JPS5854098B2 - Equipment for producing fibers made from thermosoftening substances - Google Patents

Equipment for producing fibers made from thermosoftening substances

Info

Publication number
JPS5854098B2
JPS5854098B2 JP8229676A JP8229676A JPS5854098B2 JP S5854098 B2 JPS5854098 B2 JP S5854098B2 JP 8229676 A JP8229676 A JP 8229676A JP 8229676 A JP8229676 A JP 8229676A JP S5854098 B2 JPS5854098 B2 JP S5854098B2
Authority
JP
Japan
Prior art keywords
melt
thermosoftening
molten
producing fibers
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8229676A
Other languages
Japanese (ja)
Other versions
JPS5310726A (en
Inventor
英二 水島
信義 大里
啓八郎 田仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP8229676A priority Critical patent/JPS5854098B2/en
Publication of JPS5310726A publication Critical patent/JPS5310726A/en
Publication of JPS5854098B2 publication Critical patent/JPS5854098B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 本発明は熱軟化性物質からの繊維の製造さら1こは該物
質1こ旋回するガスジェットを作用せしめて該物質の繊
維を製造するための装置1こ関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for producing fibers from a heat-softening material by applying a swirling gas jet to the material.

熱軟化性物質たとえばガラスを細くして繊維とする方法
として近年いわゆる旋回ガスジェット法が提案された。
In recent years, a so-called swirling gas jet method has been proposed as a method for thinning thermosoftening materials such as glass into fibers.

(特願昭50−101618号、昭和50年8月20日
出願−特開昭52 125113)本坊は熱軟化性物質の溶融円柱伏流にそ
の進行方向横断面外周の接線方向成分を有するガス流を
溶融物が横方向1こ変位するのを妨げるようIこ接触さ
せながら該物質を高速で旋回させ細められた糸状物質を
遠心力lこよって引き出す方法で従来のブロー法(火炎
法)遠心法など1こ比し生産効率、製品の質などきわめ
て有利であることが明らかとなって来ている。
(Japanese Patent Application No. 101618, filed on August 20, 1975 - Japanese Patent Application Laid-open No. 125113) The present invention is based on a gas flow having a component in the tangential direction of the outer periphery of the cross section in the direction of travel in the molten cylindrical underground flow of a heat-softening substance. Conventional blow method (flame method) centrifugal method involves rotating the molten material at high speed while keeping it in contact with the molten material to prevent it from moving in the lateral direction, and drawing out the narrowed filamentous material using centrifugal force It has become clear that this method has significant advantages in terms of production efficiency and product quality compared to other methods.

旋回ガスジェット法は、より詳細1こ述べると、熱軟化
性物質の溶融物を連続的1こ流出させること、および流
出した溶融物の進行1こ沿う第1の区域fこおいて溶融
物に対してその横断面外周の接線方向成分を有する気体
流を、溶融物が横力向1こ変位するのを妨げるよう1こ
接触させて、溶融物を限定された位置1こ閉じこめなが
ら溶融物の進行方向の中心軸のまわり1こ回転させるこ
とから成り、それ1こよって前記第1区域から溶融物進
行1こ沿って続く第2区域1こおいて、主として前記回
転の力の慣性1こもとづく回転による遠心力1こよって
溶融物を横力向1こ向って飛び出させ、そしてその飛び
出し方向を中心軸からみた円周方向でかつ前記回転と同
じ向き1こ回動させて、溶融物から熱軟化性物質の繊維
を連続的に引き出すことを特徴とする熱軟化性物質の繊
維の製造方法である。
In more detail, the swirling gas jet method consists of continuously flowing out a melt of a heat-softening material, and injecting the melt into the melt in a first area along the progress of the flowing melt. A gas flow having a component in the tangential direction of the outer periphery of the cross section is brought into contact with the melt to prevent it from displacing in the lateral force direction, thereby confining the melt in one limited position. consisting of one rotation about the central axis in the direction of travel, so that a second zone following from said first zone along the melt advance is mainly due to the inertia of said rotational force. The centrifugal force caused by the rotation causes the melt to fly out in one lateral force direction, and the flying direction is the circumferential direction as seen from the central axis, and the same direction as the rotation is made to rotate the melt one turn to remove heat from the melt. This is a method for producing fibers of a heat-softening substance, which is characterized by continuously drawing out fibers of a softening substance.

