JPS5855002A - Controlling method for reflux liquid of distillation device - Google Patents
Controlling method for reflux liquid of distillation deviceInfo
- Publication number
- JPS5855002A JPS5855002A JP15298781A JP15298781A JPS5855002A JP S5855002 A JPS5855002 A JP S5855002A JP 15298781 A JP15298781 A JP 15298781A JP 15298781 A JP15298781 A JP 15298781A JP S5855002 A JPS5855002 A JP S5855002A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- reflux liquid
- atmospheric
- tower
- gas oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は蒸溜装置の還流液調節方法に関し、殊に多成分
系炭化水素を蒸溜する時の中間溜升を増量するための還
流液調節方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for adjusting a reflux liquid in a distillation apparatus, and more particularly to a method for adjusting a reflux liquid for increasing the volume of intermediate distillate when distilling multi-component hydrocarbons.
従来、例えば原油からガソリン、灯油、軽油。Conventionally, for example, crude oil was converted into gasoline, kerosene, and light oil.
重質軽油及び重油成分を蒸溜分別する場合、第1図に示
す原油常圧蒸溜装置の70−シート図に基づいて行々わ
れる。When heavy gas oil and heavy oil components are distilled and fractionated, this is carried out based on a 70-sheet diagram of a crude oil atmospheric distillation apparatus shown in FIG.
この装fKよる蒸溜分別システムを簡単忙述べると、原
油供給管1から供給される原油は各熱交換器2〜6で順
次予熱された後忙加熱炉Tに導入され、ここでガソリン
、灯油、軽油及び重質軽油成分は気化し、重油成分(以
下常圧残油という)け液状の状態となる温度に加熱され
て常圧無滴塔8に導入される。仁の常圧無滴塔B内では
前記気化成分は上方へ移動し、この移動の際に沸点の高
い順、即ち重質軽油、軽油、灯油及びガソリンのHWC
M溜分別され、所定の位曾からそれぞれ重質軽油採取管
9、軽油採取管10.灯油採取管11及びガソリン採取
管12から排出される。尚、ガソリンだけは常圧無滴塔
8の頂上部から気体として排出され気液分離器13を介
して前記ガソリン採取管12から排出されるようになっ
ている。To briefly describe the distillation fractionation system using this equipment fK, crude oil supplied from a crude oil supply pipe 1 is sequentially preheated by each heat exchanger 2 to 6, and then introduced into a heating furnace T, where gasoline, kerosene, The gas oil and heavy gas oil components are vaporized, heated to a temperature at which the heavy oil components (hereinafter referred to as atmospheric residual oil) are in a liquid state, and introduced into the atmospheric dropless column 8 . In the atmospheric pressureless dropless column B, the vaporized components move upward, and during this movement, the HWC is classified in descending order of boiling point, that is, heavy gas oil, gas oil, kerosene, and gasoline.
The M distillate is separated into a heavy gas oil collection pipe 9 and a gas oil collection pipe 10 from a predetermined location, respectively. It is discharged from the kerosene sampling pipe 11 and the gasoline sampling pipe 12. Note that only gasoline is discharged as a gas from the top of the atmospheric pressureless dropless tower 8, and is discharged from the gasoline collection pipe 12 via a gas-liquid separator 13.
一方、液状の常圧残油は常圧無滴塔8の底部へ導かれる
間に含まれている軽質成分をスチーム管14からのスチ
ームによって気化分離(ストリッピング)シ、その稜、
常圧残油採暖管15から排出される。常圧無滴塔8から
抜き出され九各成分は―\しないタンクへ送られるか、
或いは次の精製工程へ送られる。尚、16はガソリン還
流液管である。On the other hand, while the liquid atmospheric residual oil is led to the bottom of the atmospheric pressureless dropless column 8, the light components contained therein are vaporized and separated (stripped) by the steam from the steam pipe 14.
The residual oil is discharged from the atmospheric pressure residual oil sampling pipe 15. Each component extracted from the atmospheric pressure dropless column 8 is sent to a tank that does not contain
Alternatively, it is sent to the next purification step. Note that 16 is a gasoline reflux liquid pipe.
