JPS5854175B2 - Local solution treatment method for rust-free steel pipes - Google Patents

Local solution treatment method for rust-free steel pipes

Info

Publication number
JPS5854175B2
JPS5854175B2 JP14111576A JP14111576A JPS5854175B2 JP S5854175 B2 JPS5854175 B2 JP S5854175B2 JP 14111576 A JP14111576 A JP 14111576A JP 14111576 A JP14111576 A JP 14111576A JP S5854175 B2 JPS5854175 B2 JP S5854175B2
Authority
JP
Japan
Prior art keywords
temperature
sensitized
heating
solution treatment
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14111576A
Other languages
Japanese (ja)
Other versions
JPS5366817A (en
Inventor
雅則 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP14111576A priority Critical patent/JPS5854175B2/en
Publication of JPS5366817A publication Critical patent/JPS5366817A/en
Publication of JPS5854175B2 publication Critical patent/JPS5854175B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はオーステナイト系ステンレス鋼等により形成さ
れた鋼管、条材その他の材料(以下、単に不銹鋼管等と
いう)を溶接する際などの加熱、昇温による熱影響を受
けて局部的に生じる鋭敏化組織を、処理前に健全な組織
であった部分に新たな鋭敏化組織を生じさせることなく
、消失させると同時に、内面側に新たな圧縮応力を生ぜ
しめてこれを残留させるための溶体化処理方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is designed to protect steel pipes, strips, and other materials made of austenitic stainless steel (hereinafter simply referred to as stainless steel pipes, etc.) from thermal effects caused by heating and temperature rise during welding. The sensitized tissue that occurs locally during treatment disappears without creating new sensitized tissue in areas that were healthy tissue before treatment, and at the same time generates new compressive stress on the inner surface to eliminate the remaining sensitized tissue. The present invention relates to a solution treatment method for the purpose of

不銹鋼管等は耐食性や機械的性質が優れているところか
ら、例えばJIS規格のSUS 304を使用した鋼管
等が原子炉装置や化学装置その他の分野で耐食管等とし
て多用されていることは周知である。
It is well known that steel pipes made of JIS standard SUS 304 are often used as corrosion-resistant pipes in nuclear reactor equipment, chemical equipment, and other fields because rust-free steel pipes have excellent corrosion resistance and mechanical properties. be.

然し乍ら、上記鋼管等は、装置に形成されたり部品とし
て装置に組込まれたりする際の溶接時の熱影響で溶接部
の近傍にクロム炭化物が析出して組織が鋭敏化され、結
晶粒界にクロム欠乏層を生じ、例えば当該部分に溶存酸
素等を含む液体が接触すると該クロム欠乏層が溶存酸素
などと結合して電気化学的に腐食し、更にこの腐食部分
に溶接の際に残留した引張応力が作用して粒界割れを生
じ、結局溶接部に応力腐食割れの現象を生じて実用上、
安全上極めて不都合であることが指摘されている。
However, when the above-mentioned steel pipes are formed into equipment or incorporated into equipment as parts, due to the heat effect during welding, chromium carbide precipitates near the weld and the structure becomes sharp, causing chromium to form at grain boundaries. For example, when a liquid containing dissolved oxygen or the like comes into contact with the chromium-depleted layer, the chromium-depleted layer combines with the dissolved oxygen and corrodes electrochemically, and furthermore, the tensile stress remaining in this corroded part during welding. acts to cause intergranular cracking, which eventually causes the phenomenon of stress corrosion cracking in the weld, which is difficult to use in practice.
It has been pointed out that this is extremely inconvenient in terms of safety.

このような不都合は上記のような溶接部に限らず、その
他の加工により局部的に熱影響を受けその部分の組織が
鋭敏化したものについても生じる。
Such inconveniences occur not only in the above-mentioned welded parts, but also in parts where the structure of the welded part is locally affected by heat due to other processing and becomes sensitive.

本発明の発明者は、上記鋼管等の溶接部のように組織の
鋭敏化に起因する応力腐食割れを生じないようにするた
め、溶接などのように高温の熱を伴う諸加工時の熱影響
により当該溶接部近傍に析出したクロム炭化物による鋭
敏化組織を消失させ、他の部分にその処理による熱影響
を及ぼさない局部溶体化処理方法を先に提案(特許第1
129247号(特公昭57−19169))t、てい
る。
In order to prevent stress corrosion cracking caused by the sensitization of the structure as in the welded parts of steel pipes, etc., the inventor of the present invention has developed We first proposed a local solution treatment method that eliminates the sensitized structure caused by chromium carbide precipitated near the weld, and does not affect other parts due to the heat (Patent No. 1).
No. 129247 (Special Publication No. 57-19169)).

