JPS585539B2 - Carrier communication method - Google Patents

Carrier communication method

Info

Publication number
JPS585539B2
JPS585539B2 JP8782479A JP8782479A JPS585539B2 JP S585539 B2 JPS585539 B2 JP S585539B2 JP 8782479 A JP8782479 A JP 8782479A JP 8782479 A JP8782479 A JP 8782479A JP S585539 B2 JPS585539 B2 JP S585539B2
Authority
JP
Japan
Prior art keywords
frequency
band
converted
bands
carrier wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8782479A
Other languages
Japanese (ja)
Other versions
JPS5612146A (en
Inventor
山川泰史
志田征也
松本檀
伏見重雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8782479A priority Critical patent/JPS585539B2/en
Publication of JPS5612146A publication Critical patent/JPS5612146A/en
Publication of JPS585539B2 publication Critical patent/JPS585539B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • H04J1/08Arrangements for combining channels

Description

【発明の詳細な説明】 本発明は同一周波数帯域を有するn個の小伝送帯域をn
個の変調器により周波数変換したあとn個のp波器を用
いて不要側帯域を除去し統合多重化して伝送する搬送通
信方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides n small transmission bands having the same frequency band.
The present invention relates to a carrier communication system in which after frequency conversion is performed using n modulators, unnecessary side bands are removed using n p-wave modulators, and the result is integrated multiplexing and transmission.

搬送通信方式においては、周波数変換のために用いられ
る変調器から測帯波及び障害生成波(歪及び残留搬送波
等)が発生するため、これらを抑圧するために各変調器
の後には1対1対応で濾波器が接続される(逆の復調の
場合には各変調器の前に濾波器が接続される)。
In carrier communication systems, band waves and interference generation waves (distortion, residual carrier waves, etc.) are generated from the modulator used for frequency conversion, so in order to suppress these waves, one-to-one transmission is performed after each modulator. A filter is connected in correspondence (in the case of reverse demodulation, a filter is connected before each modulator).

この各変調器に接続される濾波器の伝送システムの価格
に占める割合が大きいため、搬送通信方式の設計に当っ
てはいかにこの濾波器の種類、数量、コストを低減させ
るかに注意が払われる。
Since the filters connected to each modulator account for a large proportion of the price of the transmission system, when designing carrier communication systems, attention is paid to how to reduce the type, quantity, and cost of the filters. .

第1図および第2図は従来の変換方式を説明する図で、
第1図1〜5は周波数配置を示し、第2図は送信装置の
ブロックダイヤグラムを示す。
Figures 1 and 2 are diagrams explaining the conventional conversion method.
1 to 5 show the frequency allocation, and FIG. 2 shows a block diagram of the transmitter.

図において、F1〜F3は濾波器、R1,R2は除波器
、M1,M2は変調器、TI,T2はハイブリッドトラ
ンス、O1,O2は搬送波発生源をそれぞれ示す。
In the figure, F1 to F3 are filters, R1 and R2 are wave removers, M1 and M2 are modulators, TI and T2 are hybrid transformers, and O1 and O2 are carrier wave generation sources, respectively.

尚、第2図において、チャンネルCHB−CHDについ
てはチャンネルCHAと同じ構成を有しており、前群P
G2〜4については前群PG1と全く同じであるので省
略している。
In FIG. 2, channels CHB-CHD have the same configuration as channels CHA, and the front group P
G2 to G4 are omitted because they are completely the same as the front group PG1.

また、第2図は送信側のみを示しているが、受信側につ
いては送信側と全く同じ構成なので省略している。
Further, although FIG. 2 only shows the transmitting side, the receiving side is omitted because it has exactly the same configuration as the transmitting side.

第1図および第2図において、0.2〜3.05KHz
の帯域を有する4個の音声信号(第1図1)は、各々音
声帯域濾波器F1を通過したあと、通話路変調器M1に
て所要の通話路搬送波14.85KHz,15.15K
Hz,20.85KHzおよび21.15KHz(第1
図2)により周波数変換(振幅変調)され、各通話路搬
送波除波耶および通話路帯域濾波器F2により不要な側
帯波および残留搬送波が抑圧される(第1図3)。
In Figures 1 and 2, 0.2 to 3.05KHz
After each of the four audio signals (FIG. 1) having a band of
Hz, 20.85KHz and 21.15KHz (first
2), and unnecessary sideband waves and residual carrier waves are suppressed by each channel carrier wave remover and channel bandpass filter F2 (FIG. 1, 3).