この原油常圧蒸溜装置では、原油は種類によって各成分
含有量が変わっているため、原油゛の種類に合わせて常
圧蒸溜装置の操作条件を決定し各成分が含有割合に応じ
て分別されるように運転されているが、必ずしも理論的
に完全ではなく、例えば、軽油の沸点が重質軽油に近い
ものは重質軽油に混ざっており、逆に重質軽油の沸点が
軽油忙近い本のは軽油に混ざっている。その他の成分に
おいて亀岡様である。In this crude oil atmospheric distillation equipment, since the content of each component varies depending on the type of crude oil, the operating conditions of the atmospheric distillation equipment are determined according to the type of crude oil, and each component is separated according to the content ratio. However, it is not always theoretically perfect; for example, if the boiling point of diesel oil is close to that of heavy diesel oil, it will be mixed with heavy diesel oil, and conversely if the boiling point of heavy diesel oil is close to that of diesel oil, it will be mixed with heavy diesel oil. is mixed with light oil. Other ingredients are similar to Kameoka.
ところで、近年でti原油の各成分中で特に灯油。By the way, in recent years, among the various components of ti crude oil, kerosene in particular.
軽油の需要が増大しており、これらを出来得る限り完全
に蒸溜分別することにより増産することが望まれている
。Demand for light oil is increasing, and it is desired to increase production by distilling and fractionating it as completely as possible.
そこで、従来では例えば軽油を増産する場合には常圧無
滴塔8の軽油採取管10のバルブ17を通常よシ大きく
開口し、軽油の抜き出し量を増加させる方法を取ってい
るが、この方法では軽油の抜き出し量が増加するにつれ
て常圧無滴塔8内の重質軽油の無滴部分の内部還流液が
減少するため、成る点からは軽油中への重質軽油の混入
が激しくなってしまう。このため、原油が導入される加
熱炉7出口の温度を高めて、無滴塔8内への熱供給を増
加させて内部還流液を増加させる方法が行なわれている
がこの方法は原油無滴方決の熱経済から見た場合有利と
は言えないだけで慶く、高温加熱による石油類の分解の
増加という問題もある。Therefore, in the past, when increasing the production of light oil, for example, the valve 17 of the light oil sampling pipe 10 of the atmospheric pressure dropless tower 8 was opened wider than usual to increase the amount of light oil extracted. In this case, as the amount of light oil extracted increases, the internal reflux liquid of the non-droplet portion of heavy light oil in the normal pressure non-droplet column 8 decreases, and from this point of view, the mixing of heavy light oil into the light oil becomes more intense. Put it away. For this reason, a method has been used to increase the temperature at the outlet of the heating furnace 7 into which the crude oil is introduced, thereby increasing the heat supply into the dropless column 8 and increasing the internal reflux liquid. It is unfortunate that this method cannot be said to be advantageous from the viewpoint of thermal economy, but there is also the problem of increased decomposition of petroleum products due to high-temperature heating.
本発明は上記の実情に鑑みてまされたもので、増産する
成分の常圧無滴塔で採取された一部を無滴装置の熱源を
利用してとの成分の沸点以上に加熱した後に再び常圧無
滴塔に導入すると共J/C%当該成分の採取段より上段
の常圧無滴塔部分から還流液を抜き出し放熱させた後に
常圧無滴塔へ再導入することKよう、増産する成分の無
滴部における還流液を増大させ、以って何の支障もなく
目的の成分を増産させることを目的とする亀のである。The present invention was developed in view of the above-mentioned circumstances, and is made by heating a part of the component to be produced, which is collected in an atmospheric pressure dropless tower, to a temperature higher than the boiling point of the component using the heat source of the dropless device. When the reflux liquid is reintroduced into the atmospheric dropless column, the reflux liquid is extracted from the atmospheric pressureless column section above the sampling stage of the relevant component, and is then reintroduced into the atmospheric pressureless column after being allowed to radiate heat. The purpose of this method is to increase the reflux liquid in the non-droplet area of the component to be produced, thereby increasing the production of the target component without any hindrance.
