Authority
JP
Japan
Prior art keywords
layer
conduit
flow resistance
detection
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52101490A
Other languages
Japanese (ja)
Other versions
JPS5327470A (en
Inventor
ヨハン・ワイネル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JPS5327470A publication Critical patent/JPS5327470A/en
Publication of JPS5855447B2 publication Critical patent/JPS5855447B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/37Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection

Description

【発明の詳細な説明】 本発明は、測定並びに比較赤外線路にそれぞれ設けられ
た二層検出槽と、この両二層検出槽のそれぞれ第一層に
おいて吸収されたエネルギーの差に相当する第一の電気
的信号を形成する手段と、前記両二層検出槽のそれぞれ
の第二層において吸収されたエネルギーの差に相当する
第二の電気的信号を形成手段と、測定値に比例する第−
及び第二の電気的信号の差の信号を形成する手段とを備
えた複光束による非分散形赤外線ガス分析計に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a two-layer detection tank provided in each of the measurement and comparison infrared paths and a first detection tank corresponding to the difference in energy absorbed in each first layer of both two-layer detection tanks. means for forming an electrical signal corresponding to the difference in the energy absorbed in the respective second layers of both said two-layer detection chambers; and a second electrical signal proportional to the measured value.
and means for forming a second electrical signal difference signal.

このような種類の分析計は西独特許公告第110941
8号により知られている。
This type of analyzer is described in West German Patent Publication No. 110941.
Known by No. 8.

その動作様式が周知のものであるとみすることの出来る
空気による二層検出槽(西独特許第1017385号)
は、相互に隔離された室として形成されている。
A two-layer air detection tank whose operating mode can be considered to be well known (West German Patent No. 1017385)
are formed as mutually isolated chambers.

そして、第一層に相当する室の充填ガスは、試料ガス中
の測定されるべき成分の共鳴領域に相当する狭い吸収領
域のみを持つようにその組成および圧力が選ばれ、又第
二の検出器の充填ガスは上記の共鳴領域を覆う広い吸収
領域を持つ様にその組成および圧力が選ばれる。
The composition and pressure of the filling gas in the chamber corresponding to the first layer are selected so that it has only a narrow absorption region corresponding to the resonance region of the component to be measured in the sample gas, and the second detection layer is The composition and pressure of the gas filling the vessel are selected so as to have a broad absorption area covering the resonance area mentioned above.

検出槽の第一と第二層とにおける吸収エネルギーの差に
相当する電気的信号形成のための手段としてダイアフラ
ムコンデンサーが備えられ、その出力は差を形成するた
め作動的に接続される。
A diaphragm capacitor is provided as a means for forming an electrical signal corresponding to the difference in absorbed energy in the first and second layers of the detection chamber, the output of which is operatively connected to form the difference.

試料ガスがない場合の零点に相応する出力信号は、上記
の装置に於てはドリフトする可能性がある。
The output signal corresponding to the zero point in the absence of sample gas may drift in the device described above.

それは、密閉された検出槽の室の中では温度変化又は室
の壁から充填ガスの中へ混入する干渉成分により、長時
間の間には種々の圧力変化とそれによって惹起された分
圧の変化が現れることがあり得るからである。
In a sealed detection tank chamber, various pressure changes and resulting changes in partial pressure occur over a long period of time due to temperature changes or interference components entering the filling gas from the chamber wall. This is because it may appear.

本発明は、上述した種類の装置を、長時間の安定性と混
入する干渉成分の遮断に関して改善することを目的とす
る。
The invention aims at improving a device of the above-mentioned type with respect to long-term stability and rejection of contaminating interference components.

このような目的は本発明によれば次のようにして達成さ
れる。
According to the present invention, such an object is achieved as follows.

即ち、各検出槽それぞれに第−及び第二層を形成する画
室を高い流れ抵抗の導管を介して接続し、かつ、測定及
び比較赤外線路の雨検出槽のおのおのの第一層及び第二
層を、第一層は第一層同士、第二層は第二層同士、たが
いに低い流れ抵抗の導管を介して接続する。
That is, the compartments forming the respective first and second layers of each detection tank are connected via high flow resistance conduits, and the measurement and comparison infrared path of the rain detection tank is connected to the compartments forming the first and second layers, respectively. The first layer is connected to the first layer, and the second layer is connected to the second layer through a low flow resistance conduit.