而して、先に提案した方法は、不銹鋼管の周接子の溶接
部を含むその近傍のみを誘導加熱により溶体化温度にま
で急速な昇温速度で加熱し、前記管の内面が溶体化温度
に達したら直ちにその内面側に水を接触させて急冷する
ことを要旨とするものであり、一応の効果を奏するが、
この方法は、溶接時の熱影響を受けず組織が健全である
部分をこの方法による溶体化処理の加熱によって鋭敏化
しないようにするため、前記溶接部を含むその近傍のみ
を急速な昇温速度の加熱により目的温度にまで昇温させ
るに足りる大容量の電源が不可欠であって設備乃至は施
工面で難がある。
Therefore, the method proposed earlier heats only the vicinity of the circumferential weld of a stainless steel pipe, including the welded part, by induction heating to the solution temperature at a rapid temperature increase rate, and the inner surface of the pipe is heated to the solution temperature. The idea is to bring water into contact with the inner surface as soon as it reaches the temperature to rapidly cool it down, and although it is somewhat effective,
This method uses a rapid temperature increase rate only in the vicinity of the weld, including the weld, in order to avoid sensitizing the parts that are not affected by heat during welding and have a healthy structure due to the heating of the solution treatment using this method. A large-capacity power source that can raise the temperature to the target temperature is essential, which poses difficulties in terms of equipment and construction.

因に、容量の小さな電源を以て上記原発明方法を実施す
ると昇温速度が緩慢になり、健全な組織の部分が鋭敏化
温度域に比較的長い時間おかれることとなり、溶接によ
り鋭敏化した部分の溶体化はできても、その囲りに新た
な鋭敏化組織を発現させ易くなる3また、上記原発間の
実施における大容量電源を用いた急速加熱は、不銹鋼管
がプラント等の配管として組立てられた後に施す関係上
、その溶接部分の外周側からしか加熱できず、従って、
鋭敏化組織を改善しなければならない管の内表面を溶体
化温度(約1050〜11500C)にまで昇温させる
には、護管の外表面を内表面の温度以上、Gすえは肉厚
が10mm以上ある場合には、約1300℃前後)にま
で昇温させなければならないこととなるが、このような
加熱はその部分の結晶粒の粗大化を招いて好ましくない
のみならず、外表面を溶損させるに至ることもあるなど
の難点がある。
Incidentally, if the original invention method is carried out using a power supply with a small capacity, the rate of temperature rise will be slow, and parts of healthy tissue will be kept in the sensitized temperature range for a relatively long time, causing the parts sensitized by welding to Even if solution treatment is possible, a new sensitized structure is likely to develop in the surrounding area.3 In addition, the rapid heating using a large-capacity power source, which is practiced between nuclear power plants, is difficult because stainless steel pipes are assembled as piping in plants, etc. Because it is applied after welding, heating can only be done from the outer periphery of the welded part, so
In order to raise the temperature of the inner surface of the tube, whose sensitized tissue must be improved, to the solution temperature (approximately 1050 to 11500 C), the outer surface of the protective tube should be heated to a temperature higher than that of the inner surface, and the thickness of the G step should be 10 mm. If the temperature exceeds 1,300°C, it will be necessary to raise the temperature to around 1,300°C. However, such heating is not only undesirable because it causes coarsening of the crystal grains in that area, but also causes the outer surface to melt. There are some drawbacks, such as the possibility of damage.

而して、上記方法の加熱に誘導加熱を利用する場合には
、その周波数を選択することによって前記加熱の際の難
点をある程度改善できるが、周波数を選択した誘導加熱
によっても発熱は加熱対象(ここでは管の外表面)に集
中し、内表面の昇温は熱伝導に依るところ大であるから
、先に述べた外表面の結晶粒粗大化域は溶損の傾向は依
然として残るのである。
Therefore, when induction heating is used for heating in the above method, the difficulty in heating can be improved to some extent by selecting the frequency, but even with induction heating with a selected frequency, heat generation does not occur due to the heating target ( Here, the temperature rise on the inner surface is concentrated on the outer surface of the tube) and is largely dependent on heat conduction, so the above-mentioned region of coarse grains on the outer surface still tends to be eroded.

本発明の発明者は、原発間あ法の実施により生じる上記
難点の原因を究明した結果、原発間に於ける加熱の態様
に原因のあることを知得した。
The inventor of the present invention investigated the cause of the above-mentioned difficulties caused by the implementation of the nuclear power plant gap method, and as a result, learned that the cause lies in the heating mode in the nuclear power plant gap.

