JPS5855306A - Water decomposing substance and decomposing method for water - Google Patents

Water decomposing substance and decomposing method for water

Info

Publication number
JPS5855306A
JPS5855306A JP14931581A JP14931581A JPS5855306A JP S5855306 A JPS5855306 A JP S5855306A JP 14931581 A JP14931581 A JP 14931581A JP 14931581 A JP14931581 A JP 14931581A JP S5855306 A JPS5855306 A JP S5855306A
Authority
JP
Japan
Prior art keywords
water
hydrogen
decomposing
alkali metal
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14931581A
Other languages
Japanese (ja)
Inventor
Takeshi Hatanaka
武史 畑中
Tamio Ri
李 民雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BUREN MASTER KK
Original Assignee
BUREN MASTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BUREN MASTER KK filed Critical BUREN MASTER KK
Priority to JP14931581A priority Critical patent/JPS5855306A/en
Publication of JPS5855306A publication Critical patent/JPS5855306A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To obtain a water decomposing substance capable of producing hydrogen by decomposing water efficiently and safely at ordinary temp., by amalgamating an alkali metal, Hg and a metal selected from Sn, Pb and Zn in specified weight ratios. CONSTITUTION:An alkali metal (A) such as Na, Hg (B) and a metal (C) selected from Sn, Pb and Zn are mixed in about 99/1-1/99 weight ratio of A/B and about 99/1-1/99 weight ratio of A/C, and the mixture is amalgamated by heating to obtain the desired water decomposing substance. By bringing the water decomposing substance into contact with water, hydrogen is generated by the reaction of equationI, II, III or IV. By controlling the amount of added Zn, Pb or Sn, hydrogen can be obtd. successively for an arbitrary time. The water decomposing substance is suitable for a high temp. burner, a fuel cell, etc.

Description

【発明の詳細な説明】 本発明は水の分解物質に関し、さらに詳しくは、常温で
水を効率良く安全に分解して水素を製造するだめの物質
および方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water decomposition material, and more particularly to a material and method for efficiently and safely decomposing water to produce hydrogen at room temperature.

従来、水素ガスの製造法としては水の電気分解、石油、
石炭、コークスの分解等による方法があるが、これら方
法はいずれも大規模な装置を必要とし、また電力を必要
とするなど、経済的でない。
Traditionally, hydrogen gas has been produced using water electrolysis, petroleum,
There are methods such as decomposition of coal and coke, but all of these methods require large-scale equipment and electricity, so they are not economical.

この欠点を改良するために、Ga−At合金または工n
−At合金と水とを接触反応させる方法、およびマグネ
シウムと金属酸化物との混合物と水とを反応させる方法
等が提案されているが、材料が高価であったり、または
水素収量が低くて実用的ではない欠点がある。この問題
を解決する方法として、ナトリウム、カリラムなどのア
ルカリ金属またはアルカリ土類金属を水と反応させる方
法が考えられる。しかしながら、ナトリウム、カリウム
等のアルカリ金属は室温程度の水と急速に反応して激し
い発熱を伴なうために水素の爆発が起って危険である。
In order to improve this drawback, Ga-At alloy or
- A method of catalytically reacting an At alloy with water and a method of reacting a mixture of magnesium and metal oxide with water have been proposed, but the materials are expensive or the hydrogen yield is low, making them impractical. It has some disadvantages that are not the point. A possible solution to this problem is to react an alkali metal or alkaline earth metal such as sodium or calylum with water. However, alkali metals such as sodium and potassium react rapidly with water at about room temperature and generate intense heat, resulting in a dangerous hydrogen explosion.

なお、これら金属は非常に反応性が高いために大気中に
放置しておくことが出来ない。
Note that these metals are extremely reactive and cannot be left in the atmosphere.

そこで、本発明は、アルカリ金属を水銀でアマルガム化
するとともに、このアマルガムにスズ。
Therefore, the present invention involves amalgamating an alkali metal with mercury and adding tin to this amalgam.

鉛、亜鉛のうちの少くとも1つの金属を加えることによ
シ、任意の水素量1時間等を制御可能にするのと同時に
アルカリ金属の安定化を可能とするものである。すなわ
ち、本発明の水分解物質によれば、アマルガムと水との
反応において水酸化ナトリウム、カリウム水溶液が副生
ずる為、他からアルカリを補給することなく前記金属と
水とを反応させて水素を安定して発生させることができ
る。
By adding at least one metal among lead and zinc, it is possible to control the amount of hydrogen per hour, etc., and at the same time, it is possible to stabilize the alkali metal. That is, according to the water-splitting material of the present invention, since sodium hydroxide and potassium hydroxide aqueous solutions are produced as by-products in the reaction between amalgam and water, hydrogen can be stabilized by reacting the metals with water without supplementing alkali from other sources. It can be generated by

このときの反応式を下記に示す。The reaction formula at this time is shown below.