以下、本発明の実施例を図面に基づいて詳細に説明する
。Embodiments of the present invention will be described in detail below with reference to the drawings.
第2図は本発明の第1実施例を適用した原油常圧蒸溜装
置の7四−シート図である。第2図において原油供給管
21から供給され石原油は、後述するガソリン蒸気抜き
出し管2゛II%灯油採取管35%畷油採牢冒−早−q
、xau油殊取937及び常圧残油採取管4Tにそれぞ
れ介装された各熱交換器22〜26で順次予熱された後
に加熱炉2Tに導入される。ここで、IJK油はガソリ
ン、灯油、軽油及び重質軽油の各成分が気化し、重油成
分(常圧残油)水液状の状態となる温度で加熱され後に
常圧無滴塔28内に導入される。前記常圧無滴塔28内
では常圧残油は底部に導かれる一方、気化成分は上方に
移動し、この移動時に還流液によって冷却され沸点の亭
い順、即ち重質軽油、軽油、灯油、ガンリンの順に蒸溜
分別される。これらのうち灯油。FIG. 2 is a 74-sheet diagram of a crude oil atmospheric distillation apparatus to which the first embodiment of the present invention is applied. In Fig. 2, petroleum crude oil is supplied from a crude oil supply pipe 21 to a gasoline vapor extraction pipe 2, which will be described later.
, the xau oil collector 937 and the atmospheric residual oil collection pipe 4T, and are sequentially preheated by the heat exchangers 22 to 26, respectively, and then introduced into the heating furnace 2T. Here, the IJK oil is heated at a temperature at which each component of gasoline, kerosene, light oil, and heavy light oil is vaporized and the heavy oil component (normal pressure residual oil) becomes a water-liquid state, and then introduced into the normal pressure dropless column 28. be done. In the atmospheric pressureless dropless column 28, the atmospheric residual oil is led to the bottom, while the vaporized components move upwards.During this movement, they are cooled by the reflux liquid and are separated in the order of their boiling points: heavy gas oil, gas oil, kerosene. It is distilled and fractionated in the following order: Ganlin. Among these, kerosene.
軽油1重質軽油は液体状態で各採取管35.36゜37
から抜き出され各採取管35.38.37を流れる際に
前述した各熱交換器23,24.25で原油と熱交換し
、更に各クーラー3B、39゜40で適轟な温度に冷却
されて排出される。ガソリンだけは常圧無滴塔2Bの頂
部から気体状態でガソリン蒸気抜き小管29から抜き出
され介装されてい、る熱交換器22で原油と熱交換し、
更にクーラー30で冷却された後I/c%気液分離器3
1に導入される。ことで、ガスとガソリン溜升とに分離
され、ガソリン溜升はガソリン採取管34より排出され
るが、仁の一部、即ち無滴分別に必要な量をガソリン還
流液管33を介して常圧無滴塔28に還流する。一方、
ガスはガス抜き重管32より排出される。Light oil 1 Heavy light oil is in liquid state and each sampling pipe is 35.36°37
When extracted from the oil and flowing through each collection pipe 35, 38, 37, it exchanges heat with the crude oil in the aforementioned heat exchangers 23, 24, 25, and is further cooled to an appropriate temperature in each cooler 3B, 39°40. is discharged. Only gasoline is extracted in a gaseous state from the top of the atmospheric pressureless dropless column 2B through a small gasoline vapor extraction tube 29, and is heat exchanged with crude oil in an interposed heat exchanger 22.
After further cooling in the cooler 30, the I/c% gas-liquid separator 3
1 will be introduced. As a result, the gas and the gasoline reservoir are separated, and the gasoline reservoir is discharged from the gasoline collection pipe 34, but a part of the fuel, that is, the amount necessary for dropless separation, is constantly pumped through the gasoline reflux liquid pipe 33. It is refluxed to the pressureless dropless column 28. on the other hand,
The gas is discharged from the gas vent pipe 32.