即ち、原発間は、不銹鋼管等(炭素含有i0.05優の
場合。
In other words, between nuclear power plants, rust-free steel pipes, etc. (if the carbon content is 0.05%) are used.

以下同じ)の組織にクロム炭化物が析出するのは、当該
組織が加熱又は加熱後の冷却の際に保持又は通過される
温度域と、該温度域に組織がおかれる時間に関係がある
という事実、具体的には、前記の温度域は炭素含有量に
よって若干異なるが400〜800°Cであり、当該温
度域と保持又は通過される時間との関係は、例えば60
0°Cでは約100〜200秒で粒界腐食が生じ、特に
700〜800℃の温度域では約20秒前後で組織が鋭
敏化してしまうというクロム炭化物の析出に関して従来
報告されている事実(第1図の図表で実線で囲まれた部
分参照)と、発明者の実験による、400〜800℃の
温度域であれば当該温度域に約10秒前後おかれても組
織が鋭敏化するという実験結果(第1図の図表で破線で
囲まれた部分参照)に基づき、局部的な溶体化処理の際
、その処理をされて部分に隣接し未だ組織が鋭敏化され
ていない他の健全な組織の部分の鋭敏化を防ぎつつ上記
局部的な処理対象部分だけを溶体化するには、上記の他
の健全な組織の部分が局部溶体化のための加熱の際、大
略400〜800℃の温度域に保持又は通過される時間
をできるだけ短かくする必要があるとの結論に基いてな
されたものであるが、原発間による加熱方法は、上記の
溶体化処理すべき部分に隣接した健全な組織の部分が新
たに鋭敏化しないようにすることを加熱昇温速度を大き
くすることによって達成しようとしたため、前述のよう
な難点が派生したものである。
The fact that chromium carbide precipitates in the structure of (the same applies hereinafter) is related to the temperature range in which the structure is held or passed during heating or cooling after heating, and the time the structure is kept in that temperature range. Specifically, the temperature range is 400 to 800°C, although it varies slightly depending on the carbon content, and the relationship between the temperature range and the time for which it is held or passed is, for example, 60°C.
It has been previously reported that intergranular corrosion occurs in about 100 to 200 seconds at 0°C, and the structure becomes sensitized in about 20 seconds in the temperature range of 700 to 800°C. (See the area surrounded by solid lines in the diagram in Figure 1) and an experiment conducted by the inventor that showed that if the temperature range is between 400 and 800 degrees Celsius, the tissue becomes sensitized even if it is kept in that temperature range for about 10 seconds. Based on the results (see the area surrounded by the dashed line in the diagram in Figure 1), during local solution treatment, other healthy tissues adjacent to the treated area and which have not yet been sensitized. In order to solutionize only the above-mentioned local treatment target area while preventing the above-mentioned areas from becoming sensitized, the above-mentioned other healthy tissue parts should be heated to a temperature of approximately 400 to 800°C during the heating for local solutionization. This was based on the conclusion that it is necessary to minimize the time during which the solution is retained or passed through the area. The above-mentioned difficulties arose because the attempt was made to prevent this part from becoming newly sensitive by increasing the heating rate.