そして、低い流れ抵抗の導管中に感温抵抗の形で流れ検
出器を備え、それが測定ブリッジ回路の一部を形成し、
その検出感度を調整し得るようにしておくことにより、
前記の目的が達成されるのである。
and a flow detector in the form of a temperature-sensitive resistor in the conduit of low flow resistance, which forms part of the measuring bridge circuit;
By making it possible to adjust the detection sensitivity,
The above objective is achieved.

本発明の一つの優れた実施例においては、感温抵抗が抵
抗測定ブリッジの一部分を形成し、その測定対角線は増
幅度を調整し得る増幅器に接続され、その出力信号から
測定値に比例する差の信号を形成している。
In one advantageous embodiment of the invention, a temperature-sensitive resistor forms part of a resistance measuring bridge, the measuring diagonal of which is connected to an amplifier capable of adjusting the amplification, from whose output signal there is a difference proportional to the measured value. The signal is formed.

すべての室は、従って、ガスを導通する様に互に結合さ
れていて、組成及び圧力の等しいガスが充填されている
ことになる。
All chambers are therefore gas-conductingly interconnected and filled with gas of equal composition and pressure.

各検出槽の第一層と第二層とを結合する導管については
、装置の状態が変化して流れ検出器を含む導管中にガス
の流れが生じても直ちにはその影響をこうむることがな
く、ゆっくり形成される全圧又は分圧の差を平衡させる
ことが出来るように、導管の流れ抵抗の設計がなされる
The conduit connecting the first and second layers of each detection tank will not be affected immediately even if the state of the device changes and gas flows into the conduit containing the flow detector. The design of the flow resistance of the conduit is such that slowly building total or partial pressure differences can be balanced.

二つの測定ブリッジの出力信号の増幅率がそれぞれ独自
に変化し得ることによって、干渉量又はじよう乱を広範
囲にわたって排除することが出来る。
Due to the fact that the amplification factors of the output signals of the two measuring bridges can each be varied independently, interference amounts or disturbances can be eliminated over a wide range.

次に図面により本発明による赤外線ガス分析計の実施例
について説明する。
Next, embodiments of the infrared gas analyzer according to the present invention will be described with reference to the drawings.

赤外線光源1から発する赤外線は、光分配器2によって
、二つの光線路、測定赤外線路3と比較赤外線路4に分
けれる。
The infrared radiation emitted from the infrared light source 1 is divided by an optical splitter 2 into two optical paths, a measurement infrared path 3 and a comparison infrared path 4.

この赤外線は回転するチョッパー5により同期変調され
る。
This infrared ray is synchronously modulated by the rotating chopper 5.

測定赤外線路3に配置され、試料ガスが流れる分析室6
ならびに比較赤外線路4に配置され、比較ガスが満たさ
れた比較室Iに続いて、赤外線の進行方向に、二つの二
層検出槽8,9が設けられる。
An analysis chamber 6 arranged in the measurement infrared path 3 and through which the sample gas flows
Next to the comparison chamber I, which is arranged in the comparison infrared path 4 and filled with comparison gas, in the direction of travel of the infrared radiation, two two-layer detection vessels 8, 9 are provided.

これは赤外線を透過する隔壁10をそなえ、この隔壁に
より第一層及び第二層の中の充填ガスが分けられている
It has an infrared transparent partition 10 which separates the gas filling in the first and second layers.

この検出槽8及び検出槽9のそれぞれにおいて第−及び
第二の双方の層を形成する画室は高い流れ抵抗の導管1
3を介して相互に結合されている。
The compartments forming both the first and second layers in each of detection vessels 8 and 9 are conduits 1 of high flow resistance.
They are mutually coupled via 3.

また槽8と9との双方の第一の層11を形成する室は低
い流れ抵抗を持つ導管14を介して相互に結合されてい
る。
Also, the chambers forming the first layer 11 of both vessels 8 and 9 are interconnected via conduits 14 with low flow resistance.

この導管14には感温抵抗16の形で流れ検出器が配置
されている。
A flow detector in the form of a temperature-sensitive resistor 16 is arranged in this conduit 14 .

同様に検出槽8と9との双方の第二の層12は、流れ検
出器としての感温抵抗16を含む低い流れ抵抗の導管1
5を介して、相互に結合されている。
Similarly, the second layer 12 of both detection vessels 8 and 9 consists of a low flow resistance conduit 1 containing a temperature sensitive resistor 16 as a flow detector.
They are mutually coupled via 5.