仁の各成分の採取過程は従来と同様であるが、本発明で
は増産した成分、例えば本実施例のように軽油を増産し
た場合に、第2図に示す如く常圧無滴塔28の軽油の一
部を前記塔280外に抜き出す軽油抜き出し管41を設
け、該抜き出し管41を介して抜き出し九軽油を加熱炉
27からガス排出管42を通って排出される排ガスと熱
交換器43によシ熱交換させ、その沸点以上忙加熱した
後忙、この加熱温度と略等しい常圧無滴塔28の部分に
再導入する。尚、抜き出す軽油量は増産後の還流比(軽
油採取量に対する軽油抜き出し段の還流液量)が増産前
の還流比と同し或いはそれ以上となるように設定する6
まえ、前記操作に加えて、常圧無滴塔2−8の軽油採取
管36より上方位置に還流液を抜き出す還流液管44を
設け、常圧無滴塔28内OR流液を前記還流液管44か
ら抜き出し、原油供給管21に介装し良熱交換器45で
原油と熱交換して冷却し九後に、再び常圧無滴塔28内
に導入する。The process of collecting each component of the kernels is the same as the conventional one, but in the present invention, when increasing the production of components such as light oil as in this embodiment, the light oil in the atmospheric pressureless dropless column 28 as shown in FIG. A light oil extraction pipe 41 is provided to extract a part of the gas oil to the outside of the tower 280. After undergoing heat exchange and heating above its boiling point, it is reintroduced into the atmospheric pressure dropless column 28, which is approximately equal to the heating temperature. In addition, the amount of light oil to be extracted is set so that the reflux ratio after production increase (the amount of reflux liquid in the light oil extraction stage relative to the amount of light oil extracted) is the same as or greater than the reflux ratio before production increase6.
In addition to the above-mentioned operation, a reflux liquid pipe 44 for extracting the reflux liquid is provided at a position above the light oil collection pipe 36 of the normal pressure dropless column 2-8, and the OR flow liquid in the normal pressure dropless column 28 is converted into the reflux liquid. The crude oil is taken out from the pipe 44, inserted into the crude oil supply pipe 21, cooled by exchanging heat with the crude oil in the heat exchanger 45, and then introduced into the normal pressure dropless column 28 again.
これらの操作忙より常圧無滴塔、28内の軽油分別無滴
部分の還流液を増加させるととができる。Due to the busyness of these operations, it is possible to increase the reflux liquid in the light oil fractionating non-droplet section in the atmospheric pressure dropless column 28.
このため、軽油の精溜度が向上し軽油の増産を図ること
が、できる。しか亀システム中の排熱を利用しているの
で省エネルギー効果が大きいものとなる。。Therefore, it is possible to improve the degree of refinement of light oil and increase the production of light oil. However, since the waste heat in the Kame system is used, the energy saving effect is large. .
一方、常圧無滴塔28の底部忙導かれる常圧残油け、従
来と同様にして、底部へ導かれる際にスチーム管46か
らのスチームによって含まれている少量の軽質成分が気
化分離(ストリッピング)され、その彼、常圧残油採取
管47から抜き出され熱交換器26及びクーラー48を
介して適度に冷却されて排出される。尚、排出された各
成分は例えば、アラビア系の原油を25,200バーレ
ル/1日当り(4,006KL/El )処理したとき
の具体例を示すと図のとおシであった。On the other hand, when the atmospheric residual oil is led to the bottom of the atmospheric pressureless dropless column 28, a small amount of light components contained therein are vaporized and separated by the steam from the steam pipe 46 when being led to the bottom. It is then extracted from the atmospheric residual oil sampling pipe 47, cooled appropriately through the heat exchanger 26 and the cooler 48, and then discharged. The discharged components were as shown in the figure, for example, when Arabian crude oil was processed at 25,200 barrels/day (4,006 KL/El).