そしてより好ましくは、熱軟化性物質の溶融物を溶融物
ノズル流出口から0.5〜10間の断面直径をもって連
続的に流出させること、および流出した溶融物の進行1
こ沿う第1の区域において溶融物1こ対してその横断面
外周の接線方向成分および溶融物の進行lこ沿ってその
中心軸に近づくような成分を有する気体流を、溶融物ノ
ズルの先端と、進行する溶融物の中心軸1こ前記気体流
が最も接近する位置との間の距離が溶融物ノズルの内径
の0.2〜lO倍1こなるよう1こ、かつ溶融物が横方
向に変位するのを妨げるように接触させて、溶融物を限
定された位置1こ閉じ込めて先細りの円錐形状を形成せ
しめながら溶融物の中心軸のまわりfこ回転させること
からなり、それ]こよって前記第1区域から溶融物進行
1こ沿って続く第2区域1こおいて、主として前記回転
の力の慣性1こもとづく回転1こよる遠心力1こよって
溶融物を円錐形状の先細り先端部から横力向1こ向かっ
て飛び出させ、そしてその飛び出し方向を中心軸からみ
た円周方向でかつ前記回転と同じ向き1こ回動させて、
溶融物から熱軟化性物質の繊維を連続的に引き出すこと
を特徴とする熱軟化性物質の繊維の製造方法である。
And more preferably, the melt of the thermosoftening substance is continuously discharged from the melt nozzle outlet with a cross-sectional diameter of between 0.5 and 10, and the progress of the discharged melt is 1.
A gas flow having a component tangential to the outer circumference of the cross-section of the melt in a first region along the melt and a component approaching the central axis of the melt along the progress of the melt is directed to the tip of the melt nozzle. , so that the distance between the center axis of the advancing melt and the position where the gas flow approaches the closest is 0.2 to 10 times the inner diameter of the melt nozzle, and the melt is moved laterally. The method consists of rotating the melt about the central axis while confining the melt in a limited position and forming a tapered conical shape by making contact so as to prevent the melt from being displaced; In a second zone 1 following the melt progress from the first zone, the melt is moved laterally from the tapered tip of the conical shape mainly due to the centrifugal force due to the rotation due to the inertia of the rotational force. Make it pop out in one direction of force, and rotate it one turn with the popping direction in the circumferential direction as seen from the central axis and in the same direction as the rotation,
This is a method for producing fibers of a heat-softening material, characterized by continuously drawing fibers of a heat-softening material from a melt.

発明者は旋回ガスジェット法に於ては溶融円柱伏流を形
成する溶融物流出口の有効孔径が該方法によって製造さ
れる繊維状物質の品質、生産能率1こ著しい影響を与え
る事を見出し本装置を提案するもので本発明の要旨は熱
軟化性物質の溶融円柱伏流1こ旋回ガスジェットを作用
させて該熱軟化性物質を細くして熱軟化性物質の繊維を
製造する装置1こおいて該熱軟化性物質の溶融物の流出
口の有効孔径が0.5 mπ及至2.5山である事を特
徴とする熱軟化性物質の繊維の製造装置である。
The inventor discovered that, in the swirling gas jet method, the effective pore diameter of the melt outlet that forms a molten cylindrical underground flow has a significant effect on the quality and production efficiency of the fibrous material produced by the method, and developed the present device. The gist of the present invention is to provide an apparatus 1 for producing fibers of a thermosoftening material by applying a swirling gas jet to a molten cylindrical underground flow of a thermosoftening material to thin the thermosoftening material. This apparatus is characterized in that the effective pore diameter of the outlet for the melt of the thermosoftening material is 0.5 mπ to 2.5 mπ.

