JPS5854553A - Battery - Google Patents

Battery

Info

Publication number
JPS5854553A
JPS5854553A JP56151951A JP15195181A JPS5854553A JP S5854553 A JPS5854553 A JP S5854553A JP 56151951 A JP56151951 A JP 56151951A JP 15195181 A JP15195181 A JP 15195181A JP S5854553 A JPS5854553 A JP S5854553A
Authority
JP
Japan
Prior art keywords
active material
polymer
electrode
battery
acetylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56151951A
Other languages
Japanese (ja)
Inventor
Masao Kobayashi
小林 征男
Masaaki Kira
吉良 正明
Kaneya Yamaguchi
山口 金哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP56151951A priority Critical patent/JPS5854553A/en
Priority to EP82300247A priority patent/EP0058469B1/en
Priority to DE8282300247T priority patent/DE3276842D1/en
Publication of JPS5854553A publication Critical patent/JPS5854553A/en
Priority to US06/531,577 priority patent/US4496640A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/122

Abstract

PURPOSE:To obtain a battery which has a large discharge capacity, a small self-discharge and an excellent stability to oxidation by using a P type conductive acetylene high-polymer which has a fibrous microcrystalline structure, as a positive active material, and using a light metal as a nagative active material. CONSTITUTION:A P tyoe conductive acetylene high-polymer is used as a positive active material and is prepared by doping an acetylene high-polymer having a bulk density of 0.7-1.2g/cm<3> with a dopant such as iodine or bromine. After a positive electrode 5 made of such an active material as above is placed in a concave part provided in the lower part of a case 1, a porous circular Teflon sheet 6 is superposed on the electrode 5, and the electrode 5 and the sheet 6 are fixed by caulking with a Teflon ring 8. Next, a felt 4 is superposed on the electrode 5, and impregnated with electrolyte. After that, a negative lithium electrode 2 is placed over the felt 4, with a diaphragm 3 interposed between teh electrode 2 and the felt 4, and these are caulked with a case 7, thereby constituiting a battery. As the above electrolyte, 1 mol/l LiClO4 solution of distilled dehydrated prpylene carbonate is used. A light metal used as a negative active material may be sodium, aluminum or magnesium in addition to lithium.

Description

【発明の詳細な説明】 本発明は、繊維状微結晶(フィブリル)構造を有し、か
つ嵩さ密度が07〜1.2 fi 7cm3のアセチレ
ン高重合体にドーパントをドープして得られるP型電導
性アセチレン高重合体を正極活物質として用い、軽金属
を負極活物質として用いたことを特徴とする電池に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a P-type polymer obtained by doping an acetylene polymer having a fibrous microcrystalline (fibril) structure and a bulk density of 07 to 1.2 fi 7 cm3 with a dopant. The present invention relates to a battery characterized in that a conductive acetylene polymer is used as a positive electrode active material and a light metal is used as a negative electrode active material.

従来から、軽金属とりわけリチウムを負極活物質として
用いる高エネルギー密度電池に関する提案は多くなされ
ており、例えば、正極活物質として、Br2及び12等
のよう・なハロゲン、CuF2、AgF2 、  Ag
F  、  NiF2.  CuCl2 +  AgC
/2+NiCl2.C0F3 、CrF3.MnF3.
SbF、。
Conventionally, many proposals have been made regarding high energy density batteries that use light metals, especially lithium, as negative electrode active materials.For example, halogens such as Br2 and 12, CuF2, AgF2, Ag are used as positive electrode active materials.
F, NiF2. CuCl2 + AgC
/2+NiCl2. C0F3, CrF3. MnF3.
SbF,.

CdF2 *  AsF31  HgF2 e  Cu
Br 、  CdC1!2  +PbCl2.NiC1
及びc o c z、等のような金属ロダン化物、Ag
5CN、CuSCN及びN1(SCN)2等のような金
属ロダン化物、MnO2,Cr2 o、 。
CdF2 * AsF31 HgF2 e Cu
Br, CdC1!2 +PbCl2. NiC1
and metal rhodanides, such as c o c z, etc., Ag
Metal rhodanides such as 5CN, CuSCN and N1(SCN)2, MnO2, Cr2o, etc.

V20s t  5n02 e  pbo2@  Tl
O2e  B1202 v”Os t  ”C204+
  NiO、Ago  +  HgO+Cu2O、Cu
O、Ag2WO4等のような金属酸化物、NiS*  
AgB5  e  CuB5  、  Pb、、 B2
S3及びMnB4S4  等のような金属硫化物、Ti
C2゜NbSe 及びws2等のような層状化合物、フ
ッ化黒鉛、更にはベンゾキノン類、ジニトロベンゼン等
の有機化合物及びpocI!2.s、ocz2及び50
2C12等のようなオキシランパライト等を用いた電池
が提案されている。そして具体的には、例えば、正極活
物質として、黒鉛及びフッ素のインターカレーション化
合物、負極活物質としてリチウム金属をそれぞれ使用し
た電池が知られており(米国特許第3,514,337
号明細書参照)、また、フッ化黒鉛を正極活物質とした
リチウム電池(松下電器社製)及び二酸化マンガンを正
極活物質としたリチウム電池(三洋電機社製)がすでに
市販されている。しかしながら、これらの電池はその電
池特性から必ずしも十分であるとはいえなかった。
V20s t 5n02 e pbo2@ Tl
O2e B1202 v”Os t”C204+
NiO, Ago + HgO + Cu2O, Cu
O, metal oxides such as Ag2WO4, NiS*
AgB5 e CuB5, Pb,, B2
Metal sulfides such as S3 and MnB4S4, Ti
Layered compounds such as C2°NbSe and ws2, fluorinated graphite, organic compounds such as benzoquinones, dinitrobenzene, and pocI! 2. s, ocz2 and 50
Batteries using oxilampalite such as 2C12 have been proposed. Specifically, for example, batteries are known that use graphite and fluorine intercalation compounds as positive electrode active materials, and lithium metal as negative electrode active materials (U.S. Pat. No. 3,514,337
In addition, lithium batteries (manufactured by Matsushita Electric Co., Ltd.) using fluorinated graphite as a positive electrode active material and lithium batteries (manufactured by Sanyo Electric Co., Ltd.) using manganese dioxide as a positive electrode active material are already commercially available. However, these batteries were not necessarily sufficient due to their battery characteristics.