1)  ZNa+2H*O−+2NaOH十Ht2 2)  2NaOH+Zn−F4iAjO−*Na5Z
n(OH)a十Hz2NaOH−1−Pb+2HzO→
Na霊Pb(OH)++ Hz2NaOH+Sn+岬倉
0 →NaJn(OH)s+2Hz以上よシ明らかなよ
うに、本発明によれば、従来の水素発生方法での欠点を
なくし、容易に水素を得ることが出来る新規なアマルガ
ム合金を作ることが出来た。
1) ZNa+2H*O-+2NaOH1Ht2 2) 2NaOH+Zn-F4iAjO-*Na5Z
n(OH)a10Hz2NaOH-1-Pb+2HzO→
Na spirit Pb(OH)++ Hz2NaOH+Sn+Misakikura0 →NaJn(OH)s+2Hz As is clear from the above, according to the present invention, the drawbacks of conventional hydrogen generation methods can be eliminated and hydrogen can be easily obtained. We were able to create a new amalgam alloy.

アルカリ金属対水銀の重量%比は約1=99〜約99:
1であり、好ましくは約55:45〜約42:58であ
る。また、アルカリ金属対地の金属元素との重量%比は
約1:99〜約99:1であり、好ましくはアルカリ金
属対亜鉛の重量%比は約40 : 60〜約48 : 
52、アルカリ金属対鉛の重量%比は約18:82〜2
5ニア5で6!11、アルカリ金属対スズの重量%比は
約25ニア5〜35:65である。
The weight percent ratio of alkali metal to mercury is about 1=99 to about 99:
1, preferably about 55:45 to about 42:58. Also, the weight percent ratio of alkali metal to earth metal element is about 1:99 to about 99:1, and preferably the weight percent ratio of alkali metal to zinc is about 40:60 to about 48:1.
52, the weight percent ratio of alkali metal to lead is approximately 18:82~2
5 nia 5 6:11, the weight percent ratio of alkali metal to tin is approximately 25 nia 5 to 35:65.

以下、実施例にもとづき本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on Examples.

実施例■ 水銀3z22に細かく切った金属す) IJウムの−小
片393fと、200メツシユの亜鉛粉末2a5fとを
加え、これをグラファイト・ルツボに入れ250℃にて
15分間、窒素雰゛囲気下にて加熱した。加熱後、水と
接触せぬように窒素人りデシケータ−中にて室温迄、冷
却し目的としたアマルガム合金を得た。この合金を水5
00mt中に投入したところ、水と合金が反応して水素
が烈しく発生した。水素の発生は約120分間継続し、
水素の総発生量は32tであった。
Example ■ Add 393f of small pieces of IJum and 200 mesh of zinc powder 2a5f to 3x22 of mercury, and place this in a graphite crucible at 250°C for 15 minutes under a nitrogen atmosphere. and heated. After heating, the mixture was cooled to room temperature in a nitrogen-filled desiccator to avoid contact with water to obtain the desired amalgam alloy. This alloy is mixed with water
When the alloy was put into 00mt, the water and the alloy reacted and a large amount of hydrogen was generated. Hydrogen generation continues for about 120 minutes,
The total amount of hydrogen generated was 32 tons.

実施例■ なお、実施例Iと同様な操作で水銀14.1f。Example■ In addition, mercury 14.1f was obtained by the same operation as in Example I.

ナトリウム17.2F、鉛68.79からなるアマルガ
ム合金を作り、これを水に投入したところ、水素が烈し
く発生した。水素の発生は70分間継続し、水素の総発
生量は17tであった。
When an amalgam alloy made of 17.2 F of sodium and 68.79 F of lead was made and poured into water, a large amount of hydrogen was generated. Hydrogen generation continued for 70 minutes, and the total amount of hydrogen generated was 17 tons.

実施例■ 実施例1と同様な方法で水銀19.7 f 、ナトリウ
ム24.1?、スズ56.2 fからなるアマルガム合
金を作り、これを水に投入したところ水素の発生が90
分間継続し241の水素を得た。
Example ■ In the same manner as in Example 1, mercury 19.7 f and sodium 24.1? When an amalgam alloy consisting of 56.2 f of tin was made and poured into water, hydrogen was generated at 90%.
This continued for 241 minutes and yielded 241 hydrogen.

ガム化することにより、多量の水素ガスを極めて簡便な
方法によって安全に発生させることができるものであり
、しかも高価な資源やエネルギーを特に大量に必要とす
ることもない。したがって、各種工業用、高温バーナ用
、燃料電池用、自動車用等への適用による有用性は極め
て高いものである。
By forming it into a gum, a large amount of hydrogen gas can be safely generated by an extremely simple method, and does not require particularly large amounts of expensive resources or energy. Therefore, it is extremely useful when applied to various industrial uses, high-temperature burners, fuel cells, automobiles, etc.

