JPS5854635B2 - Method for detecting completion of ferrite reaction - Google Patents
Method for detecting completion of ferrite reactionInfo
- Publication number
- JPS5854635B2 JPS5854635B2 JP1073877A JP1073877A JPS5854635B2 JP S5854635 B2 JPS5854635 B2 JP S5854635B2 JP 1073877 A JP1073877 A JP 1073877A JP 1073877 A JP1073877 A JP 1073877A JP S5854635 B2 JPS5854635 B2 JP S5854635B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- dissolved oxygen
- ferrite
- completion
- reaction tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 50
- 229910000859 α-Fe Inorganic materials 0.000 title claims description 14
- 238000000034 method Methods 0.000 title claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 21
- 229910052760 oxygen Inorganic materials 0.000 claims description 21
- 239000001301 oxygen Substances 0.000 claims description 21
- 229910001385 heavy metal Inorganic materials 0.000 claims description 11
- 239000002351 wastewater Substances 0.000 claims description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 239000000243 solution Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000012295 chemical reaction liquid Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000005273 aeration Methods 0.000 description 3
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 3
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 3
- 235000011121 sodium hydroxide Nutrition 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 235000003891 ferrous sulphate Nutrition 0.000 description 2
- 239000011790 ferrous sulphate Substances 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Landscapes
- Removal Of Specific Substances (AREA)
Description
【発明の詳細な説明】
本発明は排水中の有害金属を除去するに際し、排水中の
重金属イオンをフェライト化法によって回分式反応槽を
用い処理する方法に関し、特に反応槽においてフェライ
ト化反応の完了を検知スル方法に係るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing harmful metals from wastewater by treating heavy metal ions in wastewater by a ferritization method using a batch reaction tank. This relates to a method for detecting.
従来、フェライト化法により、行われるフェライト化反
応が完了するのを検知するにろ一般的lこは経験的な方
法により、反応生成物の色や磁性により定性的に検知す
るか、又は酸化還元電位法によっているが、後者の場合
、再現性に乏しく、かつ、酸化還元電位の相対的な変化
のみで一定の値を示すものでないため、反応槽の反応完
了を適確につかむことができなかった。Conventionally, the completion of the ferrite-forming reaction in the ferrite-forming method was generally detected by empirical methods, qualitatively by the color or magnetism of the reaction product, or by redox detection. The latter method is based on the potential method, but the latter has poor reproducibility and does not indicate a constant value due to only relative changes in the redox potential, making it impossible to accurately determine the completion of the reaction in the reaction tank. Ta.
ゆえに、従来の一般的な方法ではフェライト化反応の完
了を完全に把握し、反応槽の運転操作をうまく行うこと
ができず、さらに自動運転も可能ではなかった。Therefore, with the conventional general method, it was not possible to completely grasp the completion of the ferrite reaction and to operate the reaction tank properly, and automatic operation was also not possible.
そこで、フェライト化反応が未完結のまま反応槽より重
金属が流出したり、又、反応が完了しているのにもかか
わらず、無駄に空気を吹き込み時間的かつ経済的な損失
があった。Therefore, heavy metals may flow out from the reaction tank while the ferritization reaction is not completed, or air may be unnecessarily blown in even though the reaction has been completed, resulting in time and economic losses.
ところで一方、X線回析、磁気特性による方法によって
フェライト化反応が完了するのを検知することもできる
が、これらの方法はサンプリングから結果が出るまで多
大な時間がかかり、かつ測定機器が高価であり、現実的
に用いるには困難である。On the other hand, it is also possible to detect the completion of the ferrite reaction using methods such as X-ray diffraction and magnetic properties, but these methods require a large amount of time from sampling to obtaining results, and the measuring equipment is expensive. Therefore, it is difficult to use it practically.
本発明は、反応槽において重金属フェライト化反応の完
了を簡単に明確に再現性よく、かつ迅速に確認できるこ
とにより、合理的に反応槽を自動操作できることを可能
ならしめることを目的とする。An object of the present invention is to make it possible to rationally and automatically operate a reaction tank by easily and clearly confirming the completion of a heavy metal ferritization reaction in a reaction tank with good reproducibility and quickly.
本発明の目的は以上の通りであって上記目的を達成する
ために、後述するようにフェライト化反応中の反応液の
溶存酸素(DO)はほぼ零でありフェライト化反応は溶
存酸素(Do)が増加し始める時に完了しているという
理論的かつ実験的な結果を利用している。The object of the present invention is as described above, and in order to achieve the above object, dissolved oxygen (DO) in the reaction solution during the ferritization reaction is almost zero, and the ferritization reaction is performed with dissolved oxygen (DO) as described below. It makes use of the theoretical and experimental results that the process is complete when the value starts to increase.
ところでフェライト化反応は次の様に説明される。By the way, the ferritization reaction is explained as follows.
ここでM は重金属イオンを示す。Here, M represents a heavy metal ion.