また、ポリアセチレンにハロゲン(C12,Br2゜I
2.IC/  、IBr  、ICI!3等)、または
電子求引性物質(PF5 、  AsF5 、  Sb
F5 、  BFl等)を化学的にドーピングしたもの
を正極活物質とし、リチウムを負極とした超薄型固体電
解質電池も提案されている(特開昭56−52868号
)。
In addition, halogen (C12, Br2゜I) is added to polyacetylene.
2. IC/, IBr, ICI! 3, etc.), or electron-withdrawing substances (PF5, AsF5, Sb
An ultra-thin solid electrolyte battery has also been proposed in which a cathode active material is chemically doped with F5, BFl, etc., and a lithium cathode is used as a negative electrode (Japanese Patent Laid-Open No. 56-52868).

さらに、電気化学的にuF; 、  sbF;、  s
bcム。
Furthermore, electrochemically uF; , sbF;, s
bcm.

AsF6 e  PF; *  、;’ 、  C’1
04 、CF3803  をポリアセチレンにドープす
る方法も開発され、ポリアセチレンを電極に用いたバッ
テリーの開発が活39(1981)、J−C・S−Ch
em−COmmu・。
AsF6 e PF; * , ;' , C'1
04, a method of doping polyacetylene with CF3803 was also developed, and the development of a battery using polyacetylene as an electrode became active 39 (1981), J-C S-Ch
em-Commu・.

1981、 317)。1981, 317).

しかしながら、これらの方法で用いられているアセチレ
ン高重合体は、従来より広く知られている方法(特公昭
48−32581号)で製造されたものである。この方
法で製造し得るアセチレン高重合体の嵩さ密度は高々0
.697cm3の多孔質であり、このアセチレン高重合
体にドーパント′をドープした場合、そのドープ量はポ
リアセチレンの繰り返し単位CH1モル当り高々6モル
チであり、それ以上のドープ量ではポリアセチレンが酸
化劣化を受けて放電容量が低下してしまう欠点があった
。即ち、従来広く知られている方法で得られるアセチレ
ン高重合体を電極材料として用いた場合、必ずしも放電
容量が充分であるとは言えなかった。
However, the acetylene polymers used in these methods are those produced by a conventionally widely known method (Japanese Patent Publication No. 32581/1983). The bulk density of the acetylene high polymer that can be produced by this method is at most 0.
.. It is porous with a size of 697 cm3, and when this acetylene polymer is doped with a dopant, the amount of doping is at most 6 mol per mol of repeating unit CH of polyacetylene, and if the amount of doping is higher than that, the polyacetylene will undergo oxidative deterioration. There was a drawback that the discharge capacity decreased. That is, when an acetylene polymer obtained by a conventionally widely known method is used as an electrode material, it cannot be said that the discharge capacity is necessarily sufficient.

本発明者等の一部は0.7 /i /l:m  以上の
嵩さ密度を有するアセチレン高重合体の製造方法につい
てすでに提案した(特開昭55−129404号。
Some of the present inventors have already proposed a method for producing an acetylene polymer having a bulk density of 0.7/i/l:m or more (Japanese Patent Application Laid-Open No. 129404/1983).

同55−128419号、同55−142030号、同
55−145710号、同55−145711号、同5
6−10428号、特願昭55−34687号)。
No. 55-128419, No. 55-142030, No. 55-145710, No. 55-145711, No. 5
No. 6-10428, Japanese Patent Application No. 55-34687).

本発明者等は上記の点に鑑みて、放電容量の大きい電池
を得るべく種々検討した結果、本発明を見出したもので
ある。
In view of the above points, the inventors of the present invention have conducted various studies to obtain a battery with a large discharge capacity, and as a result, they have discovered the present invention.

即ち、本発明は、繊維状微結晶(フィブリル)構造を有
し、かつ嵩さ密度が0.7〜1.211 / crn3
のアセチレン高重合体にドーパントをドープして得られ
るP型電導性アセチレン高重合体を正極活物質として用
い、軽金属を負極活物質として用いたことを特徴とする
電池に関するものである。
That is, the present invention has a fibrous microcrystalline (fibril) structure and a bulk density of 0.7 to 1.211/crn3.
The present invention relates to a battery characterized in that a P-type conductive acetylene polymer obtained by doping an acetylene polymer with a dopant is used as a positive electrode active material, and a light metal is used as a negative electrode active material.

