JPS5855179B2 - How to strengthen thermoplastic resin - Google Patents

How to strengthen thermoplastic resin

Info

Publication number
JPS5855179B2
JPS5855179B2 JP3285282A JP3285282A JPS5855179B2 JP S5855179 B2 JPS5855179 B2 JP S5855179B2 JP 3285282 A JP3285282 A JP 3285282A JP 3285282 A JP3285282 A JP 3285282A JP S5855179 B2 JPS5855179 B2 JP S5855179B2
Authority
JP
Japan
Prior art keywords
synthetic
thermoplastic resin
weight
filler
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3285282A
Other languages
Japanese (ja)
Other versions
JPS58154740A (en
Inventor
清二 山中
勲 相馬
義彦 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Mitsubishi Industries Cement Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Industries Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Industries Cement Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP3285282A priority Critical patent/JPS5855179B2/en
Publication of JPS58154740A publication Critical patent/JPS58154740A/en
Publication of JPS5855179B2 publication Critical patent/JPS5855179B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は熱可塑性樹脂の強化方法に関する。[Detailed description of the invention] The present invention relates to a method for strengthening thermoplastic resins.

熱可塑性樹脂は各種分野において使用されているが、近
年、窓枠やデツキ材などの建材をはじめ、自動車、その
他車輌関係、電気、機械関係の部品や工具類などいわゆ
る強さを必要とする分野への進出傾向が目だって増加し
つつある。
Thermoplastic resins are used in various fields, but in recent years, they have been used in fields that require so-called strength, such as building materials such as window frames and decking materials, automobiles, other vehicle-related, electrical, and mechanical parts and tools. There is a noticeable increase in the trend toward

しかるにかかる分野において熱可塑性樹脂を使用する場
合、樹脂単独では強度的に限界があって、使用範囲をか
なりせばめざるを得ない実情にある。
However, when thermoplastic resins are used in such fields, the resin alone has a limit in terms of strength, and the range of use has to be considerably limited.

従って、当然ながら素材物性としてより強いことが要求
されるようになって来ている。
Therefore, it is natural that materials are required to have stronger physical properties.

そこで、何らかの方法で樹脂を強化することにより、用
途あるいは使用範囲の拡大が望まれており、その一つの
方法として充填材による強化があげられる。
Therefore, it is desired to expand the range of applications or uses by strengthening the resin in some way, and one method is to strengthen it with fillers.

本発明者らは充填材による各種熱可塑性樹脂の強化、改
質方法を研究し、ここに熱可塑性樹脂の強化用充填材と
して極めて優れた無機化合物を見出した。
The present inventors have studied methods for strengthening and modifying various thermoplastic resins using fillers, and have discovered an extremely excellent inorganic compound as a filler for reinforcing thermoplastic resins.

本発明者らはこの無機化合物を熱可塑性樹脂用充填材と
して開発すべく検討を積み重ねて本発明に至ったもので
あるが、本発明の目的はすなわち該充填材を熱可塑性樹
脂に充填、複合化することによって樹脂の力学的性質あ
るいは熱的性質を改善することにある。
The present inventors have conducted repeated studies to develop this inorganic compound as a filler for thermoplastic resins, and have thus arrived at the present invention. The objective is to improve the mechanical properties or thermal properties of the resin.

以下に該充填材について詳しく説明する。該充填材は鉱
物名工レスタダイトと呼ばれる無機結晶物の範ちゅうに
入るものである。
The filler will be explained in detail below. The filler falls under the category of inorganic crystalline material called restadite.

一般にエレスタダイトと呼称される鉱物は天然の大理石
あるいはカルサイト鉱石中に見出されるもので、Ca5
((s+ 、s、p 、C) 04 ) (CI 、F
、OH)の組成を持つものである。
The mineral commonly called elestadite is found in natural marble or calcite ore, and has a Ca5
((s+, s, p, C) 04) (CI, F
, OH).

しかして本発明者らが特に充填材として新しく開発した
エレスタダイト(以下これを合成エレスタダイトと記す
)は天然鉱物のそれとは少し異なり、構造式は6CaO
・3SiCL、・3C’aS04・nH2Oと考えられ
るものである。
However, elestadite (hereinafter referred to as synthetic elestadite), which was newly developed by the present inventors as a filler, is slightly different from that of natural minerals, and its structural formula is 6CaO.
・3SiCL, ・3C'aS04・nH2O.