軽油分は原油の17.8チすなわち4,490バ一レル
/日(29,7KL411p )が従来には得られてい
走力ζこのときの軽油採取段の内部還流比は4.04で
あった。Conventionally, the light oil content was 17.8 inches of crude oil, or 4,490 barrels/day (29.7 KL411p), and the running power ζ At this time, the internal reflux ratio of the light oil extraction stage was 4.04. .
本実施例では、軽油を増援取しその1部25.6KL/
時を加熱炉排ガス(398℃)と熱交換したととる、2
73℃に加熱されたので、これを重質軽油の採欧段(2
92℃)より上部に再導入した。In this example, we will obtain reinforcements for light oil, one portion of which will be 25.6KL/
Assume that the time is heat exchanged with the heating furnace exhaust gas (398℃), 2
Since it was heated to 73℃, it was transferred to the heavy gas oil extraction stage (2
92°C).
この結果、軽油彩取段よシ下の部分で入熱量が1.32
2,000 Kcal/II@増加し、これは軽油採験
段の内部還流比(軽油の採取量は同じとして)を5.0
6に増加せしめた。As a result, the amount of heat input at the bottom of the light oil painting stage was 1.32.
Increased by 2,000 Kcal/II@, which makes the internal reflux ratio of the light oil test stage (assuming the same amount of light oil extracted) 5.0.
It was increased to 6.
従って、軽油を151(4,5KL/1時)増援をして
も内部還流比は4.4までにしか低下せず、従来の4.
04に比べると末だ余裕があるので軽油の精留度は良好
であった。Therefore, even if 151 (4.5 KL/hour) of diesel oil is added, the internal reflux ratio will only decrease to 4.4, compared to the conventional 4.
Compared to 04, there was more margin at the end, so the degree of distillation of light oil was good.
一方、軽油抜出し段よ〕上も上記入熱量の増加により同
じように内部還流液が増加するが、これの有する熱量は
原油と熱交換してその加熱忙利用する一本実施例では2
43℃で抜き出した内部還流液42 KL/Hを原油の
加熱談、185℃で灯油抜き出段の下よシ塔へ戻した。On the other hand, the internal reflux liquid also increases due to the above-mentioned increase in the amount of heat input above the light oil extraction stage, but in this embodiment, the amount of heat this has is 2.
After heating the crude oil, the internal reflux liquid (42 KL/H) extracted at 43°C was returned to the tower under the kerosene extraction stage at 185°C.
この結果灯油抜き出段の内部還**a従来と変らぬ程度
に減少した。As a result, the internal return **a of the kerosene extraction stage was reduced to the same level as before.
第4図は本発明の第2実施例を示す。FIG. 4 shows a second embodiment of the invention.
この実施例と第1実施例との違いは、常圧無滴塔28か
ら抜き出されて加熱された後忙再び前記無滴塔2BVC
導入される軽油の加熱源に、加熱炉27の排ガスではな
く常圧mii塔28の底部から高温で抜き出される常圧
残油の保有する熱エネルギーを利用していることである
。The difference between this embodiment and the first embodiment is that after being extracted from the atmospheric pressure dropless column 28 and heated, the dropless column 2BVC is heated again.
As a heating source for the introduced light oil, the thermal energy possessed by the atmospheric residual oil extracted at high temperature from the bottom of the atmospheric pressure MII tower 28 is used instead of the exhaust gas from the heating furnace 27.
即ち、軽油採取管36から分岐させて軽油抜き出し管5
1を設け、該抜き出し管51を、常圧残油採取管47#
C介装した熱交換器52を介して常圧無滴塔28の所定
位置に!I続する。仁の構成において、採取される軽油
の一部は軽油抜き出し管51を介して前記熱交換器5″
2に導かれ、とこで常圧無滴塔28からの常圧残油と熱
交換し沸点以上に加熱された彼に、この加熱温度と略等
しb常圧無滴#E28の部分に再導入する。尚、その他
の操作は第1実施例と同様であり説明を省略する。That is, the light oil extraction pipe 5 is branched from the light oil sampling pipe 36.
1, and the extraction pipe 51 is connected to the atmospheric residual oil sampling pipe 47#.