本発明の電池は、従来から広く知られている前記方法(
特公昭48−32581号)で得られる嵩さ密度が高々
0.6II/crn3の多孔質体のアセチレン高重合体
を用いた電池に比較して、放電容量が大きいばかりでな
く、自己放電がより少なく、酸素に対する酸化安定性も
良好であるから工業的に非常に有用である。
The battery of the present invention can be produced by the method (
Compared to a battery using a porous acetylene polymer with a bulk density of at most 0.6 II/crn3 obtained in Japanese Patent Publication No. 48-32581), it not only has a larger discharge capacity but also has a higher self-discharge rate. It is very useful industrially because it has good oxidation stability against oxygen.

本発明において、 負極活物質として用いられる軽金属
としては、リチウム、ナトリウム等のアルカリ金属、ア
ルミニウム、マグネシウム等を挙げることができる。こ
れらの軽金属は一般のリチウム電池のそれと同様にシー
ト状として用いても本発明において用いられる繊維状微
結晶(フィブリル)構造を有し、かつ嵩さ密度が0.7
〜1.2g/crn3のアセチレン高重合体は、本発明
者等の一部がすでに提案した特開昭55−129404
号、同55−128419号、同55−145710号
、同55−145711号、同56−10428号、特
願昭55−34687号によって製造することができる
が、必ずしもこれらの方法に限定されるものではない。
In the present invention, examples of the light metal used as the negative electrode active material include alkali metals such as lithium and sodium, aluminum, and magnesium. These light metals have the fibrous microcrystalline (fibril) structure used in the present invention even when used in sheet form, similar to that of general lithium batteries, and have a bulk density of 0.7.
~1.2 g/crn3 acetylene polymer is disclosed in Japanese Patent Application Laid-Open No. 55-129404, which some of the present inventors have already proposed.
No. 55-128419, No. 55-145710, No. 55-145711, No. 56-10428, and Japanese Patent Application No. 55-34687, but are not necessarily limited to these methods. isn't it.

アセチレン高重合体へのドーパントのドーピング方法は
、化学的ドーピング及び電気化学的ドーピングのいずれ
の方法を採用してもよい。
The method for doping the acetylene polymer with a dopant may be either chemical doping or electrochemical doping.

本発明においてアセチレン高重合体に化学的にドーピン
グするドーパントとしては、従来知られている(I)ヨ
ウ素、臭素およびヨウ化臭素の如きハロゲン、(I)五
7ツ化ヒ素、五フッ化アンチモン、四7ツ化ケイ素、五
塩化−リーン、五フッ化リン、塩Φ□□□□□□ 化アルミニウム、臭化アルミニウムおよび7ツ化アルミ
ニウムの如き金属へロゲン化物、l硫酸、硝酸、フルオ
ロ硫酸、トリフルオロメタン硫酸およびクロロ硫酸の如
きプロトン酸、■三酸イオウ、二酸(tJ[、ジフルオ
ロスルホニルパーオキシドの如き酸化剤% (v)A 
g Cl 04 、■テトラシアノエチレン、テトラシ
アノキノジメタン、フロラニール、2.3−ジクロル−
5,6−ジシアツバラベンゾキノン、2.3−シフロム
−5,6−ジシアツバラベンゾキノン等を挙げることが
できる。
In the present invention, the dopants to be chemically doped into the acetylene polymer include conventionally known (I) halogens such as iodine, bromine, and bromine iodide, (I) arsenic pentafluoride, antimony pentafluoride, silicon tetra7tride, lean pentachloride, phosphorus pentafluoride, salts Φ□□□□□□ metal halide such as aluminum oxide, aluminum bromide and aluminum heptadide, l sulfuric acid, nitric acid, fluorosulfuric acid, Protonic acids such as trifluoromethane sulfuric acid and chlorosulfuric acid, ■ Triacid sulfur, diacid (tJ[, oxidizing agent such as difluorosulfonyl peroxide % (v)A
g Cl 04 , ■ Tetracyanoethylene, tetracyanoquinodimethane, Floranil, 2.3-dichloro-
Examples include 5,6-disiacbenzoquinone and 2,3-syfurome-5,6-disiacbenzoquinone.

一方、アセチレン高重合体に電気化学的にドーピングす
るドーパントとしては、PF6 、Ai珂。
On the other hand, examples of dopants to be electrochemically doped into the acetylene high polymer include PF6 and Al silicon.

SbF;、  SbC/1”l  BF、−、CI!O
,、I3−、  Arcζ、cp3so; 等を挙げる
ことができるが必ずしもこれらに限定されるものではな
い。
SbF;, SbC/1”l BF, -, CI!O
, I3-, Arcζ, cp3so; etc., but are not necessarily limited to these.

アセチレン高重合体へのドーパントのドーピン・グ方法
については特に制限はなく、すでに公知の方法〔例えば
J−C−8e Cnem−Comm、、594(197
9)* J、Electroanal、Chem、、上
玉上。
There are no particular restrictions on the method of doping the acetylene polymer with a dopant, and known methods [for example, J-C-8e Cnem-Comm, 594 (197
9) *J, Electroanal, Chem, upper ball.