濾波器F2の出力はハイブリッドトランスT1により統
合され、12.10〜23.90KHzの前群周波数帯
域が形成される。
The output of filter F2 is integrated by hybrid transformer T1 to form a front group frequency band of 12.10 to 23.90 KHz.

このようにして得られた4個の音声信号よりなる前群周
波数帯域は、さらにそれぞれの前群変調器M2により所
要の前群搬送波84KHz,96KHz,108KHz
およびi20KHz(第1図4)にて変換されて、各前
群帯域濾波器F3により、不要な測帯波、残留搬送波が
抑圧されたあと、ハイブリッドトランスT2にて統合さ
れ奇数番目と偶数番目の通話路の周波数配置が互いに向
い合せとなる60.1〜107.9KHzの基礎群周波
数帯域が得られる(第1図5)。
The front group frequency band consisting of the four audio signals obtained in this way is further divided into required front group carrier waves of 84 KHz, 96 KHz, and 108 KHz by the respective front group modulators M2.
and i20KHz (Fig. 1, 4), unnecessary band waves and residual carrier waves are suppressed by each front group bandpass filter F3, and then integrated by a hybrid transformer T2 to convert the odd-numbered and even-numbered A basic group frequency band of 60.1 to 107.9 KHz is obtained in which the frequency arrangement of the communication paths is opposite to each other (FIG. 1, 5).

受信側については上記と全く逆の変換操作により60.
1〜107.9KHzの基礎群周波数帯域より16個の
音声周波数帯域に変換される。
On the receiving side, 60.
The basic group frequency band from 1 to 107.9 KHz is converted into 16 audio frequency bands.

なおパイロット周波数除波器R2はパイロット周波数相
当の帯域を阻止するためのものである。
Note that the pilot frequency remover R2 is for blocking a band corresponding to the pilot frequency.

このような従来方式においては、1種類の音声帯域濾波
器F1、通話路搬送波A〜Dに対応する4種類の通話路
搬送波除波器R1、チャンネルCHA−CHDに対応す
る4種類の通話路帯域P波器F2、PG1〜PG4用と
しての4種類の前群帯域濾波器F3および1種類のパイ
ロット周波数除波器R2の合計14種類の濾波器が必要
とされる。
In such a conventional system, one type of voice band filter F1, four types of communication path carrier wave removers R1 corresponding to communication path carrier waves A to D, and four types of communication path bands corresponding to channels CHA-CHD are used. A total of 14 types of filters are required, including a P-wave filter F2, four types of front group bandpass filters F3 for PG1 to PG4, and one type of pilot frequency remover R2.

さらに、第1図2の周波数配置からも明らかなように、
各チャンネル間の周波数間隔が低周波部分で100Hz
、高周波部分で200Hzしかないため、通話路帯域濾
波器F2は極めて急峻な阻止域減衰量特性を有する必要
がある。
Furthermore, as is clear from the frequency arrangement in Fig. 1,
Frequency interval between each channel is 100Hz in the low frequency part
, since the high frequency portion is only 200 Hz, the channel bandpass filter F2 must have extremely steep stopband attenuation characteristics.

このように従来の変換方式では、その変換装置の中で使
用されるF波器の種類が多く、しかもそのP波器には、
急峻な阻止域減衰量特性が要求されるため、装置が高価
格となる欠点がある。
In this way, in conventional conversion systems, there are many types of F-wave converters used in the converter, and moreover, the P-wave converters include:
Since steep stopband attenuation characteristics are required, the device has the disadvantage of being expensive.

本発明の目的は上述の欠点を除去した搬送通信方式を提
供することにある。
An object of the present invention is to provide a carrier communication system that eliminates the above-mentioned drawbacks.