重金属を含む水に硫酸第一鉄を加え、苛性ソーダで中和
すると反応式■で重金属と鉄の錯体を作す反応■でスピ
ネル構造のフェライトになると言われている。It is said that when ferrous sulfate is added to water containing heavy metals and neutralized with caustic soda, ferrite with a spinel structure is produced by reaction (2), which forms a complex of heavy metals and iron according to reaction formula (2).
反応式■の酸素02はエアレーションによって供給され
るが、エアレーションによる02の供給速度より反応式
■の反応の方が速いため、反応式■の反応が進行してい
る時、反応液中の溶存酸素は零となり、Fe の酸化
が完了するまでこの状態が続き、Fe 酸化が完了す
れば液中の溶存酸素量は上昇し、飽和値に達する。Oxygen 02 in Reaction Formula ■ is supplied by aeration, but since the reaction in Reaction Formula ■ is faster than the supply rate of 02 by aeration, when the reaction in Reaction Formula ■ is progressing, dissolved oxygen in the reaction solution becomes zero, and this state continues until the oxidation of Fe is completed. When the oxidation of Fe is completed, the amount of dissolved oxygen in the liquid increases and reaches the saturation value.
このことについて第2図に実験例を示すがフェライト化
反応完了時点より溶存酸素量は急激に増加する。Regarding this, an experimental example is shown in FIG. 2, and the amount of dissolved oxygen increases rapidly after the completion of the ferrite reaction.
従って反応液中の溶存酸素量を検知することにより、フ
ェライト化反応の完了を知ることが可能となる。Therefore, by detecting the amount of dissolved oxygen in the reaction solution, it is possible to know whether the ferrite-forming reaction is complete.
本発明の要旨は排水中の重金属の除去に際し、フェライ
ト化反応槽に処理廃水中の溶存酸素量を測定し、重金属
フェライト化反応の完了を検知する方法にある。The gist of the present invention resides in a method for detecting the completion of the heavy metal ferrite reaction by measuring the amount of dissolved oxygen in the treated wastewater in a ferrite reaction tank when removing heavy metals from waste water.
以下、図面に示した本発明の好適な実施例について詳細
に説明する。Hereinafter, preferred embodiments of the present invention shown in the drawings will be described in detail.
1は反応槽でフェライト化反応がこの槽内で行われる。1 is a reaction tank in which the ferritization reaction is carried out.
2は溶存酸素計センサーであり、反応槽1内に設けられ
ており反応液の溶存酸素を測定する。2 is a dissolved oxygen meter sensor, which is provided in the reaction tank 1 and measures dissolved oxygen in the reaction solution.
3は溶存酸素計で溶存酸素計センサー2がこれに連結さ
れている。3 is a dissolved oxygen meter, and a dissolved oxygen meter sensor 2 is connected to this.
4は制御盤で反応槽の攪拌機モーター5、空気ブロア6
及びヒーター7がそれぞれ連結されている。4 is the control panel that controls the reactor stirrer motor 5 and air blower 6.
and a heater 7 are connected to each other.
8は反応液抜出しバルブで反応が完了すると開くように
なっている。8 is a reaction liquid extraction valve that opens when the reaction is completed.
9゜10.11はそれぞれ原水供給ポンプFeSO4水
溶液供給ポンプ、苛性ソーダ供給ポンプである。9.10.11 are a raw water supply pump, a FeSO4 aqueous solution supply pump, and a caustic soda supply pump, respectively.
又、12は攪拌用インペラー、13は散気用スパージャ
−である。Further, 12 is an impeller for stirring, and 13 is a sparger for aeration.
排水中の重金属の除去に際し、まず排水の入っている反
応槽1内でフェライト化反応が行われる。When removing heavy metals from wastewater, a ferrite reaction is first performed in the reaction tank 1 containing the wastewater.
反応が進行し、反応槽内に内蔵された溶存酸素計センサ
ー2により反応液の溶存酸素量の測定値が溶存酸素計3
内の設定値例えば第2図に示したA点(溶存酸素量1p
m )に達すると反応槽の攪拌機モータ5、空気ブロア
6、及びヒーター7が制御盤4からの信号でオフとなり
、反応液抜出しバルブ8が開く。As the reaction progresses, the measured value of the amount of dissolved oxygen in the reaction solution is detected by the dissolved oxygen meter sensor 2 built into the reaction tank.
For example, point A (dissolved oxygen amount 1 p) shown in Figure 2
m), the stirrer motor 5, air blower 6, and heater 7 of the reaction tank are turned off by a signal from the control panel 4, and the reaction liquid extraction valve 8 is opened.
そして反応液が抜き出される。反応液の抜出しが完了す
れば原水供給ポンプ9が作動し、一定量の原水を反応槽
1に供給し続いて攪拌機モータ5、硫酸第一鉄水溶液供
給ポンプ10、苛性ソーダ供給ポンプ11、ヒーター7
及び空気ブロア6の順に作動させ、自動運転とするので
ある。Then, the reaction solution is extracted. When the withdrawal of the reaction liquid is completed, the raw water supply pump 9 is activated to supply a certain amount of raw water to the reaction tank 1, and then the stirrer motor 5, ferrous sulfate aqueous solution supply pump 10, caustic soda supply pump 11, and heater 7
and air blower 6 are operated in this order for automatic operation.