115(1980)〕 に従って行えばよく、一定電流
下でも一定電圧下でもまた電流及び電圧の変化する条件
下のいずれの方法でドーピングを行なってもよい。ドー
ピングの際の電流値、電圧値及びドーピング時間等は、
用いるアセチレン高重合体の嵩さ密度、面積、ドーパン
トの種類、電解液の種類、要求される電導性アセチレン
高重合体の電気伝導度等によって異なるので一概に規定
することはできない。 アセチレン高重合体にドープさ
れるドーパントの量は、アセチレン高重合体中の繰り返
し単位CH1モル に対して2〜40モルチであり、好
ましくは4〜30モルチである。ドープしたドーパント
の量が2モルチ以下でも40モルチ以上でも放電容量の
充分大きい電池を得ることはできない。
115 (1980)], and the doping may be performed by any method, such as under a constant current, under a constant voltage, or under conditions where the current and voltage vary. The current value, voltage value, doping time, etc. during doping are as follows:
It cannot be unconditionally defined because it varies depending on the bulk density and area of the acetylene polymer used, the type of dopant, the type of electrolyte, the required electrical conductivity of the acetylene polymer, and the like. The amount of dopant doped into the acetylene polymer is 2 to 40 mol, preferably 4 to 30 mol, per mol of repeating unit CH in the acetylene polymer. Even if the amount of dopant doped is less than 2 molti or more than 40 molti, a battery with a sufficiently large discharge capacity cannot be obtained.

この様にドーパントをドープして得られる電導性アセチ
レン高重合体の電気伝導度は10−8〜104Ω 、c
rn   の範囲であるが、本発明において用いられる
電導性アセチレン高重合体の電気伝導度は10 Ω ・
釧 以上のものが好ましく、特に1.0Ω ・α 以上
のものが好ましい。
The electrical conductivity of the conductive acetylene polymer obtained by doping with a dopant in this way is 10-8 to 104Ω, c
rn, but the electrical conductivity of the conductive acetylene polymer used in the present invention is 10 Ω.
It is preferable to have a resistance of 1.0Ω or more, particularly preferably 1.0Ω·α or more.

本発明の電池に用いる電解液としては、例えばプロピレ
ンカーボネート、エチレンカーボネート、r−ブチロラ
クトン、ジメチルスルホキシド、アセトニトリル、ホル
ムアミド、ジメチルポルムアミド、ニトロメタン等の非
プロトン性有機溶媒とLiCl0. 、 LiAlIC
/4 、 LiBF4 、 LiC/等のリチウム塩と
の組合せ又はLi を伝導体とする固体電解質或いは溶
融塩など、一般にリチウムを負極活物質として用いた電
池で使用される既知の電解質を用いることができる。
The electrolyte used in the battery of the present invention includes, for example, an aprotic organic solvent such as propylene carbonate, ethylene carbonate, r-butyrolactone, dimethyl sulfoxide, acetonitrile, formamide, dimethylpolamide, nitromethane, and LiCl0. , LiAlIC
Known electrolytes generally used in batteries that use lithium as a negative electrode active material can be used, such as a combination with a lithium salt such as /4, LiBF4, LiC/, or a solid electrolyte or molten salt using Li as a conductor. .

又、電池構成上、必要ならば多孔室のポリプロピレン等
よりなる隔膜を使用してもよい。
Furthermore, if necessary in view of the battery structure, a diaphragm made of polypropylene or the like with porous chambers may be used.

次に、本発明を実施例にょシ説明するが、本発明はこれ
らによりなんら限定されるものではない。
Next, the present invention will be explained with reference to Examples, but the present invention is not limited to these in any way.

なお、実施例において電池作製はアルゴンガス雰囲気下
で行なった。
In addition, in the examples, battery fabrication was performed under an argon gas atmosphere.

実施例 1 〔高い嵩さ密度を有するアセチレン高重合体の製造〕窒
素ガスで完全に置換した11のガラス製反応器に、重合
溶媒として常法に従って精製したトルエン200Fd、
触媒としてテトラブトキシチタニウム2.94ミリモル
及びトリエチルアルミニウム7゜34ミリモルを順次に
室温で仕込んで触媒溶液を調製した。触媒溶液は均一溶
液であった。次いで、反応器を液体窒素で冷却して系中
の窒素ガスを真空ポンプで排気した。−78℃に反応器
を冷却し、触媒溶液を静置した状態で1気圧の圧力の精
製アセチレンガスを吹き込んだ。重合の初期に系全体は
寒天状になった。アセチレンガスの圧力を1気圧に保っ
たままで10時間重合反応をそのまま継続した。系は赤
紫色を呈した寒天状であった。重合終了後、未反応のア
セチレンガスを除去し、系の温度を一78℃に保ったま
ま200 rnlの精製トルエンで4回繰り返し洗浄し
、トルエンで膨潤した膜厚が約05crnのシート状膨
潤アセチレン高重合体を得た。この膨潤アセチレン高重
合体は、300〜500Aの径の繊維状微結晶(フィブ
リル)が規則的に絡み合った膨潤物であり、粉末状や塊
状のポリマーは生成していなかった。
Example 1 [Production of acetylene polymer with high bulk density] Toluene 200Fd purified according to a conventional method as a polymerization solvent was added to 11 glass reactors completely purged with nitrogen gas,
A catalyst solution was prepared by sequentially charging 2.94 mmol of tetrabutoxytitanium and 7.34 mmol of triethylaluminum as a catalyst at room temperature. The catalyst solution was a homogeneous solution. Next, the reactor was cooled with liquid nitrogen, and the nitrogen gas in the system was exhausted using a vacuum pump. The reactor was cooled to −78° C., and purified acetylene gas at a pressure of 1 atmosphere was blown into the reactor while the catalyst solution was left standing. At the beginning of polymerization, the entire system became agar-like. The polymerization reaction was continued for 10 hours while maintaining the pressure of the acetylene gas at 1 atm. The system was agar-like with a reddish-purple color. After the polymerization, unreacted acetylene gas was removed, and the system was washed four times with 200 rnl of purified toluene while keeping the temperature at -78°C to form a swollen acetylene sheet with a toluene-swollen film thickness of about 0.5 crn. A high polymer was obtained. This swollen acetylene polymer was a swollen product in which fibrous microcrystals (fibrils) with a diameter of 300 to 500 A were regularly intertwined, and no powder or lump-like polymer was produced.