Claims (2)

【特許請求の範囲】[Claims] (1)  アルカリ金属と、水銀と、スズ、鉛、亜鉛か
らなるグループより選択された少くとも一種の金属との
アマルガムからなシ、アルカリ金属対水銀の重量%比は
約99:1〜約1:99であり、アルカリ金属対前記少
くとも一種の金属の重量%比は約99:1〜約1;99
からなる、水から水素を発生する水分解物質。
(1) An amalgam of an alkali metal, mercury, and at least one metal selected from the group consisting of tin, lead, and zinc, where the weight percent ratio of alkali metal to mercury is about 99:1 to about 1. :99, and the weight percent ratio of alkali metal to said at least one metal is from about 99:1 to about 1:99.
A water-splitting substance that generates hydrogen from water.
(2)  アルカリ金属と、水銀と、スズ、鉛、亜鉛か
らなるグループより選択された少くとも一種の金属との
アマルガムからなり、アルカリ金属対水銀の重量%比は
約99=1〜約1=99であり、アルカリ金属対前記少
くとも一種の金属の重量%比は約99:1〜約1=99
からなる、前記アマルガムを水と接触させることからな
る、水から水素を製造する方法。
(2) Consists of an amalgam of an alkali metal, mercury, and at least one metal selected from the group consisting of tin, lead, and zinc, and the weight percent ratio of alkali metal to mercury is about 99=1 to about 1= 99, and the weight percent ratio of alkali metal to said at least one metal is from about 99:1 to about 1=99
A method for producing hydrogen from water, comprising contacting said amalgam with water.
JP14931581A 1981-09-24 1981-09-24 Water decomposing substance and decomposing method for water Pending JPS5855306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14931581A JPS5855306A (en) 1981-09-24 1981-09-24 Water decomposing substance and decomposing method for water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14931581A JPS5855306A (en) 1981-09-24 1981-09-24 Water decomposing substance and decomposing method for water

Publications (1)

Publication Number Publication Date
JPS5855306A true JPS5855306A (en) 1983-04-01

Family

ID=15472431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14931581A Pending JPS5855306A (en) 1981-09-24 1981-09-24 Water decomposing substance and decomposing method for water

Country Status (1)

Country Link
JP (1) JPS5855306A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745237A (en) * 1984-06-14 1988-05-17 Imperial Chemical Industries Plc Preparation of 1-chloro-1,2,2,2-tetrafluoroethane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745237A (en) * 1984-06-14 1988-05-17 Imperial Chemical Industries Plc Preparation of 1-chloro-1,2,2,2-tetrafluoroethane

Similar Documents

Publication Publication Date Title
CN107639234B (en) A kind of magnesiothermic reduction TiO2The method for preparing metallic titanium powder
Hart et al. The chemistry of lithium, sodium, potassium, rubidium, cesium and francium: pergamon texts in inorganic chemistry
US4182748A (en) Material and method for obtaining hydrogen and oxygen by dissociation of water
Markowitz et al. The differential thermal analysis of perchlorates. VII. Catalytic decompositions of the alkali metal perchlorates by manganese dioxide
US4289744A (en) Material and method to dissociate water
CN107922187A (en) Hydrogen generating system and method
US1889672A (en) Manufacture of hydrogen
JP5883240B2 (en) Hydrogen production method
JPS5855306A (en) Water decomposing substance and decomposing method for water
US20050042150A1 (en) Apparatus and method for the production of hydrogen
CN107746057B (en) Preparation method of superfine molybdenum carbide
Moody et al. Alkali metal nitrides
CN107585738B (en) Mg-Mg2Si composite hydrolysis hydrogen production material, preparation method thereof and method for hydrolysis hydrogen production
CN106495113B (en) The preparation method of high-purity zinc phosphide
US3615179A (en) Preparation of magnesium perchlorate
JPS5855302A (en) Water decomposing substance and decomposing method for water
WO2004020330A1 (en) Method of thermochemical decomposition of water
US2852363A (en) Preparation of alkali metals
WO1981001139A1 (en) Material and method to dissociate water at controlled rates
US775472A (en) Method of converting the energy of fuel into electrical energy.
WO1979001031A1 (en) Material and method for dissociation of water
US4306902A (en) Process for the production of elemental silver from silver chloride or silver sulphate
US4005184A (en) Thermochemical process for the production of hydrogen using chromium and barium compound
US4338125A (en) Method for the preparation of uranium compounds via electrolytic amalgamation of uranium ion directly from an aqueous solution
Dorner et al. Hydrogen production from decomposition of water by means of nuclear reactor heat