次に図面を参照して本発明を詳細に説明する。Next, the present invention will be explained in detail with reference to the drawings.

第3図1〜10は本発明の一実施例を説明する周波数配
置図で第4図はそのブロック図である。
3. FIGS. 1 to 10 are frequency allocation diagrams for explaining one embodiment of the present invention, and FIG. 4 is a block diagram thereof.

第4図において,F1〜F4は濾波器、R1,R2は除
波器、M11,M12,M2,M3は変調器、P1,P
2は+90の位相シフト回路、O1〜O3は搬送波発生
源,TIはハイブリッドトランスである。
In Fig. 4, F1 to F4 are filters, R1 and R2 are wave removers, M11, M12, M2, and M3 are modulators, and P1 and P
2 is a +90 phase shift circuit, O1 to O3 are carrier wave generation sources, and TI is a hybrid transformer.

なお、第4図においては、チャンネルCH2〜CH16
はCH1と全く同一構成を有し、また、受信側構成も第
4図に示す送信側と同一構成なので省略している。
In addition, in FIG. 4, channels CH2 to CH16
has exactly the same configuration as CH1, and the receiving side configuration is also the same as the transmitting side shown in FIG. 4, so it is omitted.

第3図および第4図において、0.2〜3.05KHz
の16個音声周波数帯域(第3図1)は、それぞれ音声
帯域F波器F1を通過したあと、位相差変調器M11お
よびM12により予変調搬送波127.85KHz (
第3図2)により周波数弯換さね,予変調搬送波除波器
R1及び通話路帯域濾波器F2により不要な測帯波およ
び残留搬送波が抑圧され128.05〜130.9KH
zの前群周波数帯域(以下前群と略す)(第3図3)に
変換される。
In Figures 3 and 4, 0.2 to 3.05KHz
After each of the 16 audio frequency bands (Fig. 3 1) passes through an audio band F-wave unit F1, a pre-modulated carrier wave of 127.85 KHz (
3), unnecessary band waves and residual carrier waves are suppressed by the frequency inversion, the pre-modulated carrier wave remover R1 and the channel bandpass filter F2.
It is converted into the front group frequency band (hereinafter abbreviated as front group) of z (FIG. 3).

このようにして得られた16個の前群の内偶数番目のチ
ャンネルに相当するものは通話路変調器M2にて所要の
偶数次通話搬送波(191,197,203,209,
215,221,217,225KHz)(第3図4)
により60〜108KHzの群周波数帯域の所要の帯域
へ変換され統合される。
Of the 16 front groups obtained in this way, those corresponding to even-numbered channels are sent to the communication path modulator M2 to generate required even-order communication carrier waves (191, 197, 203, 209,
215, 221, 217, 225KHz) (Figure 3 4)
is converted into a desired group frequency band of 60 to 108 KHz and integrated.

(第3図5)。また、奇数番目のチャンネルに相当する
ものは、所要の奇数次通話路搬送波(275,281,
287,293,299,305,311,317KH
z)(第3図6)により、144.1〜188.95K
Hzの帯域に変換されて統合されたあと(第3図7)、
奇数次群低域濾波器F3によりその不要上部側帯波等が
抑圧され、さらに奇数次群変調器M3にて奇数次群搬送
波により、60.1〜107.9KHzの群周波数帯域
の所要の帯域へ変換される(第3図9)。
(Figure 3 5). Also, those corresponding to odd-numbered channels are the required odd-numbered channel carrier waves (275, 281,
287,293,299,305,311,317KH
z) (Fig. 3 6), 144.1 to 188.95K
After being converted to the Hz band and integrated (Fig. 3, 7),
The unnecessary upper sideband etc. are suppressed by the odd-order group low-pass filter F3, and the odd-order group carrier wave is further used by the odd-order group modulator M3 to reach the desired band in the group frequency band of 60.1 to 107.9 KHz. (Fig. 3, 9).