このシート状膨潤アセチレン高重合体をクロムメッキし
たフェロ板にはさみ、室温で1ookp/crn2の圧
力で予備プレスし、次いで15tOn/crn2の圧力
で高圧プレスして赤褐色の金属光沢を持った均一で可撓
性のある膜厚120μmのアセチレン高重合体のフィル
ムを得た。このフィルムを5時間室温で真空乾燥した。
This sheet-like swollen acetylene high polymer was sandwiched between chromium-plated ferro plates, pre-pressed at room temperature at a pressure of 1ookp/crn2, and then high-pressure pressed at a pressure of 15tOn/crn2 to produce a uniform, reddish-brown metallic luster. A flexible acetylene polymer film having a thickness of 120 μm was obtained. This film was vacuum dried for 5 hours at room temperature.

得られたアセチレン高重合体フィルムの嵩さ密度は1.
0517ccで、電子顕微鏡観察よりこのフィルムは非
多孔質であった。 また、このアセチレン高重合体フィ
ルムはシス含量が90%、20℃での電気伝導度(直流
四端子法)が4.8 X 10  Ω ・副 のP型半
導体であった。
The bulk density of the obtained acetylene polymer film was 1.
0517 cc, and the film was found to be non-porous by electron microscopy observation. Further, this acetylene polymer film was a P-type semiconductor with a cis content of 90% and an electrical conductivity at 20° C. (DC four-terminal method) of 4.8×10 Ω·sub.

〔アセチレン高重合体のドーピング実験〕上記方法で製
造した嵩さ密度が1.0’59/CCのアセチレン高重
合体より、幅が0,5crnで長さが2゜0crnの小
片を切り出して、白金線に機械的に圧着固定してアノー
ド極とし、もう一方の電極とじて白金板を用い、LiP
F6 の濃度が0.3モル/lのプロピレンカーボネー
ト溶液を電解液として用い、一定電流下(1,0mA)
  で10時間ドーピングを行なった。ドーピング終了
後、ドープされたアセチレン高重合体フィルムをプロピ
レンカーボネー“代トで繰り返し洗浄し、金色の金属光
沢を有するドープアセチレン高重合体を得た。このドー
プアセチレン高重合体フィルムの組成は元素分析より[
CH(PF6)。189:EXであり、その電気伝導度
(直流四端子法)は2,540Ω ・m であった。
[Doping experiment of acetylene polymer] A small piece with a width of 0.5 crn and a length of 2°0 crn was cut out from the acetylene polymer with a bulk density of 1.0'59/CC produced by the above method. LiP is mechanically crimped and fixed to a platinum wire to serve as an anode electrode, and a platinum plate is used as the other electrode.
A propylene carbonate solution with a F6 concentration of 0.3 mol/l was used as the electrolyte under constant current (1.0 mA).
Doping was carried out for 10 hours. After doping, the doped acetylene polymer film was washed repeatedly with propylene carbonate to obtain a doped acetylene polymer with a golden metallic luster.The composition of this doped acetylene polymer film was From the analysis [
CH (PF6). 189:EX, and its electrical conductivity (DC four-terminal method) was 2,540Ω·m.

〔電池の放電実験〕′ 前記の方法で得られた組成が(CH(PFa )、ta
、’s。
[Battery discharge experiment]' The composition obtained by the above method was (CH(PFa), ta
,'s.

の電導性アセチレン高重合体を正極活物質に、リチウム
を負極活物質として電池を構成した。
A battery was constructed using a conductive acetylene polymer as a positive electrode active material and lithium as a negative electrode active material.