そこで、本発明の発明者はクロム炭化物の析出に関して
、その温度域と当該温度域に組織が保持又は通過される
時間との関係を検討したところ、一般に組織に炭化物が
析出するといわれている400〜8000Cの鋭敏化温
度域でも、組織がその温度域におかれる時間によっては
クロム炭化物の析出しない場合のあること(第1図の図
表で斜線を施した部分参照)を知り、この現象を利用し
た加熱を施せば、前述の加熱対象の厚みに関して加熱の
際に生じる温度差を生ぜしめず、且つ処理すべき部分の
近傍の健全な組織の部分にクロム炭化物を析出させるこ
となく局部的な溶体化処理を施すことができるとの結論
を得て本発明を完成したもので、その構成は、不銹鋼管
に於ける周接手溶接部とそれを含む近傍の組織のように
、組織が局部的な熱影響を受けて局部的に鋭敏化した部
分における全周を、環状誘導子により、鋼管母材の炭素
含有量の多寡に応じ、上、下させることがある600〜
400℃前後の温度域で且つ、健全な組織の部分に炭化
物が析出することのない時間において、前記鋭敏化した
部分の肉厚方向の内外側でほぼ等温になるように予熱し
た直後、当該予熱部分を急速に溶体化温度にまで加熱し
、その加熱部分が溶体化温度に達したら直ちに、該加熱
部分をその内面側に水を接触させて強制的に冷却し溶体
化処理前に健全な組織である部分を鋭敏化させることな
く局部的に鋭敏化した組織のみを溶体化すると共に、こ
の溶体化した部分の内面側に圧縮残留応力を生じさせる
ことを特徴とするものである。
Therefore, regarding the precipitation of chromium carbides, the inventors of the present invention investigated the relationship between the temperature range and the time for which the structure is maintained or passed through the temperature range, and found that it is generally said that carbides precipitate in the structure at We learned that even in the 8000C sensitization temperature range, chromium carbide may not precipitate depending on the time the structure is exposed to that temperature range (see the shaded area in the diagram in Figure 1), and we took advantage of this phenomenon. If heating is applied, local solutionization can be achieved without causing the temperature difference that occurs during heating with respect to the thickness of the object to be heated, and without precipitating chromium carbide in areas with a healthy structure near the area to be treated. The present invention was completed based on the conclusion that the treatment could be applied to the structure, and the structure is similar to the circumferential weld of a stainless steel pipe and the structure in the vicinity including the circumferential weld. The entire circumference of the affected and locally sensitized part may be raised or lowered by an annular inductor depending on the carbon content of the steel pipe base material.
Immediately after preheating the sensitized part so that the inside and outside of the sensitized part is approximately the same temperature in the thickness direction, in a temperature range of around 400°C and for a time during which carbides do not precipitate in parts with a healthy structure, the preheating is performed. The part is rapidly heated to the solution temperature, and as soon as the heated part reaches the solution temperature, the heated part is forcibly cooled by bringing water into contact with the inner surface of the heated part to form a healthy structure before solution treatment. This method is characterized in that only the locally sensitized tissue is made into a solution without sensitizing that part, and compressive residual stress is generated on the inner surface side of this solutionized part.

次に本発明方法の実施例について説明する。Next, examples of the method of the present invention will be described.

呼び径4インチのJIS 5US−304゜5ch8
0、肉厚7.6間の管を第2図々示のように母材1,1
′として突合せ溶接したものを用意してその一つを断面
として観察したところ、溶接ビード2周辺の母材1,1
′の組織は溶接時の昇温及び冷却によって粒界にクロム
炭化物が析出した鋭敏化組織3,3′に変化していた。
JIS 5US-304゜5ch8 with nominal diameter of 4 inches
0 and wall thickness 7.6 as shown in the second figure.
When we prepared butt welded pieces as
The structure of '' had changed to a sensitized structure 3, 3' in which chromium carbide was precipitated at the grain boundaries due to heating and cooling during welding.

尚4,4′は溶接による熱影響を受けていない安定組織
である。
Note that 4 and 4' are stable structures that are not affected by heat due to welding.

そこで、このような組織を持った多数の試料を2組に分
け、環状の誘導子5による誘導加熱により、原発明の加
熱態様と本発明の加熱態様で急速に加熱して急冷し、溶
接ビード2部分に於ける管の外表面Aと内表面Bとの昇
温状態を観察したところ、次の通りであった。
Therefore, a large number of samples having such a structure were divided into two groups, and by induction heating using the annular inductor 5, they were rapidly heated and cooled using the heating mode of the original invention and the heating mode of the present invention. The state of temperature increase on the outer surface A and inner surface B of the tube in the two parts was observed and was as follows.

即ち、原発明方法によって投入電力600 KW出力周
波数2000 Hzで誘導子5を作用させ、母材1,1
′の溶接ビード2及びその近傍の組織33′部分を直接
溶体化温度にまで昇温させたとこる約4秒で内表面Bの
部分が略1050℃の溶体化温度に昇温されたのに対し
、外表面Aは約1330℃にまで昇温されており(第3
図の図表参照)、この部分の結晶粒に粗大化の傾向が現
われたことは勿論、試料によっては一部溶損が認められ
た。
That is, according to the method of the original invention, the inductor 5 is operated with an input power of 600 KW and an output frequency of 2000 Hz, and the base materials 1 and 1 are
Although the temperature of the inner surface B was raised to a solution temperature of approximately 1050°C in about 4 seconds when the weld bead 2 and the nearby structure 33' were directly heated to the solution temperature. On the other hand, the temperature of the outer surface A has been raised to approximately 1330°C (the third
(Refer to the diagram in the figure), not only did the crystal grains in this area tend to become coarser, but some samples also showed some melting loss.