感温抵抗16は即知の方法で抵抗測定ブリッジ17の一
部を形成し、このブリッジ17の測定対角線は増幅器1
8に接続されている。
The temperature-sensitive resistor 16 forms, in a known manner, part of a resistance measuring bridge 17, the measuring diagonal of which bridges the amplifier 1.
8 is connected.

これ等の増幅器18のうちの少くとも一つは調節し得る
増幅度を持つ(これは出力側のポテンシオメータ−19
により図示した)。
At least one of these amplifiers 18 has an adjustable amplification (this is controlled by a potentiometer 19 on the output side).
(Illustrated by ).

これにより各種の干渉の影響、例へば水蒸気等に起因す
る非対称を相殺する事が出来る。
This makes it possible to cancel out the effects of various interferences, for example asymmetry caused by water vapor, etc.

即知のように差を求める演算を行わせるために、両増幅
器18の出力は差動増幅器20に接続される。
As is well known, the outputs of both amplifiers 18 are connected to a differential amplifier 20 in order to perform a difference calculation.

その出力に、測定値に比例する差の信号が現れる。At its output appears a difference signal proportional to the measured value.

以上に説明したように、本発明においては、(1)第一
の層11と第2の層12とを、高い流れ抵抗の導管13
でお互いに結合し、しかも、(2)第一の層11は第一
の層同士、第二の層12は第二の層同士、互いに低い流
れ抵抗の導管14,15を介して接続し、そして、(3
)低い流れ抵抗の導管14゜15に感温抵抗形流れ検出
器16を配置するようにした。
As explained above, in the present invention, (1) the first layer 11 and the second layer 12 are connected to the conduit 13 with high flow resistance.
and (2) the first layer 11 is connected to the first layer and the second layer 12 is connected to the second layer through conduits 14 and 15 having low flow resistance. And (3
) Temperature-sensitive resistance flow detectors 16 are arranged in the conduits 14 and 15 with low flow resistance.

このような構成の本発明によれば、次のような効果が奏
される。
According to the present invention having such a configuration, the following effects are achieved.

すなわち、たとえば、測定ガスが分析室6に供給されて
いないとき、何らかの原因により、左側の第一の層11
に温度変化が生じたとする。
That is, for example, when the measurement gas is not supplied to the analysis chamber 6, for some reason, the first layer 11 on the left
Suppose that there is a temperature change.

この温度変化はその左側の第一の層11内に封入された
充填ガスを膨張させる。
This temperature change causes the filling gas enclosed within the first layer 11 on its left to expand.

その結果、左側の第一の層11から低い流れ抵抗の導管
14を介して右側の第一の層11に向かって充填ガスの
流れが生じる。
As a result, a flow of filling gas occurs from the first layer 11 on the left-hand side through the low flow resistance conduit 14 towards the first layer 11 on the right-hand side.

この流れは導管14に設けられている感温抵抗16によ
って検出され、ブリッジ17の出力を変化させる。
This flow is detected by a temperature sensitive resistor 16 in conduit 14 and changes the output of bridge 17.

そのために、温度変化に起因する出力変動が生じる。Therefore, output fluctuations occur due to temperature changes.

ところが、本発明においては、上述の如く、第一の層1
1は高い流れ抵抗の導管13を介して第二の層12に結
合されている。
However, in the present invention, as described above, the first layer 1
1 is connected to the second layer 12 via a high flow resistance conduit 13.

従って、左側の第一の層11において温度変化に起因す
る充填ガスの膨張はその導管13を介して左側の第二の
層12にも伝えられる。
The expansion of the filling gas due to temperature changes in the first layer 11 on the left is therefore also transmitted via its conduit 13 to the second layer 12 on the left.

その結果、左側の第一の層11から左側の第二の層12
への充填ガスの流れは、導管15を介して、左側の第二
の層12から右側の第二の層12への充填ガスの流れを
惹起する。
As a result, from the first layer 11 on the left to the second layer 12 on the left
The flow of fill gas to causes a flow of fill gas from the left-hand second layer 12 to the right-hand second layer 12 via the conduit 15 .