このようにして得られた偶数次群と奇数次群はハイブリ
ッドトランスT1により統合され群帯域濾波器F4によ
り基礎群外の不要側帯波が阻止されて、奇数番目と偶数
番目の伝送帯域の周波数配置が互いに向い合せとなる6
0.1〜107.9KHzの基礎群周波数帯域が得られ
る(第3図10)。
The even-order group and odd-order group obtained in this way are integrated by the hybrid transformer T1, and unnecessary sidebands outside the basic group are blocked by the group bandpass filter F4, and the frequency arrangement of the odd-numbered and even-numbered transmission bands is performed. are facing each other 6
A fundamental group frequency band of 0.1-107.9 KHz is obtained (FIG. 3, 10).

受信側については、上記と全く逆の変換操作により60
.1〜107.9KHzの基礎周波数帯域から16個の
音声周波数帯域が変換される。
On the receiving side, 60
.. Sixteen audio frequency bands are converted from the basic frequency band from 1 to 107.9 KHz.

以上のような構成を採用することにより、必要とされる
濾波器の種類は、各1種類の音声帯域濾波器F1、予変
調搬送波除波器R1、前群帯域F波器F2、奇数次群帯
域濾波器F3、群帯域濾波器F4およびパイロット除波
器R2の合計6種類で済み、従来方式に比べ大幅にその
種類が低減できる。
By adopting the above configuration, the types of filters required are one each of voice band filter F1, premodulation carrier wave remover R1, front group band F wave filter F2, and odd-order group filter F1. A total of six types of bandpass filter F3, group bandpass filter F4, and pilot rejector R2 are required, and the number of types can be significantly reduced compared to the conventional system.

また、通話路帯域濾波器に要求される高い阻止域減衰量
は、位相差変調器を使用することにより、大幅に低減さ
れる。
Also, the high stopband attenuation required for channel bandpass filters is significantly reduced by using a phase difference modulator.

さらに、奇数次群低域濾波器F3及び群帯域濾波器4F
については、その周波数配置から分るように、これらの
濾波器が抑圧すべき不要側帯波及び不要搬送波は所要帯
域よりかなり離れたところにあるため、帯域限界におけ
る阻止域減衰量はゆるやかで済み従来方式に比べこれら
のp波器のコストも低減できる。
Furthermore, an odd-order group low-pass filter F3 and a group bandpass filter 4F
As can be seen from the frequency arrangement, the unnecessary sidebands and unnecessary carrier waves that these filters should suppress are located far away from the desired band, so the stopband attenuation at the band limit is gentle, which is the same as before. The cost of these p-wave devices can also be reduced compared to the conventional method.

以上のように、本発明は奇数次群と偶数次群の小群に分
けて変換統合することにより伝送システム中に使用され
る濾波器の種類およびコストを低減することができ、伝
送システム自体の量産性および経済性に大きく寄与する
As described above, the present invention can reduce the types and costs of filters used in a transmission system by dividing them into small groups of odd-order groups and even-order groups, and converting and integrating them. It greatly contributes to mass production and economy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1〜5および第2図は、従来方式による周波数配
置およびブロックダイヤグラム、第4図および第3図1
〜10は本発明の一実施例の周波数配置およびブロック
ダイヤグラムである。 第2図および第4図において、F1,F2・・・・・・
濾波器、Rl,R2・・・・・・除波器、M1,M2・
・・・・・変調器、T1,T2・・・・・・ハイブリッ
ドトランス、O1,O2・・・・・・搬送波発生源であ
る。
Figures 1 to 5 and 2 are frequency allocation and block diagrams according to the conventional system, Figure 4 and Figure 3
10 is a frequency arrangement and a block diagram of an embodiment of the present invention. In Fig. 2 and Fig. 4, F1, F2...
Filter, Rl, R2... Wave remover, M1, M2.
...Modulator, T1, T2...Hybrid transformer, O1, O2...Carrier wave generation source.