旋回ガスジェット法に於ては3本以上の高速ガスジェッ
ト流を溶融円柱状流に該溶融円柱伏流が高速で旋回し延
伸されるように作用せしめるのが有利である。
In the swirling gas jet method, it is advantageous to use three or more high-speed gas jet streams to act on the molten cylindrical flow so that the molten cylindrical underflow is swirled and stretched at high speed.

この場合高速ジェット流は第1の区域1こ於て溶融円柱
状流Eこ溶融物をとじこめるよう]こ近づいて円すい(
コーン)を形成しそれ1こ続く第二の区域において糸状
1こ引きのばしつつ高速で旋回せしめる。
In this case, the high-velocity jet stream approaches the molten columnar stream E in the first zone 1 so as to confine the melt.
A cone is formed, and in the second section following the cone, a filament is stretched out and rotated at high speed.

ここでより能率的な糸の延伸を行うため1こは円すい先
端部の回転をより高速(こ行わしめる必要がある。
Here, in order to draw the thread more efficiently, it is necessary to rotate the conical tip at a higher speed.

円すい先端部の旋回の回転数n(回/5ec)はn=k
v/2πr0で表わされる。
The rotational speed n (times/5ec) of the tip of the cone is n=k
It is expressed as v/2πr0.

但しここでVは高速ガス流の流速の溶融円柱伏流横断面
外周の接線方向成分でr。
However, here, V is the component of the flow velocity of the high-speed gas flow in the tangential direction of the outer circumference of the molten cylindrical underground flow cross section, r.

はガスジェットが溶融円柱伏流に最も近づく場所(焦点
と呼ぶ)1こおける溶融円柱伏流中心と各ガスジェット
流中心の距離の平均値(絞り半径)でkはすべり係数で
ある。
is the average value (aperture radius) of the distance between the center of the molten cylindrical underflow and each gas jet flow center at one place where the gas jet approaches the molten cylindrical underflow (referred to as the focal point), and k is the slip coefficient.

従って回転数nを大きくしようとすればに2vを大きく
r。
Therefore, if you want to increase the rotation speed n, you will have to increase r by increasing 2v.

をできるだけ小さくするのが有利である。It is advantageous to make it as small as possible.

ここでガス流速接線方向成分Vはほとんど音速1こ近く
一定なのでr。
Here, the gas flow velocity tangential component V is almost constant near the sound velocity of 1, so r.

を小さくkを大きくしなければならない。must be made smaller and k larger.

r□はあまり小さくするとガス気流同志がぶつつかり合
って乱気流を生じ安定したコーンの形成が行われなくな
るので限度がある。
There is a limit to r□ because if it is made too small, the gas streams will collide with each other, causing turbulence and making it impossible to form a stable cone.

そこですべり係数kをできるだけ太きくしなけれればな
らな9)。
Therefore, it is necessary to make the slip coefficient k as large as possible9).

すべり係数には糸状の溶融物の速度とガス流速との比で
溶融物がガス流(こよって旋回するときの旋回をさまた
げようとする力が大きければ太きいはどkは小さくなる
The slip coefficient is determined by the ratio of the velocity of the filamentous melt to the gas flow velocity.Thus, when the melt swirls, the larger the force that tries to prevent the swirl, the smaller the thick diameter k.

実際1こ行われる操作範囲1こおいてはkは0.01及
至0.5程度であって相当小さく従ってkの値を大きく
することは効果としては大きい。
In actual practice, k is approximately 0.01 to 0.5 in one operation range, which is quite small, so increasing the value of k has a large effect.

r02V等が一定であるときkを大きくしようとすれば
溶融物の粘性を下げるか円柱伏流の直径を小さくするの
が有効であると考えられる。
In order to increase k when r02V etc. are constant, it is considered effective to lower the viscosity of the melt or to reduce the diameter of the cylindrical underground flow.