第1図は本発明の一具体例であるボタン型電池の特性測
定用電池セルの断面概略図であり1はNiメッキを施し
た黄銅製容器、2は直径20■の円板形リチウム負極、
3は直径261alの円形の多孔質ポリプロピレン製隔
膜、4は直径26■の円形のカーボン繊維よりなるフェ
ルト、5は正極、6は平均径2μmの穴を有するテフロ
ン製シート(住友電工製、フルオo゛クイrFP −2
00)、7は円形の断面を有するテフロン製容器、8は
正極固定用のテフロン製リング、9はNi  リード線
を示す。
FIG. 1 is a schematic cross-sectional view of a battery cell for measuring the characteristics of a button-type battery, which is a specific example of the present invention, in which 1 is a brass container plated with Ni, 2 is a disc-shaped lithium negative electrode with a diameter of 20 cm,
3 is a circular porous polypropylene diaphragm with a diameter of 261 al, 4 is a circular felt made of carbon fiber with a diameter of 26 cm, 5 is a positive electrode, and 6 is a Teflon sheet with holes with an average diameter of 2 μm (manufactured by Sumitomo Electric Industries, Ltd., Fluo O゛Qui rFP-2
00), 7 is a Teflon container with a circular cross section, 8 is a Teflon ring for fixing the positive electrode, and 9 is a Ni lead wire.

前記正極を容器1の下部の凹部に入れ、更に多孔性円形
テフロン製シート6を正極に重ねて入れた後テフロン製
リング8で締めつけて固定した。
The positive electrode was placed in the recess at the bottom of the container 1, and a circular porous Teflon sheet 6 was placed over the positive electrode, and then tightened and fixed with a Teflon ring 8.

フェルト4は容器1の上部の凹部に入れて正極と重ね、
電解液を含浸させた後、隔膜3を介してリチウム負極2
を載置し、容器7で締めつけて電池を作製した。電解液
としては蒸留脱水プロピレンカーボネートに溶解したL
iCl0.の1モル/l溶液を用いた。
Place the felt 4 in the recess at the top of the container 1 and overlap it with the positive electrode.
After being impregnated with the electrolyte, the lithium negative electrode 2 is inserted through the diaphragm 3.
was placed and tightened with container 7 to produce a battery. The electrolyte was L dissolved in distilled dehydrated propylene carbonate.
iCl0. A 1 mol/l solution of was used.

このようにして作製した電池の開路電圧は3.9Vであ
った。0.5 mAの定電流放電をアルゴン中で行なっ
たところ、放電時間と電圧の関係は、第2図の曲線(a
)のようになった。
The open circuit voltage of the battery thus produced was 3.9V. When a constant current discharge of 0.5 mA was performed in argon, the relationship between discharge time and voltage was shown by the curve (a) in Figure 2.
) became like this.

比較例 1 〔低い嵩さ密度のアセチレン高重合体の製造〕窒素雰囲
気下で内容積500−のガラス製反応容器に、5.1m
7!(15,0ミリモル)のチタニウムテトラブトキサ
イドを加え、20.0mlのトルエンに溶解させ、次い
で5.4mJ(40ミIJモル)のトリエチルアルミニ
ウムを攪拌しながら加えて反応させ触媒溶液を調製した
Comparative Example 1 [Manufacture of acetylene high polymer with low bulk density] A 5.1 m glass reactor with an internal volume of 500 m was placed in a nitrogen atmosphere.
7! (15.0 mmol) of titanium tetrabutoxide was added and dissolved in 20.0 ml of toluene, and then 5.4 mJ (40 mmol) of triethylaluminum was added and reacted with stirring to prepare a catalyst solution.

この反応容器を液体窒素で冷却して、系中の窒素ガスを
真空ポンプで排気し、次いでこの反応容器を一78℃に
冷却した。
The reaction vessel was cooled with liquid nitrogen, the nitrogen gas in the system was evacuated with a vacuum pump, and then the reaction vessel was cooled to -78°C.

反応容器を回転させて触媒溶液を反応容器の内壁に均一
に付着させた後、反応容器を静置させた状態で直ちに1
気圧の圧力の精製アセチレンガスを導入して重合を開始
した。重合開始と同時に反応容器の内壁に金属光沢を有
するアセチレン高重合体が析出した。−78℃の温度で
、アセチレン圧を1気圧の状態に保って1時間重合反応
を行なった後未反応のアセチレンを真空ポンプで排気し
て重合を停止した。窒素雰囲気下で残存触媒溶液を注射
器で除去した後、−78℃に保ったまま精製トルエン1
001で6回洗浄を繰り返し、次いで室温で真空乾燥し
た。
After rotating the reaction container to uniformly adhere the catalyst solution to the inner wall of the reaction container, immediately add 1
Polymerization was initiated by introducing purified acetylene gas at a pressure of atmospheric pressure. Simultaneously with the initiation of polymerization, an acetylene high polymer with metallic luster was deposited on the inner wall of the reaction vessel. The polymerization reaction was carried out at a temperature of -78°C for 1 hour while maintaining the acetylene pressure at 1 atm, and then the unreacted acetylene was evacuated with a vacuum pump to stop the polymerization. After removing the remaining catalyst solution with a syringe under nitrogen atmosphere, purified toluene 1 was added while keeping it at -78℃.
Washing with 001 was repeated six times, followed by vacuum drying at room temperature.

触媒溶液が反応器内壁に付着した部分に、その部分と面
積が等しく、厚さが90μmでシス含量が98%の膜状
アセチレン高重合体が得られた。
At the portion where the catalyst solution adhered to the inner wall of the reactor, a film-like acetylene high polymer having an area equal to that portion, a thickness of 90 μm, and a cis content of 98% was obtained.