一方、本発明方法によって前記と同様の熱源を用い、略
500℃の温度で約10秒間の予熱を施した後、そのま
ま出力を上げたところ、約2.5秒で内表面Bが略10
50℃の溶体化温度にまで昇温され、外表面Aはこの時
略1170℃に昇温されていて(第4図の図表参照)、
各試料に溶損が認められなかったのは勿論、結晶粒の粗
大化したものも認められなかった。
On the other hand, when the method of the present invention was used to preheat at a temperature of approximately 500° C. for approximately 10 seconds using the same heat source as described above, and then the output was increased, the inner surface B was approximately 10
The temperature was raised to a solution temperature of 50°C, and the outer surface A was heated to approximately 1170°C at this time (see the diagram in Fig. 4).
Of course, no melt damage was observed in any of the samples, and no coarse crystal grains were observed.

以上のことから、肉厚の対象を局部的に溶体化処理する
ため、処理すべき部分を急速に加熱する前に予熱を施せ
ば、溶体化温度にまで更に短時間で昇温できるのみなら
ず、熱源(誘導子5)に近い側(ここでは外表面A)が
過加熱されて組織に不都合な変化も生じないので、局部
的な溶体化処理を一段と効果的に施すことができ、また
熱源の容量も原発明の場合に比べ小さいものでも急速加
熱が可能であることが判る。
Based on the above, in order to locally solution heat a thick object, if you preheat the area to be treated before rapidly heating it, you can not only raise the temperature to the solution temperature in a shorter time. , since the side (outer surface A in this case) near the heat source (inductor 5) is not overheated and no unfavorable changes occur in the tissue, local solution treatment can be applied more effectively, and the heat source It can be seen that rapid heating is possible even with a smaller capacity than in the case of the original invention.

而して、上記の予熱は単なる予熱ではなく、クロム炭化
物の析出に関する温度域と当該温度域に健全な部分の組
織がおかれる時間との関係から、適宜の予熱温度と同時
間を設定するので、特別な勘や熟練度等の技伺を要せず
、容易に実施することができるのである。
Therefore, the above preheating is not just preheating, but an appropriate preheating temperature and the same time are set based on the relationship between the temperature range for precipitation of chromium carbide and the time for a healthy part of the structure to be in that temperature range. , it can be easily carried out without requiring special intuition or skill level.

次いで、上記のように異なった態様で加熱された2種の
試料は、これらを昇温の直後、管内に水を噴射して急冷
したのであるが、結局、原発明の態様で加熱した試料は
、外表面Aが1330℃に昇温されているので、本発明
方広により加熱した試料に比し、冷却されてしまうまで
に時間がかかった(第3図と第4図の図表参照)。
Next, the two types of samples heated in different manners as described above were quenched by injecting water into the tube immediately after raising the temperature, but in the end, the samples heated in the manner of the original invention were Since the temperature of the outer surface A was raised to 1330° C., it took a longer time to cool down compared to the sample heated by the method of the present invention (see the diagrams in FIGS. 3 and 4).

このように冷却に時間がかかるということは、温度降下
時に400〜800℃の鋭敏化温度域を通過する時間が
長くかかることであるから、組織にクロム炭化物の析出
するおそれがあって好ましくない。
The fact that cooling takes such a long time means that it takes a long time to pass through the sensitizing temperature range of 400 to 800° C. when the temperature drops, which is not preferable because there is a risk that chromium carbide will precipitate in the structure.

このことから、局部溶体化処理に於ては、処理すべき部
分の内外面を温度差を少なく急速に溶体化温度にまで昇
温させることが好ましく、本発明方法はこの点でも原発
明に比べ優れているといえる。
For this reason, in local solution treatment, it is preferable to rapidly raise the temperature between the inner and outer surfaces of the part to be treated to the solution temperature with little temperature difference, and the method of the present invention is also better than the original invention in this respect. It can be said that it is excellent.

次に、上記のような本発明方法によって局部的な溶体化
処理を施した試料の組織の状態を説明する。
Next, the state of the structure of a sample subjected to local solution treatment by the method of the present invention as described above will be explained.

@)7溶接ビード2と母材1,1′の境界部(以下、「
境界部分」という)には、溶接したままでは粒界にクロ
ム炭化物の析出していることが明瞭に認められたが、本
発明方法による処理後、これら炭化物は完全に消失して
いた。
@) 7 Boundary area between weld bead 2 and base metals 1 and 1' (hereinafter referred to as "
Although it was clearly observed that chromium carbides were precipitated at the grain boundaries in the welded portions (referred to as "boundary portions"), these carbides completely disappeared after treatment by the method of the present invention.