そこで発明者等は円柱伏流の直径を2,5關よりも大き
な値たとえば3.0泪の一定値として溶融物の粘性のみ
を下げる事を試みてみたが、この場合円柱伏流の直径が
犬で旋回1こよるねじれ抵抗が犬となっているの(こ溶
融物の粘性が低いのでガス気流1こよって溶融物の先端
が吹きとばされてしまいビーズやフレークの未繊維化物
が多くなって繊維ができ1こくい事が判った。
Therefore, the inventors tried to lower only the viscosity of the melt by setting the diameter of the cylindrical underflow to a value larger than 2.5 degrees, for example, to a constant value of 3.0 mm, but in this case, the diameter of the cylindrical underflow was set to a constant value of 3.0 mm. The torsional resistance caused by swirling 1 is a problem (because the viscosity of the molten material is low, the tip of the molten material is blown away by the gas flow 1, resulting in a large amount of unfiberized beads and flakes, causing fibers to form). It turned out that there was a problem with this.

一方円柱伏流の直径を2.5mm以下望ましくは2mm
以下とする事(こよって第1に円柱伏流の旋回1こよる
ねじれ抵抗が著しく小さくなること、第21こそのため
(こガス気流1こよる分断、吹きとばされの現象が起き
(こくく従って溶融物の粘性を3〔ト50ポアズ程度1
こまでも下げ得るのでますます円柱伏流の旋回によるね
じれ抵抗が小さくなるなど効果が著しく増巾されること
が判った。
On the other hand, the diameter of the cylindrical underground flow should be 2.5 mm or less, preferably 2 mm.
(Thus, firstly, the torsional resistance due to the swirling of the columnar underground flow becomes extremely small, and secondly, the phenomenon of splitting and blowing away of the gas airflow occurs.) The viscosity of the melt is about 3 [to 50 poise] 1
It has been found that the effects are significantly enhanced, as the twisting resistance due to the swirling of the cylindrical underground flow is further reduced because it can be lowered even further.

円柱伏流を形成するのは溶融物の流出ノズルであるので
流出ノズルの有効孔径(孔の横断面積の4倍を周長で除
したもの)を2.5關望ましくは2mrn以下とする事
1こよって円柱伏流をこのよう1こすることができる。
Since it is the outflow nozzle of the melt that forms the cylindrical underground flow, the effective hole diameter of the outflow nozzle (4 times the cross-sectional area of the hole divided by the circumference) should be 2.5 degrees, preferably 2 mrn or less. Therefore, the cylindrical underground flow can be rubbed once in this way.

しかしながら溶融物の流出ノズルの有効孔径を小さくす
ることはそこから流出する溶融物の流量が限られる事を
意味しこれは一つの繊維形成ユニット単位時間当りの繊
維の生産量が限られることを意味する。
However, reducing the effective hole diameter of the melt outlet nozzle means that the flow rate of the melt flowing out from it is limited, which means that the amount of fiber produced per unit time of one fiber forming unit is limited. do.

したがってあまり溶融物の流出ノズルの有効孔径を・」
\さくすることも有効でなくこの意味から0.5 mm
以上とする必要がある。
Therefore, the effective hole diameter of the melt outflow nozzle is too small.
\It is not effective to shorten it, and in this sense, it is 0.5 mm.
It is necessary to do more than that.

もちろん0.5間以下の有効孔径でも良質の繊維を得る
事が可能である。
Of course, it is possible to obtain high quality fibers even with an effective pore diameter of 0.5 mm or less.