Claims (1)

【特許請求の範囲】[Claims] 1 同一周波数帯域を有するn個の伝送帯域をそれぞれ
対応して設けられたn個の変調器により周波数変換した
あとn個のF波器を用いて不要波をP波し統合する搬送
通信方式において、前記n個の伝送帯域を第1の搬送波
で振幅変調してn個の前群に変換し、前記n個の前群の
内の偶数番目をそれぞれ互いに周波数の異なった2個の
第2の搬送波で振幅変調して第1の部分伝送帯域に変換
し、前記前群の内の奇数番目をそれぞれ互いに周波数の
異なった一個の第3の搬送波で振幅変調して第2の部分
伝送帯域に変換し、前記第2の部分伝送帯域を第4の搬
送波で振幅変調して第3の部分伝送帯域に変換し、前記
第1および第3の部分伝送帯域を結合することにより前
記n個の伝送帯域の内の偶数番目の伝送帯域と奇数番目
の伝送帯域との周波数配置が互いに向い合せの関係にな
るようにしたことを特徴とする搬送通信方式。
1 In a carrier communication system in which n transmission bands having the same frequency band are frequency-converted by n modulators installed correspondingly, and then unnecessary waves are converted into P waves using n F-wave devices and integrated. , the n transmission bands are amplitude-modulated with a first carrier wave and converted into n front groups, and the even numbers of the n front groups are converted into two second bands having different frequencies. Amplitude modulation is performed with a carrier wave to convert it into a first partial transmission band, and each of the odd numbers in the front group is amplitude modulated with a third carrier wave having a mutually different frequency and converted into a second partial transmission band. and converting the second partial transmission band into a third partial transmission band by amplitude modulating it with a fourth carrier wave, and combining the first and third partial transmission bands to obtain the n transmission bands. 1. A carrier communication system characterized in that frequency arrangements of even-numbered transmission bands and odd-numbered transmission bands of the above are arranged so that they face each other.
JP8782479A 1979-07-11 1979-07-11 Carrier communication method Expired JPS585539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8782479A JPS585539B2 (en) 1979-07-11 1979-07-11 Carrier communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8782479A JPS585539B2 (en) 1979-07-11 1979-07-11 Carrier communication method

Publications (2)

Publication Number Publication Date
JPS5612146A JPS5612146A (en) 1981-02-06
JPS585539B2 true JPS585539B2 (en) 1983-01-31

Family

ID=13925694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8782479A Expired JPS585539B2 (en) 1979-07-11 1979-07-11 Carrier communication method

Country Status (1)

Country Link
JP (1) JPS585539B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617539A (en) * 1979-07-20 1981-02-19 Nec Corp Transmitting device for frequency divided multiplie signal
JPH0644747B2 (en) * 1985-02-28 1994-06-08 日本無線株式会社 Spread spectrum receiver

Also Published As

Publication number Publication date
JPS5612146A (en) 1981-02-06

Similar Documents

Publication Publication Date Title
US3992589A (en) Frequency multiplex system for transmission of telephone and videophone channels
JPS60263590A (en) Picture signal transmitting system
US3349184A (en) Bandwidth compression and expansion by frequency division and multiplication
US3804988A (en) Carrier system for efficient connection of telephone subscribers to central office
US2117739A (en) Signaling system
JPS585539B2 (en) Carrier communication method
US4782531A (en) Multichannel FM subcarrier broadcast system
US1461064A (en) Multiplex transmission circuit
US4145575A (en) Frequency-division multiplexed signal transmission system
US2546994A (en) Multiplex carrier current telephony
US2258439A (en) Multiplex transmission with phase discrimination
US4349903A (en) Switching of channels between two premodulation systems
US1502889A (en) Method of and system for radiosignaling
JP2609380B2 (en) Optical communication device
JPS61236230A (en) Main group converting system
RU1775867C (en) Method of stereophonic radio broadcast and broadcasting system
SU60477A1 (en) Two-way single-band telephony or telegraphy transmitter with the addition of phase-shifted oscillations and phase conversion of the audio frequency spectrum
SU760484A1 (en) Television broadcasting signal transmitting apparatus
RU1788590C (en) Stereophonic radio broadcasting system
SU1125756A2 (en) Method and device for multichannel communication
SU576674A1 (en) Multichannel modulator-demodulator
JPS6110376Y2 (en)
SU1596467A1 (en) Device for transceiving single-band phase-modulated signals with frequency spacing
JPS622849Y2 (en)
RU2022474C1 (en) Transmitter of stereophonic broadcasting in system of multichannel telephony