(ロ)前記境界部分の外側で鋭敏化した部分3,3′(
以下、「鋭敏化部分」という)には、溶接したままでは
、溶接時の熱影響を受は粒界にクロム炭化物の析出が認
められたが、本発明方法による処理後では、これら炭化
物は完全に消失していた。
(b) Sensitized portions 3, 3' outside the boundary portion (
In the sensitized part (hereinafter referred to as the "sensitized part"), precipitation of chromium carbides was observed at grain boundaries under the influence of heat during welding, but after treatment by the method of the present invention, these carbides were completely removed. It had disappeared.

(ハ)溶体化処理前は安定した健全な組織であったが、
溶体化処理の際に熱の影響を受ける部分4゜4′(以下
、「処理影響部分」という)には、本発明方法による処
理後、クロム炭化物の析出が認められたが、その量は前
記境界部分や鋭敏化部分に認められた炭化物の量に比べ
れば、極めて微量であり、全体としてこの部の組織の鋭
敏化は認められなかった。
(c) Although the structure was stable and healthy before solution treatment,
After treatment by the method of the present invention, precipitation of chromium carbide was observed in the area 4゜4' that is affected by heat during solution treatment (hereinafter referred to as the "treatment-affected area"), but the amount thereof was less than that described above. The amount of carbide was extremely small compared to the amount of carbide observed in the boundary and sensitized areas, and no sensitization of the structure in this area was observed as a whole.

これは、本発明方法による処理すべき部分の加熱、冷却
の時間が極めて短かくこの部4,4′の組織が変化する
に足りる熱影響がなかったからと思料される。
This is thought to be because the heating and cooling times of the parts to be treated by the method of the present invention were extremely short and there was no sufficient thermal influence to change the structure of these parts 4, 4'.

因に、別の試料を本発明方法の加熱態様で溶体化温度に
まで急速に加熱した後放冷したら、この部分4,4′の
組織に多量のクロム炭化物の析出が認められ、略完全に
鋭敏化していた。
Incidentally, when another sample was rapidly heated to the solution temperature using the heating mode of the method of the present invention and then allowed to cool, a large amount of chromium carbide was precipitated in the structure of these portions 4 and 4', and the chromium carbide was almost completely precipitated. It was becoming more sensitive.

また、本発明方法では、加熱直後の冷却を、管の内面側
に直接冷却水を接触させて行うので、新たな鋭敏化組織
を生じさせることなくなされる局部溶体化処理と同時に
、この処理部分の内面側に、圧縮応力を残留させること
ができるから、応力腐蝕割れを防止することができる。
In addition, in the method of the present invention, cooling immediately after heating is performed by bringing cooling water into direct contact with the inner surface of the tube, so that the treated area is simultaneously treated with local solution treatment without creating new sensitized structures. Since compressive stress can remain on the inner surface side, stress corrosion cracking can be prevented.

以上の実施例は、不銹鋼管の溶接部及びそれを含む近傍
を、局部的に溶体化すべき対象としたが、本発明方法は
これに限られず、例えば熱間的げやその他の熱間加工或
は熱処理などによってその部及びその近傍の組織がその
時の熱影響によって局部的に鋭敏化したものにも適用し
得ること勿論である。
In the above embodiments, the welded portion of the stainless steel pipe and the vicinity thereof are to be locally solutionized. Of course, this method can also be applied to structures where the structure in and around the area has been locally sensitized by heat treatment or the like due to the thermal influence at that time.

本発明方法は以上の通りであって、従来原子力装置や化
学装置などに耐食管などとして組込まれる不銹鋼管等は
、組込まれる際の溶接などの熱影響で当該熱影響を受け
た部分の組織が鋭敏化し時に残留応力も作用して、使用
時に該鋭敏化部分に応力腐食割れが発生して問題となっ
ていたが、本発明方法によれば、前記の溶接などによる
熱影響を受けて組織が鋭敏化した部分のみを、その部分
が部品であると装置に組込まれた後であるとを問わず、
局部的に溶体化処理と同時に応力改善できるから、従来
の問題を一挙に解決できるのみならず、この溶体化処理
のための加熱に際し、処理すべき部分をこの部分に隣接
した健全な部分の組織が鋭敏化しない温度と時間で予熱
するから、昇温時間を原発明に比べ短かくすることがで
きて熱源に近い側の過加熱を防止でき、更に前記予熱を
施すことによって急速加熱のための熱源の容量を原発明
の場合よりも小さくできて経済的であるなどの効果を奏
する。
The method of the present invention is as described above, and rust-free steel pipes, etc. that are conventionally incorporated into nuclear power equipment, chemical equipment, etc. as corrosion-resistant pipes, etc., have a structure that is affected by heat during welding etc. during the installation. When sensitized, residual stress also acts on the sensitized portion, causing stress corrosion cracking in the sensitized portion during use, which has been a problem.However, according to the method of the present invention, the structure is not affected by the heat caused by welding, etc., as described above. Only the sensitized part, whether it is a part or after it has been assembled into the device,
Stress can be improved locally at the same time as solution treatment, which not only solves the conventional problems at once, but also improves the structure of the healthy part of the area adjacent to the area to be treated when heating for solution treatment. Since preheating is performed at a temperature and time that does not cause sensitization, the heating time can be shortened compared to the original invention, and overheating on the side closer to the heat source can be prevented. The capacity of the heat source can be made smaller than in the case of the original invention, resulting in economical effects.