合成エレスタダイトの形状は写真で示すような白色六角
柱状の結晶で、結晶長は約5μm程度のものである。
The shape of synthetic elestadite is a white hexagonal columnar crystal as shown in the photograph, and the crystal length is about 5 μm.

本発明者らは合成樹脂への強化用充填材としてこの合成
エレスクダイトの合成条件をいろいろ検討し、写真に示
すような結晶物を大量に製造する方法に成功した。
The present inventors investigated various conditions for synthesizing this synthetic elescudite as a filler for reinforcing synthetic resins, and succeeded in producing a large amount of crystalline material as shown in the photograph.

原料は酸化カルシウム(Cab)、珪石(Si02)、
及び6肯(Ca SO,i ・2H20)であり、これ
らの混合物(スラリー)をオートクレーブ中で水熱反応
せしめれば合成エレスタダイトを得ることが出来る。
Raw materials are calcium oxide (Cab), silica stone (Si02),
and 6-positive (Ca SO,i .2H20), and if a mixture (slurry) of these is subjected to a hydrothermal reaction in an autoclave, synthetic elestadite can be obtained.

反応温度は1306C〜230℃の間に設定されるが、
原料比はCaOを100とした場合、S 102が35
〜75、CaSO4・2H20が100〜200(いず
れも重量比)の間で調整される。
The reaction temperature is set between 1306C and 230C,
The raw material ratio is S102 is 35 when CaO is 100.
~75, CaSO4.2H20 is adjusted between 100 and 200 (all weight ratios).

結晶の長さ、アスペクト比、表面積などは上記合成条件
の設定により少しづつ異なるが、充填材を目的とする場
合は、結晶長が3〜10μm1アスペクト比が10以上
、表面積が1〜3 m’/ gぐらいになるようにする
ことが好ましい。
The crystal length, aspect ratio, surface area, etc. will vary slightly depending on the settings of the above synthesis conditions, but if the purpose is to be a filler, the crystal length should be 3 to 10 μm, the aspect ratio should be 10 or more, and the surface area should be 1 to 3 m'. /g.

このようにして得られた合成ニレスフダイトを熱可塑性
樹脂に充填、複合化することにより、実施例に見られる
優れた補強効果を得ることが出来る。
By filling a thermoplastic resin with the synthetic nireshudite obtained in this way and compounding it, the excellent reinforcing effect seen in the examples can be obtained.

合成ニレスフダイトが合成樹脂の強化用充填材として優
れている原因は、第一に針状もしくは柱状の形態を有し
、かつアスペクト比が大きいことにある。
The reason why synthetic niresfudite is excellent as a filler for reinforcing synthetic resins is that it has an acicular or columnar shape and a large aspect ratio.

さらに合成ニレスフダイトの特徴は、樹脂に充填した場
合、針状もしくは柱状の充填材によくありがちな加工性
の悪さや分散不良が見られないことである。
A further feature of synthetic nireshudite is that when it is filled into a resin, it does not suffer from poor processability or poor dispersion, which is common with needle-shaped or columnar fillers.

これは合成ニレスフダイトが凝集粒子としてではなく、
一次粒子状態で得られるためであり、かつカサ比容が合
成針状形充填材、例えばゾノトライトやチタン酸カリな
どのように大きくはなく、かといって天然鉱物粉砕品の
ように極端に小さくもなく手頃な範囲にあるためである
This is because synthetic niresfudite is not formed as aggregated particles, but
This is because it is obtained in the form of primary particles, and its bulk specific volume is not as large as synthetic acicular fillers such as xonotlite and potassium titanate, but it is extremely small as in crushed natural minerals. This is because it is within an affordable range.

合成ニレスフダイトのカサ比容は例えば塩化ビニル樹脂
粉末とはゾ同じ程度であるため、樹脂との混合性が極め
てよく、このような粉体としての性質は充填材として使
用するにあたり非常に重要な点である。
Synthetic niresfudite has a bulk specific volume that is about the same as, for example, vinyl chloride resin powder, so it has extremely good miscibility with resin, and these properties as a powder are very important when used as a filler. It is.

合成ニレスフダイトの充填効果は力学的性質の他に、熱
膨張係数の低減、軟化温度の増大など熱的性質への寄与
も極めて太きい。
In addition to mechanical properties, the filling effect of synthetic nireshudite also makes an extremely large contribution to thermal properties, such as reducing the coefficient of thermal expansion and increasing the softening temperature.