この膜状アセチレン高重合体の電気伝導度(直流四端子
法)は20℃で2.5X10  Ω・G であった。こ
のフィルムの嵩さ密度は0.5297ccであった。
The electrical conductivity (DC four-terminal method) of this film-like acetylene polymer was 2.5×10 Ω·G at 20°C. The bulk density of this film was 0.5297 cc.

〔アセチレン高重合体のドーピング実験〕上記方法で製
造した嵩さ密度が0.52 g /ccのアセチレン高
重合体より、幅が0.5 crnで長さが2゜0crn
の小片を切り出して、白金線に機械的に圧着固定してア
ノード極とし、もう一方の電極として白金板を用い、L
iPF6の濃度が0.3モに/ lのプロピレンカーボ
ネート溶液を電解液として用い、一定電流下(1,01
01A)  で5時間ドーピングを行なった。ドーピン
グ終了後、ドープされたアセチレン高重合体フィルムを
プロピレンカーボネートで繰り返し洗滌し、金色の金属
光沢を有するドープアセチレン高重合体を得た。とのド
ープアセチレン高重合体フィルムの組成は元素分析より
[CH(PF’6)。jQ2:)%  であり、その電
気伝導度(直流四端子法)は820Ω・α であった。
[Doping experiment of acetylene polymer] From the acetylene polymer with a bulk density of 0.52 g/cc manufactured by the above method, a width of 0.5 crn and a length of 2°0 crn was obtained.
A small piece was cut out and mechanically crimped and fixed to a platinum wire to serve as the anode electrode, and a platinum plate was used as the other electrode.
A propylene carbonate solution with a concentration of iPF6 of 0.3 mo/l was used as the electrolyte, and a constant current (1,01
01A) for 5 hours. After the doping was completed, the doped acetylene polymer film was repeatedly washed with propylene carbonate to obtain a doped acetylene polymer having a golden metallic luster. The composition of the doped acetylene polymer film was determined by elemental analysis [CH(PF'6). jQ2:)%, and its electrical conductivity (DC four-terminal method) was 820Ω·α.

〔電池の放電実験〕[Battery discharge experiment]

で得られた嵩さ密度が0.521/ /ccのアセチレ
ン高重合体にPFiをドープした電導性アセチレン高重
合体を正極活物質として用いた以外は実施例1と全く同
様の方法で電池の放電実験を行なったところ、放電時間
と電圧の関係は第2図の(blのようKなった。また、
この電池の開路電圧け3,7Vであった。
A battery was prepared in exactly the same manner as in Example 1, except that the conductive acetylene polymer obtained by doping PFi with the acetylene polymer having a bulk density of 0.521/cc obtained in Example 1 was used as the positive electrode active material. When we conducted a discharge experiment, the relationship between discharge time and voltage was K as shown in Figure 2 (bl).
The open circuit voltage of this battery was 3.7V.

実施例 2 〔アセチレン高重合体のドーピンク実験〕実施例1で得
られた嵩さ密度が1.05g/ccのアセチレン高重合
体を用い、実施例1で支持電解質として用いたLiPF
6 の代りにLiCl0.  を用いた以外は実施例1
と全く同様の方法でドーピング実験を行ない、組成が(
CH(CI!04)o、+oo〕x (7) N気伝導
度(直流四端子法)が540  Ω−1・crn−1の
電導性アセチレン高重合体を得た。
Example 2 [Doping experiment on acetylene polymer] Using the acetylene polymer with a bulk density of 1.05 g/cc obtained in Example 1, LiPF was used as the supporting electrolyte in Example 1.
6 instead of LiCl0. Example 1 except that
A doping experiment was carried out in exactly the same manner as in , and the composition was (
CH(CI!04)o, +oo]x (7) An electrically conductive acetylene polymer having an N gas conductivity (DC four-probe method) of 540 Ω-1·crn-1 was obtained.

〔電池の放電実験〕 実施例1で正極活物質として用いた組成が[CH(PF
6)。、、8゜〕×  の電導性アセチレン高重合体の
代りに前記方法で得られた組成が[CH(Cj’04 
)o、loo]x の電導性アセチレン高重合体を用い
た以外は実施例1と全く同様の方法で電池の放電実験を
行ない第2図の(c)のような結果を得た。
[Battery discharge experiment] The composition used as the positive electrode active material in Example 1 was [CH(PF
6). , 8゜
) o, loo ]

また、この電池の開路電圧は3.75 Vであった。Further, the open circuit voltage of this battery was 3.75V.

比較例 2 〔アセチレン高重合体のドーピング実験〕実施例2で用
いた嵩さ密度が1.05.p/σ3のアセチレン高重合
体の代りに比較例1で得られた嵩さ密度が0.529 
/ Crn3のアセチレン高重合体を用いた以外は実施
例2と全く同様の方法でドーピング実験を行なって、組
成が(CH(CJO+ )。、fill )×  で、
電気伝導度(直流四端子法)が861−1 Ω ・画 の電導性アセチレン高重合体を得な。
Comparative Example 2 [Doping experiment of acetylene polymer] The bulk density used in Example 2 was 1.05. The bulk density obtained in Comparative Example 1 was 0.529 instead of the acetylene high polymer with p/σ3.
A doping experiment was carried out in exactly the same manner as in Example 2 except that an acetylene polymer of /Crn3 was used, and the composition was (CH(CJO+)., fill)×,
Obtain an electrically conductive acetylene polymer having an electrical conductivity (DC four terminal method) of 861-1 Ω.