C to a predetermined position in the atmospheric pressureless dropless column 28 via the heat exchanger 52! Continue. In this configuration, a part of the extracted light oil is passed through the light oil extraction pipe 51 to the heat exchanger 5''.
2, where it exchanges heat with the atmospheric residual oil from the atmospheric dropless column 28 and is heated above the boiling point. Introduce. Note that the other operations are the same as those in the first embodiment, and the explanation will be omitted.
この実施例も第1実施例と同様忙還流液が増大し軽油を
何ら支障なく増産することができ、しかも省エネルギー
効果が大きいものとなる。In this embodiment, as in the first embodiment, the amount of busy reflux liquid increases, and the production of light oil can be increased without any problems, and the energy saving effect is large.
更に第5図に第3実施例を示す。Further, FIG. 5 shows a third embodiment.
この実施例では、予熱した原油を加熱炉21に導入する
前に7ラツシユ槽55に導入し、仁ζで軽質ガソリンを
蒸発させ、この軽質ガソリンをとの温度メ略勢しい常圧
無滴塔28の部分に直接1管56を介して導入する一方
、フラッシュ槽55の下部から軽質ガソリンが分離した
端切シ原油を加熱炉21に導入し加熱後常圧無滴塔28
へ導入するようにしている。そして、重質軽油の一部を
重質軽油採取管37かも分岐させて設けた重質軽油抜き
出し管51を介して加熱炉2Tへ導入する前の原油に混
入し、加熱炉2Tで原油と共に加熱し常圧無滴塔28へ
再導入するようにしている。In this embodiment, before introducing preheated crude oil into the heating furnace 21, it is introduced into a seven-lush tank 55, and light gasoline is evaporated in a fuel tank. 28 directly through a pipe 56, while the cut crude oil from which light gasoline has been separated from the lower part of the flash tank 55 is introduced into the heating furnace 21, heated, and then transferred to the atmospheric pressure dropless column 28.
We are trying to introduce it to Then, a part of the heavy gas oil is mixed with the crude oil before being introduced into the heating furnace 2T via the heavy gas oil extraction pipe 51 which is provided by branching off from the heavy gas oil collection pipe 37, and is heated together with the crude oil in the heating furnace 2T. Then, it is reintroduced into the atmospheric pressure dropless column 28.
その他は他の実施例と同様であシ説明を省略する。The rest is the same as the other embodiments, and the explanation will be omitted.
この場合も前述の各実施例と同様の効果を有するう尚、
第1及び第2実施例では軽油忙ついて述べたが灯油の場
合も同様であり、この時には還流液を灯油採取管の上方
位愛から無滴塔の外へ抜き出すようにする。tた、第3
実施例では重質軽油のみを原油に混入すゐ本のであるが
灯油、軽油又は重質軽油或いはこれらの混合成分を混入
するようにして龜よい。更には、本発明は原油に限らず
、これ#C頌似する多成分系炭化水素、例えば流動接触
分解処理油、重質水素化精製油及び重質水素化分解油等
の無滴に際しても適用可能である。In this case as well, the same effect as in each of the above-mentioned embodiments is obtained.
In the first and second embodiments, the case of light oil was described, but the same applies to the case of kerosene, and in this case, the reflux liquid is drawn out of the dropless column from the upper end of the kerosene sampling pipe. t, 3rd
In the embodiment, only heavy gas oil is mixed into the crude oil, but it is also possible to mix kerosene, gas oil, heavy gas oil, or a mixture thereof. Furthermore, the present invention is applicable not only to crude oil but also to multi-component hydrocarbons similar to #C, such as fluid catalytic cracked oil, heavy hydrotreated refined oil, heavy hydrocracked oil, etc. It is possible.