本発明の実施1こ当っては溶融物の流出量を増加すべく
溶融物横の深さを大きくしてヘッドをかけるとか加圧す
るなどの事を行い流出ノズル先端1こおいて25Crr
Laq以上の圧力望ましくは40CrILaq以上の圧
力が得られるよう]こするのが良い。
Embodiment 1 of the present invention In order to increase the amount of melt flowing out, the horizontal depth of the melt is increased and a head is applied or pressure is applied, and the tip of the outflow nozzle is 25Cr.
It is preferable to rub so as to obtain a pressure of 40 CrILaq or more, preferably 40 CrILaq or more.

ガスジェットによって旋回を開始する直前の熱軟化性物
質の温度は、その粘性が10〜200ポアズより好まし
くは30〜100ポアズになるよう1こ維持することが
好ましい。
It is preferable that the temperature of the heat-softening material just before it starts swirling by the gas jet is maintained at a temperature so that its viscosity is 10 to 200 poise, more preferably 30 to 100 poise.

次に実施例を用いて本発明を説明する。Next, the present invention will be explained using examples.

実施例 第1図に示す形の繊維形成ユニットを用いて実験し表1
こ示す結果を得た。
EXAMPLE An experiment was carried out using a fiber forming unit of the shape shown in Fig. 1. Table 1
We obtained the following results.

第1図および第2図1こおいて溶融ガラスはポット内8
から流出ノズル2を通って流出口3から流出し、空気ジ
ェットノズル1から噴出した高速空気ジェット61こよ
ってコーン4を形成したのち細繊化され繊維5となって
出てゆく。
In Figures 1 and 2, the molten glass is in the pot 8.
The cone 4 is formed by a high-speed air jet 61 ejected from the air jet nozzle 1, and is then finely divided into fibers 5.

ジェット6は流出口3から約2山下の位置においてコー
ン4の中心軸1こ最も接近する。
The jet 6 comes closest to the central axis 1 of the cone 4 at a position about two peaks below the outlet 3.

空気ジェットノズルは水平面と45°の角をなした断面
直径が1.0關の円形のもので3本あり水平面への投影
でお互は120°の角度をなしている。
There are three air jet nozzles each having a circular cross-sectional diameter of about 1.0 degrees and making an angle of 45 degrees with the horizontal plane, and they form an angle of 120 degrees when projected onto the horizontal plane.

空気噴出口は溶融ガラス流出口と接してはいないができ
るだけ近く位置させである。
The air outlet is not in contact with the molten glass outlet, but is located as close as possible.

なお表1こおいてガラス流量は1時間当り1kgとなる
よう1こ槽深さを調節してテストした。
In Table 1, the test was conducted by adjusting the depth of the tank so that the glass flow rate was 1 kg per hour.

空気はtokg/cI?Lゲージ圧、ガラスは流出口で
約50ポイズの粘度である。
Is the air tokg/cI? At L gauge pressure, the glass has a viscosity of approximately 50 poise at the outlet.

なお0.5 mmのガラス流出口径のときはガラス流量
をL kg/ h rとする事ができなかった。
Note that when the glass outlet diameter was 0.5 mm, the glass flow rate could not be set to L kg/hr.

表1こ示すよう1こ、ガラス流出口径が3間のときには
未繊維化物割合すなわち単位時間当り生成する繊維化物
量と未繊維化物量との合計1こ対する未繊維化物量の割
合は50φ1こ達するがガラス流出口径が2.5 mm
以下1こなる1こつれて未繊維化物割合は減少し、繊維
径も減少することがわかる。
As shown in Table 1, when the glass outlet diameter is between 1 and 3, the proportion of unfibered material, that is, the ratio of the amount of unfibered material to the total amount of fiberized material and non-fibered material produced per unit time is 50φ1. The glass outlet diameter is 2.5 mm.
It can be seen that the proportion of non-fiberized material decreases and the fiber diameter decreases with each passing step.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図の縦断面図、第2図は第
1図のA−A方向から見た底面図である。 8・・・・・・熱軟化性物質、5・・・・・・繊維、3
・・・・・・熱軟化性物質の溶融物の流出口。
FIG. 1 is a longitudinal sectional view of a detailed explanatory diagram of the present invention, and FIG. 2 is a bottom view seen from the direction AA in FIG. 1. 8...Thermosoftening substance, 5...Fiber, 3
・・・・・・Outlet of melted material of thermoplastic substance.