追加の関係 原発明は、不銹鋼管が原子力装置等に組込まれた際、そ
の溶接部などのように加工時或は組立時の熱影響を受け
て組織が局部的に鋭敏化したものを、当該鋭敏化部分だ
けを、他の部分に熱影響を及ぼすことなく局部的に溶体
化処理するために、局部加熱の可能な加熱手段で前記鋭
敏化部分を溶体化温度にまで急速に昇温せしめ、内面側
に水を接触させて急冷する方法であるが、この方法を実
施するには大容量の熱源が不可欠で経済性に欠ける憾が
あり、また処理すべき対象が肉厚のものの場合には、内
表面を溶体化温度にまで昇温させると、熱源に近い外表
面は結晶粒が粗大化したり溶損したりする温度にまで昇
温されることかあって、新たな問題を惹起することが多
かったので、本発明はこれら難点を払拭するため、溶体
化処理すべき部分に隣接した健全な組織の部分が鋭敏化
しない温度と時間において溶体化処理すべき部分を予熱
し、それから溶体化温度にまで急速に昇温させ、この後
直ちに内面側に水を接触させて急冷するようにして処理
すべき部分の内外表面の温度差を小さくすると共に熱源
の容量も小さくて済むようにしたものである。
An additional related original invention is that when rustless steel pipes are incorporated into nuclear power equipment, etc., the structure of the pipes becomes locally sensitized due to heat effects during processing or assembly, such as at welded parts. In order to locally solution treatment only the sensitized portion without thermally affecting other portions, the sensitized portion is rapidly heated to the solution temperature using a heating means capable of local heating; This is a method of rapidly cooling the inner surface by bringing water into contact with it, but this method requires a large-capacity heat source and is therefore uneconomical. If the temperature of the inner surface is raised to the solution temperature, the temperature of the outer surface near the heat source may be raised to a temperature at which the crystal grains become coarse or melted, causing new problems. Therefore, in order to eliminate these difficulties, the present invention preheats the part to be solution-treated at a temperature and time that does not sensitize parts of healthy tissue adjacent to the part to be solution-treated, and then lowers the temperature to the solution-treated part. This method rapidly raises the temperature to , and then immediately brings water into contact with the inner surface to rapidly cool it down, thereby reducing the temperature difference between the inner and outer surfaces of the part to be treated and reducing the capacity of the heat source. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はオーステナイト系不銹鋼の組織が鋭敏、化する
温度と時間との関係を示す図表、第2図は本発明方法の
実施に用いた試料の縦断面図、第3図は試料を原発明方
法で溶体化処理した場合に於ける試料内外面の温度変化
を示す図表、第4図は試料を本発明方法で溶体化処理し
た場合に於ける試料内外面の温度変化を示す図表である
。 1.1′・・・・・・母材、2・・・・・・溶接ビード
、3,3′・・・・・・鋭敏化組織、4,4′・・・・
・・安定組織、5・・・・・・誘導子、A・・・・・・
外表面、B・・・・・・内表面。
Figure 1 is a diagram showing the relationship between temperature and time at which the structure of austenitic stainless steel becomes sharp, Figure 2 is a vertical cross-sectional view of a sample used to carry out the method of the present invention, and Figure 3 is a diagram showing the relationship between the temperature and time at which the structure of austenitic stainless steel becomes sharp. FIG. 4 is a chart showing temperature changes on the inner and outer surfaces of a sample when the sample is solution-treated by the method of the present invention. 1.1'...Base metal, 2...Weld bead, 3,3'...Sensitized structure, 4,4'...
・・Stable tissue, 5・・・・Inductor, A・・・・
Outer surface, B...Inner surface.