以上説明したように本発明忙よれば、増産する成分の常
圧無滴塔で採験された一部を既忙設けた熱源或いは廃熱
を利用して再加熱した後に無宿塔内に再導入すると共に
、この成分の採敞段より上段の無滴塔部分から還流液を
抜き出し放熱させた後に再び無宿塔内に導入するようk
したので、省エネ箒キー効果が大きいと共に還流液を何
ら支障なく増大でき目的の成分を増産することができる
。As explained above, according to the present invention, a part of the components to be produced that are tested in the atmospheric pressure dropless column is reheated using an existing heat source or waste heat, and then reintroduced into the dropless column. At the same time, the reflux liquid is extracted from the non-droplet column section above the sampling stage for this component and is introduced into the dropless column again after being radiated.
Therefore, the energy-saving broom key effect is large, and the reflux liquid can be increased without any trouble, and the production of the target ingredient can be increased.
第1図は従来の原油常圧蒸溜装置のフローシート図、第
2図は本発明に係わる還流液調節方法の1実施例を適用
した原油常圧蒸溜装置の70−シート図、第3図は第1
実施例の具体例を示す70−シート図、第4図及びta
s図はそれぞれ別の実施例を適用した原油常圧蒸溜装置
のフローシート図である。
21・・・原油供給管 27−・・加熱炉 28−
・常圧無滴塔 36・・・軽油採取管 41.51
・・・軽油抜き出し管 42・・・ガス排出管 4
3゜45.53−・・熱交換器 44・・・還流液管
47・・・常圧残油採取管
特許出願人 日本石油株式会社
代理人弁理士 笹 島 富二雄
第1図FIG. 1 is a flow sheet diagram of a conventional crude oil atmospheric distillation apparatus, FIG. 2 is a 70-sheet diagram of a crude oil atmospheric distillation apparatus to which an embodiment of the reflux liquid adjustment method according to the present invention is applied, and FIG. 1st
70-sheet diagram showing a specific example of the embodiment, FIG. 4 and ta
s diagram is a flow sheet diagram of a crude oil atmospheric distillation apparatus to which different embodiments are applied. 21... Crude oil supply pipe 27-... Heating furnace 28-
・Normal pressure dropless tower 36...Light oil collection pipe 41.51
... Light oil extraction pipe 42 ... Gas discharge pipe 4
3゜45.53--Heat exchanger 44-Reflux liquid pipe 47-Normal pressure residual oil collection pipe Patent applicant Fujio Sasashima, representative patent attorney for Nippon Oil Co., Ltd. Figure 1
Claims (3)
した後常圧蒸溜塔に導入し、前記加熱で気化した成分を
常圧蒸溜塔内を上昇する際に還流液と接触させることに
よシ各成分毎に蒸溜分別し、前記蒸溜塔忙設けたそれぞ
れの採取段から各成分を採取するようにした蒸溜装置に
おいて、前記採取する各成分のうちの選択した成分の一
部を当該成分の沸点以上に再加熱した後に、この加熱温
度と略等しい常圧蒸溜塔部分に再導入すると共に、前記
選択成分採取段より上段の常圧蒸溜塔部分から還流液を
抜き出し、前記油液の予熱源に用いた後に常圧蒸溜塔内
に再導入するととkより、前記選択成分の蒸溜部の還流
液を増大するようKしたことを特徴とする蒸溜装置の還
流液調節方法。(1) An oil liquid containing multiple components with different boiling points is heated in a heating furnace and then introduced into an atmospheric distillation tower, and the components vaporized by the heating are brought into contact with the reflux liquid as they rise through the atmospheric distillation tower. In a distillation apparatus that separates each component by distillation and collects each component from each sampling stage provided in the distillation column, a selected part of each component to be collected is collected. After reheating the components to a temperature higher than their boiling point, the components are reintroduced into the atmospheric distillation tower section that is approximately equal to the heating temperature, and the reflux liquid is extracted from the atmospheric distillation tower section above the selective component collection stage, and the oil liquid is A method for adjusting a reflux liquid in a distillation apparatus, characterized in that the reflux liquid in the distillation section of the selected component is increased by K when the selected component is reintroduced into the atmospheric distillation column after being used as a preheating source.
ガスの熱を用いることを特徴とする特許請求OS囲第1
項記載の蒸溜装置の還流液調節方法。(2) The selected component is reheated using the heat of exhaust gas from a heating furnace that heats the oil liquid.