従って加工時の寸法安定性付与にも有効であり、特に窓
枠をはじめとする異形押し出し製品用の多目的充填材と
して利用価値の高いものである。
Therefore, it is effective in imparting dimensional stability during processing, and is particularly useful as a multipurpose filler for irregularly shaped extruded products such as window frames.

なお、合成ニレスフダイトの熱可塑性樹脂への充填方法
については、ロール混線法、押し出し成形法、射出成形
法のいずれの成形方法に対しても一般の炭酸カルシウム
と同様の手法でよい。
The method for filling the thermoplastic resin with synthetic nireshudite may be the same as that for general calcium carbonate, whether it is a roll cross-wire method, an extrusion molding method, or an injection molding method.

加工性、分散性を考慮して、ステアリン酸など脂肪酸ま
たはその塩類、あるいはチタンカップリング剤などで処
理することは当然望ましいことである。
In consideration of processability and dispersibility, it is naturally desirable to treat with a fatty acid such as stearic acid or its salts, a titanium coupling agent, or the like.

ただし、合成ニレスフダイトは炭酸カルシウムとは異な
り、シランカップリング剤と結合するので、特に強化を
目的とする場合には1%程度のカップリング剤で表面処
理することにより、力学的に優れた効果を得ることが出
来る。
However, unlike calcium carbonate, synthetic niresfudite binds with a silane coupling agent, so if the purpose is to strengthen it, surface treatment with about 1% of a coupling agent can achieve excellent mechanical effects. You can get it.

以下に実施例に基き、合成ニレスフダイトの熱可塑性樹
脂への充填効果について説明する。
The effect of filling a thermoplastic resin with synthetic niresfudite will be described below based on Examples.

実施例 1 塩化ビニル樹脂(日本ゼオン103EP、平均重合度1
050)100重量部に写真で示す合成エレスタダイト
を25〜100重量部、安定剤(スズ系)3〜4重量部
、滑剤1.5〜2重量部配合し、ロール混練した。
Example 1 Vinyl chloride resin (Nippon Zeon 103EP, average degree of polymerization 1
050) 25 to 100 parts by weight of synthetic elestadite shown in the photograph, 3 to 4 parts by weight of a stabilizer (tin-based), and 1.5 to 2 parts by weight of a lubricant were blended into 100 parts by weight, and kneaded with a roll.

ロール温度165℃、ロール時間5分。Roll temperature: 165°C, rolling time: 5 minutes.

得られたシートを重ねて3mm厚さの板状にプレス成形
した。
The obtained sheets were stacked and press-molded into a plate shape with a thickness of 3 mm.

プレス温度170℃、プレス圧力100 kg/crr
t0これからダンベル型、短冊型の試験片を切削加工し
、力学的性質を測定した。
Press temperature 170℃, press pressure 100 kg/crr
Dumbbell-shaped and rectangular test pieces were cut from t0 and mechanical properties were measured.

試験はいずれも23℃、50RH%の下で測定した。All tests were conducted at 23°C and 50RH%.

結果を表1として下に示す。表1で見られるように曲げ
ヤング率に対する寄与が大きく、その割に衝撃強さの低
下が少い。
The results are shown below as Table 1. As seen in Table 1, the contribution to the bending Young's modulus is large, and the drop in impact strength is relatively small.

従って耐衝撃性を低下させることなく曲げヤング率の増
強と伸縮性の低減(すなわち寸法安定性の付与)が得ら
れる。
Therefore, it is possible to increase the bending Young's modulus and reduce elasticity (that is, impart dimensional stability) without reducing impact resistance.

実施例 2 実施例1における試料について熱膨張係数及び熱軟化温
度(ビカット式)を測定した。
Example 2 The thermal expansion coefficient and thermal softening temperature (Vicat method) of the sample in Example 1 were measured.

結果を表2として示す。The results are shown in Table 2.

填すると、充填量によっても異なるが、熱膨張係数が半
減し、軟化温度も約20’C以上の上昇を見ることが出
来る。
When filled, the coefficient of thermal expansion is halved and the softening temperature increases by about 20'C or more, although this varies depending on the amount filled.

実施例 3 ポリプロピレン樹脂(徳山曹達PN240 ) 100
重量部に合成エレスタダイトを20重量部及び40重量
部配合し、−軸押し出し成形機によりペレットを作製し
た。
Example 3 Polypropylene resin (Tokuyama Soda PN240) 100
20 parts by weight and 40 parts by weight of synthetic elestadite were added to the parts by weight, and pellets were produced using a -axis extruder.