この流れは導管15に設げられている感温抵抗16によ
って検出される。
This flow is detected by a temperature sensitive resistor 16 provided in the conduit 15.

この導管15の感温抵抗16の抵抗変化は、ブリッジ1
7において、導管14の感温抵抗16の抵抗変化を相殺
するように作用する。
The resistance change of the temperature sensitive resistor 16 of this conduit 15 is determined by the bridge 1
At 7, it acts to offset the resistance change of the temperature sensitive resistor 16 of the conduit 14.

このような結果、本発明においては、温度変化に起因す
る出力変動は除去される。
As a result, in the present invention, output fluctuations due to temperature changes are eliminated.

一方、通常の測定においては、導管13は流れ抵抗が高
く、一方導管14.isは流れ抵抗が低いので、測定量
に起因する充填ガスの流れは導管13よりも導管14,
15内で早く生じ、従って導管14.15内の感温抵抗
16によって通常の測定が行なわれ、導管13を設げた
ことの影響は測定結果に現われない。
On the other hand, in normal measurements, conduit 13 has a high flow resistance, while conduit 14. is has a lower flow resistance, so that the flow of filling gas due to the measured quantity is more likely to occur in conduit 14 than in conduit 13.
15, so that a normal measurement is carried out by means of the temperature-sensitive resistor 16 in the conduit 14, 15, and the effect of the provision of the conduit 13 does not appear on the measurement result.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例の概略構成図を示す。 図に於て、 1・・・・・・赤外線光源、2・・・・・・光分配器、
3・・・・・・測定赤外線路、4・・・・・・比較赤外
線路、5・・・・・・チョッパ、6・・・・・・測定ガ
スが流れる分析室、7・・・・・・比較ガスが満されて
いる比較室、8,9・・・・・・二層検出槽、10・・
・・・・赤外線を透過する隔壁、11・・・・・・第一
の層、12・・・・・・第二の層、13・・・・・・高
い流れ抵抗を持つ導管、14,15・・・・・・低い流
れ抵抗を持つ導管、16・・・・・・感温抵抗、17・
・・・・・抵抗計測ブリッジ、18・・・・・°増幅器
、19・°°・°°ポテンシオメーター 20・・・・
・・差動増幅器。
The figure shows a schematic configuration diagram of an embodiment of the present invention. In the figure, 1... Infrared light source, 2... Light distributor,
3... Measurement infrared path, 4... Comparison infrared path, 5... Chopper, 6... Analysis chamber through which measurement gas flows, 7... ...Comparison chamber filled with comparison gas, 8, 9...Two-layer detection tank, 10...
...Infrared-transmissive partition, 11...First layer, 12...Second layer, 13...Conduit with high flow resistance, 14, 15... Conduit with low flow resistance, 16... Temperature sensitive resistance, 17.
...Resistance measuring bridge, 18...°amplifier, 19, °°, °°potentiometer 20...
...Differential amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1 測定並びに比較赤外線路のそれぞれに設けられた二
層検出槽と、この両二層検出槽のそれぞれの第1の層に
おいて吸収されたエネルギーの差に相応する第一の電気
信号を形成する手段と、両二層検出槽のそれぞれの第二
の層において吸収されたエネルギーの差に相応する第二
の電気信号を形成する手段と、この第一、第二の電気信
号から測定値に比例する差の信号を形成する手段とを備
えた複光束による非分散形赤外線ガス分析計において、
検出槽8,9の第一層11と第二層12とを、高い流れ
抵抗の導管13を介して互いに結合し、雨検出槽8,9
のおのおのの第一層11及び第二層12とを、第一の層
は第一の層同士、第二の層は第二の層同士、互いに低い
流れ抵抗を持つ導管14.15を介して接続し、そして
低い流れ抵抗を持つ導管14,150おのおのには感温
抵抗16の形の流れ検出器が配置されてそれぞれ1つの
測定ブリッジ回路の一部を形成し、この測定ブリッジの
測定感度をおのおの調整し得ることを特徴とする赤外線
ガス分析計。
1. A two-layer detection tank in each of the measurement and comparison infrared paths and means for generating a first electrical signal corresponding to the difference in the energy absorbed in the respective first layer of the two two-layer detection tanks. and means for forming a second electrical signal corresponding to the difference in energy absorbed in the respective second layers of both two-layer detection chambers, and means for forming a second electrical signal proportional to the measured value from the first and second electrical signals. in a double beam non-dispersive infrared gas analyzer comprising means for forming a difference signal,
The first layer 11 and the second layer 12 of the detection tanks 8, 9 are connected to each other via a high flow resistance conduit 13 to form the rain detection tanks 8, 9.
The first layer 11 and the second layer 12, respectively, the first layer is connected to the first layer and the second layer is connected to the second layer, respectively, through a conduit 14.15 having a low flow resistance. A flow detector in the form of a temperature-sensitive resistor 16 is arranged in each of the conduits 14, 150 which are connected and have a low flow resistance and each form part of a measuring bridge circuit, in order to determine the measuring sensitivity of this measuring bridge. An infrared gas analyzer that can be individually adjusted.
JP52101490A 1976-08-26 1977-08-24 infrared gas analyzer Expired JPS5855447B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19762638522 DE2638522C3 (en) 1976-08-26 1976-08-26 Non-dispersive two-beam infrared gas analyzer with a double-layer receiver each in the measuring and comparison beam path