A method for adjusting a reflux liquid in a distillation apparatus as described in 1.
き法。(3) Selected components are reheated by extraction from the bottom of the atmospheric distillation tower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15298781A JPS5855002A (en) | 1981-09-29 | 1981-09-29 | Controlling method for reflux liquid of distillation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15298781A JPS5855002A (en) | 1981-09-29 | 1981-09-29 | Controlling method for reflux liquid of distillation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5855002A true JPS5855002A (en) | 1983-04-01 |
JPH0141363B2 JPH0141363B2 (en) | 1989-09-05 |
Family
ID=15552478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15298781A Granted JPS5855002A (en) | 1981-09-29 | 1981-09-29 | Controlling method for reflux liquid of distillation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5855002A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002066204A (en) * | 2000-08-31 | 2002-03-05 | Sumitomo Heavy Ind Ltd | Distillation device |
JP2002085902A (en) * | 2000-09-12 | 2002-03-26 | Sumitomo Heavy Ind Ltd | Distillation apparatus and distillation method |
JP2016502463A (en) * | 2013-01-16 | 2016-01-28 | エルジー・ケム・リミテッド | Alkanol production equipment |
JP2016504288A (en) * | 2013-01-16 | 2016-02-12 | エルジー・ケム・リミテッド | Alkanol production equipment |
-
1981
- 1981-09-29 JP JP15298781A patent/JPS5855002A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002066204A (en) * | 2000-08-31 | 2002-03-05 | Sumitomo Heavy Ind Ltd | Distillation device |
JP2002085902A (en) * | 2000-09-12 | 2002-03-26 | Sumitomo Heavy Ind Ltd | Distillation apparatus and distillation method |
JP2016502463A (en) * | 2013-01-16 | 2016-01-28 | エルジー・ケム・リミテッド | Alkanol production equipment |
JP2016504288A (en) * | 2013-01-16 | 2016-02-12 | エルジー・ケム・リミテッド | Alkanol production equipment |
US10112122B2 (en) | 2013-01-16 | 2018-10-30 | Lg Chem, Ltd. | Device for preparing alkanol |
US10150720B2 (en) | 2013-01-16 | 2018-12-11 | Lg Chem, Ltd. | Device for preparing n-butanol |
Also Published As
Publication number | Publication date |
---|---|
JPH0141363B2 (en) | 1989-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW293842B (en) | ||
CA1261293A (en) | Asphalt coking method | |
CN108138053B (en) | Combined heat and power delayed coking device | |
CN101597518A (en) | A kind of improved delay coking process | |
JPS5855002A (en) | Controlling method for reflux liquid of distillation device | |
US20160160130A1 (en) | Integrated Vacuum Distillate Recovery Process | |
CN106062139B (en) | Method for heating in crude oil | |
CN1020257C (en) | Multistage flash and rectification coupling technology | |
CA3181320C (en) | Hydrocarbon stream separation system and method | |
CN85106304A (en) | Viscosity breaking method | |
RU2546677C1 (en) | Method and installation of hydrocracking with obtaining motor fuels | |
CN101987961B (en) | Coking delaying method | |
CN111019686A (en) | A fractionation system for gasoline project | |
RU2145971C1 (en) | Method of in-line distillation of mazout and device for realization of this method | |
CN109957417B (en) | Modification treatment device and modification process for delayed coking stable gasoline | |
US20220154081A1 (en) | Hydrocarbon stream separation system and method | |
RU2138536C1 (en) | Method for production of petroleum fractions | |
Ghallab et al. | Optimised coker unit design integrating heat exchange network and exergy analysis | |
US2028728A (en) | Oil cracking system | |
US1868466A (en) | Distilling process and apparatus | |
US1923271A (en) | Process and apparatus for fractionating petroleum | |
RU2002791C1 (en) | Method for petroleum refining | |
US2082637A (en) | Method of treating hydrocarbon oil | |
US1472116A (en) | Process of distilling oil | |
US2069596A (en) | Method of treating oil |