これを各試験片金型に射出成形して、実施例1と同様に
力学的性質を測定した。
This was injection molded into each test piece mold, and the mechanical properties were measured in the same manner as in Example 1.

結果を表3として示す。The results are shown in Table 3.

実施例 4 実施例3と同じ試料について、実施例2の方法に従って
熱膨張係数と熱軟化温度(ビカット方式)を測定した。
Example 4 For the same sample as in Example 3, the thermal expansion coefficient and thermal softening temperature (Vicat method) were measured according to the method in Example 2.

その結果を表4として示す。表3、表4で見られるよう
に、ポリプロピレンに対しても補強効果並びに熱膨張係
数の低減など優れた充填効果を見ることが出来る。
The results are shown in Table 4. As seen in Tables 3 and 4, excellent filling effects such as reinforcing effects and reduction of thermal expansion coefficient can be seen for polypropylene as well.

【図面の簡単な説明】[Brief explanation of drawings]

写真は本発明に関る合成エレスタダイトの走査電子顕微
鏡写真である。
The photograph is a scanning electron micrograph of synthetic elestadite according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 熱可を性樹脂に柱状もしくは針状結晶性合成エレス
タダイトを樹脂100重量部に対し5重量部以上300
重量部まで充填することを特徴とする熱可塑性樹脂の強
化方法。
1 5 parts by weight or more of columnar or acicular crystalline synthetic elestadite in thermoplastic resin per 100 parts by weight of resin
A method for strengthening thermoplastic resin characterized by filling up to the weight part.
JP3285282A 1982-03-01 1982-03-01 How to strengthen thermoplastic resin Expired JPS5855179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3285282A JPS5855179B2 (en) 1982-03-01 1982-03-01 How to strengthen thermoplastic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3285282A JPS5855179B2 (en) 1982-03-01 1982-03-01 How to strengthen thermoplastic resin

Publications (2)

Publication Number Publication Date
JPS58154740A JPS58154740A (en) 1983-09-14
JPS5855179B2 true JPS5855179B2 (en) 1983-12-08

Family

ID=12370361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3285282A Expired JPS5855179B2 (en) 1982-03-01 1982-03-01 How to strengthen thermoplastic resin

Country Status (1)

Country Link
JP (1) JPS5855179B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328297Y2 (en) * 1984-06-14 1988-07-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6328297Y2 (en) * 1984-06-14 1988-07-29

Also Published As

Publication number Publication date
JPS58154740A (en) 1983-09-14

Similar Documents

Publication Publication Date Title
EP0189098B1 (en) Magnesium hydroxide, process for its production and resin composition containing it
EP2057216B1 (en) Titanium dioxide-containing composite
CD et al. Synthesis, characterization and appilcation of rice husk nanosilica in natural rubber
EP2057218A1 (en) Barium sulfate-containing composite
US7700062B2 (en) Methods for synthesizing precipitated silica and use thereof
KR20050044637A (en) Material for imparting thixotropy and pasty resin composition
DE60319733T2 (en) Heat-curable inorganic clay nanopiperions and their use
DE602004006170T2 (en) FILLED COMPOSITE MATERIAL
JPS59223261A (en) Cement composition, cement hardened body and manufacture of gamma-c2s
KR101895093B1 (en) Fibrous basic magnesium sulfate powder and method for producing same
JP2003073524A (en) Basic magnesium sulfate-fiber reinforced polypropylene resin composition and injection molded product obtained by using the same resin composition
JP3700964B2 (en) Aluminosilicate filler
JPS5855179B2 (en) How to strengthen thermoplastic resin
US4260534A (en) Asbestos-free vinyl floor tile composition and method for its manufacture
JPH11172051A (en) Filler for rubber and its production, and rubber composition
JP2989580B1 (en) Fibrous silica and method for producing the same
JP2684056B2 (en) Thermoplastic resin composition and molded article made of the same
JPS6144106B2 (en)
JP4373386B2 (en) Inorganic filler for chlorine-containing polymers
EP2072567A1 (en) Compound for stabilising polymers containing halogens, method for manufacture and use
JPH04225034A (en) Production of polyamide resin thin molded product
DE102007040640A1 (en) Composites with good mechanical and tribological properties, useful e.g. for injection molding, comprise fine barium sulfate particles in (thermo)plastic and/or epoxy resin matrix
WO2022043149A1 (en) Scratch resistant mineral-filled polymer compositions, production methods and uses
JPH03187962A (en) Preparation of inorganic extrusion-molded product
JPH0522731B2 (en)