Claims (1)

【特許請求の範囲】[Claims] 1 熱軟化性物質の溶融物質の溶融円柱伏流1こ旋回ガ
スジェットを作用させて該熱軟化性物質を細くして熱軟
化性物質の繊維を製造する装置において該熱軟化性物質
の溶融物の流出口の有効孔径が0.5山乃至2.5關で
あることを特徴とする熱軟化性物質の繊維の製造装置。
1. A molten cylindrical underground flow of a molten thermosoftening material.1 A device for producing fibers of a thermosoftening material by applying a swirling gas jet to thin the thermosoftening material. An apparatus for producing fibers of a heat-softening substance, characterized in that the effective pore diameter of the outlet is 0.5 to 2.5 mm.
JP8229676A 1976-07-09 1976-07-09 Equipment for producing fibers made from thermosoftening substances Expired JPS5854098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8229676A JPS5854098B2 (en) 1976-07-09 1976-07-09 Equipment for producing fibers made from thermosoftening substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8229676A JPS5854098B2 (en) 1976-07-09 1976-07-09 Equipment for producing fibers made from thermosoftening substances

Publications (2)

Publication Number Publication Date
JPS5310726A JPS5310726A (en) 1978-01-31
JPS5854098B2 true JPS5854098B2 (en) 1983-12-02

Family

ID=13770577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8229676A Expired JPS5854098B2 (en) 1976-07-09 1976-07-09 Equipment for producing fibers made from thermosoftening substances

Country Status (1)

Country Link
JP (1) JPS5854098B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135678U (en) * 1981-02-17 1982-08-24

Also Published As

Publication number Publication date
JPS5310726A (en) 1978-01-31

Similar Documents

Publication Publication Date Title
US4243400A (en) Apparatus for producing fibers from heat-softening materials
US4185981A (en) Method for producing fibers from heat-softening materials
US3920362A (en) Filament forming apparatus with sweep fluid channel surrounding spinning needle
JPS5849497B2 (en) A method of producing fibers by "tortion" using a jet that penetrates a gas stream diagonally.
US5232638A (en) Apparatus and method for introducing additives to fibrous products
JPH036268B2 (en)
NO154750B (en) PROCEDURE FOR THE MANUFACTURE OF MINERAL FIBERS FOR MINERAL FIBER COATS, AND THE IMPLEMENTATION FOR IMPLEMENTATION OF THE PROCEDURE.
JPH05213625A (en) Method and apparatus for forming fiber from thermoplastic material
JPH07503697A (en) Mineral wool manufacturing method and manufacturing device, and mineral wool manufactured thereby
US4548632A (en) Process for producing fine fibers from viscous materials
BE905560A (en) Quenching streams of molten mineral material - to form mineral fibres of non-circular cross=section and high mod ratio
US4015964A (en) Method and apparatus for making fibers from thermoplastic materials
US5116397A (en) Fibrillation device for the manufacture of mineral wool
US2632920A (en) Method and apparatus for producing mineral wool
US2274130A (en) Apparatus for spinning fibers
JPS5854098B2 (en) Equipment for producing fibers made from thermosoftening substances
US4544393A (en) Rotary fiber forming method and apparatus
JPS5854099B2 (en) Equipment for manufacturing fibers made from thermosoftening substances
JPS5846458B2 (en) Equipment for manufacturing fibers made from thermosoftening substances
US2388935A (en) Mineral wool manufacture
JP3888664B2 (en) Method for producing glass lump, method for producing molded glass, and apparatus used in these methods
US5139551A (en) Method of producing spherical products
JP2590331B2 (en) Method for producing straight fibers
US2884659A (en) Method and apparatus for producing fibers
JPH01104336A (en) Manufacture of spherical body