本発明は以上のような構成であり、フェライト化反応が
完了しないまま、反応液を反応槽より抜き出す心配がな
く、フェライト化反応完了後も無駄な空気の吹き込みや
反応時間を浪費することがなくなるばかりでなく、無人
運転が可能となる利点もある。The present invention has the above configuration, and there is no need to worry about extracting the reaction liquid from the reaction tank before the ferrite reaction is completed, and even after the ferrite reaction is completed, there is no need to waste air blowing or waste reaction time. Not only that, but it also has the advantage of being able to operate unmanned.
第1図は本発明の一実施例を示す概略図であり、第2図
はフェライト化反応時間と溶存酸素量との関係を示すグ
ラフである。
第2図でA点は溶存酸素計3内の設定値、B点はフェラ
イト化反応完了点、C点は溶存酸素量の飽和点である。
1・・・−・・反応槽、2・・・・・・溶存酸素計セン
サー、3・・・・・・溶存酸素計、4・・・・・・制御
盤。FIG. 1 is a schematic diagram showing one embodiment of the present invention, and FIG. 2 is a graph showing the relationship between ferrite formation reaction time and dissolved oxygen amount. In FIG. 2, point A is the set value in the dissolved oxygen meter 3, point B is the point at which the ferrite formation reaction is completed, and point C is the saturation point of the amount of dissolved oxygen. 1...Reaction tank, 2...Dissolved oxygen meter sensor, 3...Dissolved oxygen meter, 4...Control panel.
Claims (1)
において、処理廃水中の溶存酸素量を測定し重金属フェ
ライト化反応完了を検知する方法。1. A method of detecting the completion of the heavy metal ferrite reaction by measuring the amount of dissolved oxygen in the treated wastewater in a ferrite reaction tank when removing heavy metals from wastewater.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1073877A JPS5854635B2 (en) | 1977-02-04 | 1977-02-04 | Method for detecting completion of ferrite reaction |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP1073877A JPS5854635B2 (en) | 1977-02-04 | 1977-02-04 | Method for detecting completion of ferrite reaction |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS5397247A JPS5397247A (en) | 1978-08-25 |
| JPS5854635B2 true JPS5854635B2 (en) | 1983-12-06 |
Family
ID=11758627
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP1073877A Expired JPS5854635B2 (en) | 1977-02-04 | 1977-02-04 | Method for detecting completion of ferrite reaction |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5854635B2 (en) |
-
1977
- 1977-02-04 JP JP1073877A patent/JPS5854635B2/en not_active Expired
Also Published As
| Publication number | Publication date |
|---|---|
| JPS5397247A (en) | 1978-08-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP2599994Y2 (en) | Automatic calibration system for laboratory ion concentration meter | |
| CN110333340B (en) | An Improved Method for Analyzing Hexavalent Chromium Species in Soil | |
| US5186895A (en) | Method and apparatus for automatic analysis of fluid composition involving a time-dependent variation thereof | |
| JPS5854635B2 (en) | Method for detecting completion of ferrite reaction | |
| Baig et al. | Determination of total chromium at ultratrace levels in water and soil Samples by coprecipitation microsample injection system flame atomic absorption spectrometry | |
| CA1124084A (en) | Process for the selective separation of uranium from its accompanying metals and for its extraction | |
| Tardio et al. | Catalytic wet oxidation of the sodium salts of citric, lactic, malic and tartaric acids in highly alkaline, high ionic strength solution | |
| CN208948867U (en) | A kind of device of quick preparation high-quality palladium nitrate solution | |
| Randazzo et al. | Metals recovery from waste pickling solutions by reactive precipitation | |
| CN107601571A (en) | A kind of preparation method of ferric vandate | |
| JPS61149292A (en) | Method and apparatus for treating waste water containing heavy metal | |
| Gloe et al. | Determination of metal extraction process parameters using tracer technique | |
| JPS5854636B2 (en) | Continuous reaction tank type ferrite processing method | |
| RU2390497C2 (en) | Method of obtaining magnetite | |
| CN106430748A (en) | Automatic pH monitoring control device of waste acid treatment and recovery system | |
| US3104941A (en) | Process for precipitation of uranium from solution | |
| CN208366935U (en) | A kind of detection device of the effective calcium of intelligence lime | |
| JPH04349990A (en) | Method for treating waste liquid containing high concentrations of metal ions | |
| JP2003121430A (en) | Automatic potassium permanganate consumption analytical device | |
| CN106501446A (en) | The detection method of dioxygen water demand in concentrating waste acid iron removal | |
| Lakin | Chemical catalyst interference in the winkler titration determination of dissolved oxygen—a method for correction | |
| Minegishi et al. | Oxidation of ferrous sulfate in weakly acidic solution by gas bubbling | |
| CN109384264B (en) | Process for preparing iron oxide yellow | |
| CN223051278U (en) | Quantitative detection device for pre-reduced indigo content | |
| JPH0347100A (en) | Method for automatic operation of batch type crystallization tank apparatus |