Claims (1)

【特許請求の範囲】[Claims] 1 不銹鋼管に於ける周接手溶接部とそれを含む近傍の
組織のように、組織が局部的な熱影響を受けて局部的に
鋭敏化した部分における全周を、環状誘導子により、鋼
管母材の炭素含有量の多寡に応じ、上、下させることが
ある600〜400℃前後の温度域で、且つ、健全な組
織の部分に炭化物が析出することのない時間において、
前記鋭敏化した部分の肉厚方向の内側でほぼ等温になる
ように予熱した直後、当該予熱部分を急速に溶体化温度
にまで加熱し、その加熱部分が溶体化温度に達したら直
ちに、該加熱部分をその内側に水を接触させて強制的に
冷却し、溶体化処理前に健全な組織である部分を鋭敏化
させることなく局部的に鋭敏化した組織のみを溶体化す
ると共に、この溶体化した部分の内面側に圧縮残留応力
を生じさせることを特徴とする不銹鋼管の局部溶体化処
理方法。
1. The entire circumference of a portion where the structure has been locally sensitized due to local thermal effects, such as the circumferential joint weld of a stainless steel pipe and the surrounding structure including the circumferential joint weld, is removed using an annular inductor. At a temperature range of around 600 to 400 degrees Celsius, which may be raised or lowered depending on the carbon content of the material, and at a time during which carbides do not precipitate in areas with a healthy structure.
Immediately after preheating the sensitized portion so that it is almost isothermal inside in the thickness direction, the preheated portion is rapidly heated to the solution temperature, and as soon as the heated portion reaches the solution temperature, the heating is performed. The part is forcibly cooled by bringing water into contact with the inside of the part, and only the locally sensitized tissue is solutionized without sensitizing the part that is healthy tissue before solution treatment. A method for local solution treatment of rustless steel pipes, which is characterized by generating compressive residual stress on the inner surface side of a rust-free steel pipe.
JP14111576A 1976-11-26 1976-11-26 Local solution treatment method for rust-free steel pipes Expired JPS5854175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14111576A JPS5854175B2 (en) 1976-11-26 1976-11-26 Local solution treatment method for rust-free steel pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14111576A JPS5854175B2 (en) 1976-11-26 1976-11-26 Local solution treatment method for rust-free steel pipes

Publications (2)

Publication Number Publication Date
JPS5366817A JPS5366817A (en) 1978-06-14
JPS5854175B2 true JPS5854175B2 (en) 1983-12-03

Family

ID=15284500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14111576A Expired JPS5854175B2 (en) 1976-11-26 1976-11-26 Local solution treatment method for rust-free steel pipes

Country Status (1)

Country Link
JP (1) JPS5854175B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820359A (en) * 1987-03-12 1989-04-11 Westinghouse Electric Corp. Process for thermally stress-relieving a tube
US5766378A (en) * 1995-11-06 1998-06-16 Ag Industries, Inc. Stainless steel surface claddings of continuous caster rolls
US5927378A (en) * 1997-03-19 1999-07-27 Ag Industries, Inc. Continuous casting mold and method

Also Published As

Publication number Publication date
JPS5366817A (en) 1978-06-14

Similar Documents

Publication Publication Date Title
EP1927668B1 (en) Restoration method for deteriorated part and restoration apparatus for deteriorated part
US5022936A (en) Method for improving property of weld of austenitic stainless steel
JPS622903B2 (en)
JPS5854175B2 (en) Local solution treatment method for rust-free steel pipes
US2280689A (en) Method of making composite articles
JPS6132376B2 (en)
JPH07241692A (en) Fusion repair method of crack
JP2865749B2 (en) Piping reforming method
JPS63112089A (en) Improving method for residual stress of double metal pipe and the like
JPS61235516A (en) Heat treatment of welded stainless steel joint
Panchal Relieving stress in stainless steels
JPS6250531B2 (en)
JPS5940892B2 (en) Heat treatment method for welds in stainless steel pipes
JPS5848016B2 (en) Solution treatment method for austenitic stainless steel
KR101830532B1 (en) Heat treatment method for improving resistivity of heterojunction in nuclear power plant
JP2678230B2 (en) Heat treatment method for welds
KR20180041311A (en) Heat treatment method after dissimilar welding PWSCC reduction in order to improve the material microstructure
JPS6219952B2 (en)
JPS58154487A (en) Method for welding tubular member
JPS63199075A (en) Method for welding metallic pipe
JPS63227724A (en) Method for improving residual stress of stainless steel pipe or the like
JPS6256208B2 (en)
JPH0694886A (en) Crd stub repair method for atomic pressure container
JP2654235B2 (en) Method of preventing stress corrosion cracking of long housing
JPS59107068A (en) Treatment in weld zone of nickel alloy