Publications (2)

Publication Number Publication Date
JPS5327470A JPS5327470A (en) 1978-03-14
JPS5855447B2 true JPS5855447B2 (en) 1983-12-09

Family

ID=5986465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52101490A Expired JPS5855447B2 (en) 1976-08-26 1977-08-24 infrared gas analyzer

Country Status (4)

Country Link
JP (1) JPS5855447B2 (en)
DE (1) DE2638522C3 (en)
FR (1) FR2363101A1 (en)
IT (1) IT1085017B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9006169U1 (en) * 1990-05-31 1991-07-18 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
DE9014162U1 (en) * 1990-10-11 1990-12-20 Siemens Ag, 8000 Muenchen, De
DE4432940C2 (en) * 1993-09-24 1997-10-02 Fuji Electric Co Ltd Infrared gas analyzer
DE19547787C1 (en) * 1995-12-20 1997-04-17 Siemens Ag Calibrating twin-jet laboratory gas analysis cuvette
DE102008009189B4 (en) 2008-02-15 2016-05-25 Siemens Aktiengesellschaft Non-dispersive infrared gas analyzer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928956U (en) * 1972-06-15 1974-03-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928956U (en) * 1972-06-15 1974-03-12

Also Published As

Publication number Publication date
DE2638522A1 (en) 1978-03-02
FR2363101A1 (en) 1978-03-24
JPS5327470A (en) 1978-03-14
FR2363101B3 (en) 1980-07-11
DE2638522C3 (en) 1979-12-13
IT1085017B (en) 1985-05-28
DE2638522B2 (en) 1978-06-08

Similar Documents

Publication Publication Date Title
US4271124A (en) Non-dispersive infrared gas analyzer for testing gases containing water-vapor
US3614450A (en) Apparatus for measuring the amount of a substance that is associated with a base material
US4176963A (en) Device for determining the nitrogen oxide concentration in a gaseous mixture
US2718597A (en) Infrared analysis apparatus
JPS6214769B2 (en)
US8158945B2 (en) Detector arrangement for a nondispersive infrared gas analyzer and method for the detection of a measuring gas component in a gas mixture by means of such a gas analyzer
US3675019A (en) Apparatus for measuring the amount of a substance that is associated with a base material
US4085326A (en) Radiation reflection method and apparatus particularly for gauging materials exhibiting broadband absorption or scattering, or similar effects
US4692622A (en) Infrared analyzer
GB927340A (en) A continuously self-calibrating differential detection system
US4596931A (en) Method of eliminating measuring errors in photometric analysis
JPS5855447B2 (en) infrared gas analyzer
JPS6217183B2 (en)
CA1164248A (en) Stable infrared analyzer
US3937962A (en) Correction of two beam photometer for fluid analysis
US3636768A (en) Infrared hygrometers
US3756726A (en) Spectral analysis utilizing a beam-switching optical system
JP3130535B2 (en) Pneumatic two-layer detector for non-dispersive infrared gas analyzer.
JPH0222687Y2 (en)
US3625616A (en) Interferometric pressure sensor
JPH0545177B2 (en)
JPS62261032A (en) Gas detector
IE49064B1 (en) Graphite tube temperature measurement
US3022422A (en) Continuously operating analytical instruments
JPH08110299A (en) Device for measuring interferometer