〔電池の放電実験〕[Battery discharge experiment]

実施例1で正極物質として用いた組成が(CH(PF6
)。、tso〕xの電導性アセチレン高重合体の代りに
前記方法で得られた組成が(cH(czo、)。、IQ
IIXの電導性アセチレン高重合体を用いた以外は実施
例1と全く同様の方法で電池の放電実験を行なって第2
図の(d)のような結果を得た。また、この電池の開路
電圧は370vであった。
The composition used as the positive electrode material in Example 1 was (CH(PF6
). , tso]x, the composition obtained by the above method instead of the conductive acetylene polymer (cH(czo, )., IQ
A battery discharge experiment was conducted in the same manner as in Example 1 except that the conductive acetylene polymer of IIX was used.
The results shown in figure (d) were obtained. Further, the open circuit voltage of this battery was 370V.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一具体例であるボタン型電池の特性測
定用電池セルの断面概略図、第2図は本発明の実施例に
おける電池の放電時間と電圧の関係を示した図である。 1・・・容器、   2・・・リチウム負極、3・・・
隔膜、   4・・・フェルト、  5・・・正i、6
・・・多孔性テフロン製シート 7・・・テフロン製容器、 8・・・テフロン製リング、  9・・・Niリード線
。 特許出願人 昭和電工株式会社 代理人 弁理士菊地精−
FIG. 1 is a schematic cross-sectional view of a battery cell for measuring the characteristics of a button-type battery, which is a specific example of the present invention, and FIG. 2 is a diagram showing the relationship between battery discharge time and voltage in an example of the present invention. . 1... Container, 2... Lithium negative electrode, 3...
Diaphragm, 4... Felt, 5... Positive i, 6
...Porous Teflon sheet 7...Teflon container, 8...Teflon ring, 9...Ni lead wire. Patent applicant Showa Denko K.K. agent Patent attorney Sei Kikuchi

Claims (1)

【特許請求の範囲】[Claims] 繊維状微結晶(フィブリル)構造を有し、かつ嵩さ密度
が0.7〜1.2 g 7cm3のアセチレン高重合体
にドーパントをドープして得られるP型電導性アセチレ
ン高重合体を正極活物質として用い、軽金属を負極活物
質として用いたことを特徴とする電池。
A P-type conductive acetylene polymer obtained by doping a dopant into an acetylene polymer having a fibrous microcrystalline (fibril) structure and a bulk density of 0.7 to 1.2 g 7 cm3 is used as a positive electrode active material. A battery characterized by using a light metal as a negative electrode active material.
JP56151951A 1981-01-22 1981-09-28 Battery Pending JPS5854553A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56151951A JPS5854553A (en) 1981-09-28 1981-09-28 Battery
EP82300247A EP0058469B1 (en) 1981-01-22 1982-01-18 Battery having acetylene high polymer electrode
DE8282300247T DE3276842D1 (en) 1981-01-22 1982-01-18 Battery having acetylene high polymer electrode
US06/531,577 US4496640A (en) 1981-01-22 1983-09-12 Battery having acetylene high polymer electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56151951A JPS5854553A (en) 1981-09-28 1981-09-28 Battery

Publications (1)

Publication Number Publication Date
JPS5854553A true JPS5854553A (en) 1983-03-31

Family

ID=15529763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56151951A Pending JPS5854553A (en) 1981-01-22 1981-09-28 Battery

Country Status (1)

Country Link
JP (1) JPS5854553A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4565754A (en) * 1982-11-26 1986-01-21 Nippondenso Co., Ltd. Electrode for organic battery
JP2007147586A (en) * 2005-11-04 2007-06-14 Denso Corp Gas sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4565754A (en) * 1982-11-26 1986-01-21 Nippondenso Co., Ltd. Electrode for organic battery
JP2007147586A (en) * 2005-11-04 2007-06-14 Denso Corp Gas sensor

Similar Documents

Publication Publication Date Title
US6228532B1 (en) Lithium secondary cell
US6207326B1 (en) Secondary battery
US4728589A (en) Reversible electrochemical doping of conjugated polymers and secondary batteries based thereon
US5183543A (en) Polyanilines, process for the preparation thereof and cells using them
US4496640A (en) Battery having acetylene high polymer electrode
US4801512A (en) Reversible electrochemical doping of conjugated polymers and secondary batteries based thereon
JPS5854553A (en) Battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JPS5840781A (en) Secondary battery
KR20220147579A (en) Dual Electrolyte Approach to Increase Energy Density of Metal-Based Batteries
JPS6311748B2 (en)
JPH0530026B2 (en)
JPS5854554A (en) Battery
JPS61279061A (en) Secondary battery
JPS593872A (en) Battery
JPH04179049A (en) Negative electrode for battery
JPH0722025B2 (en) Secondary battery
JPS5951483A (en) Battery
JPH06150910A (en) Manufacture of electrode
JPS61279073A (en) Nonaqueous secondary battery
JPS5842172A (en) Battery
JPH05275083A (en) Lithium cell
JP3352845B2 (en) Method for producing integrated body of polymer electrolyte and electrode and battery
JPH0620000B2 (en) Non-aqueous secondary battery
JPS5854567A (en) Solid electrolyte battery