JPS5854023A - Inorganic fiber - Google Patents

Inorganic fiber

Info

Publication number
JPS5854023A
JPS5854023A JP56146182A JP14618281A JPS5854023A JP S5854023 A JPS5854023 A JP S5854023A JP 56146182 A JP56146182 A JP 56146182A JP 14618281 A JP14618281 A JP 14618281A JP S5854023 A JPS5854023 A JP S5854023A
Authority
JP
Japan
Prior art keywords
fibers
bone
calcium
fiber
inorganic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56146182A
Other languages
Japanese (ja)
Other versions
JPH0130927B2 (en
Inventor
Hideo Tagai
田賀井 秀夫
Masahiro Kobayashi
雅博 小林
Takao Fujisawa
藤澤 孝雄
Mikiya Ono
幹也 尾野
Yasuaki Fukuda
福田 恭彬
Hiroyasu Takeuchi
啓泰 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Mitsubishi Industries Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Mitsubishi Industries Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd, Mitsubishi Industries Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP56146182A priority Critical patent/JPS5854023A/en
Publication of JPS5854023A publication Critical patent/JPS5854023A/en
Publication of JPH0130927B2 publication Critical patent/JPH0130927B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:Inorganic fibers, having a specific (Ca/P) molar ratio and the content of (CaO+P2O5) in a specific range, having improved biocompatibility, capable of uniting with the hard tissue in the living body in a short time without causing foreign body reactions, and suitable for fillers in lost parts of bones and gaps. CONSTITUTION:A raw material of phosphorus and calcium, e.g. calcium tetraphosphate, hydroxyapatite, quick lime or ammonium tertiary phosphate, is mixed with animal bones, kaolin, etc., at 0.3-4.0 (Ca/P) molar ratio and 80-15wt% (CaO+P2O5) content, and the resultant mixture is then melt spun to give the aimed fibers. Preferably, the resultant fibers are treated with an aqueous solution, e.g. diammonium hydrogenphosphate, to deposit the calcium phosphate compound on the fibrous surfaces. EFFECT:Very easily adapted to lost parts of bones in a complicated shape.

Description

【発明の詳細な説明】 本発明は生体との親和性が良好でかつ新生骨形成能を有
し、かつ複雑な形状をした骨欠損部位にもきわめて容易
に適合させうる骨欠損部及び空隙部充てん材としての無
機ファイバーに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides bone defects and voids that have good compatibility with living organisms, have the ability to form new bone, and can be extremely easily adapted to bone defect sites with complex shapes. Concerning inorganic fibers as fillers.

外科あるいは整形外科の分野においては、骨折や骨腫瘍
の切除などにより骨に欠損部あるいは空隙部を生じ、ま
だ歯科の分野においても歯槽+1i!漏による顎骨の消
耗欠損等が起り、当該個所の補綴を必要とする場合にし
ばしば遭遇する。。
In the field of surgery or orthopedics, defects or voids are created in bones due to fractures or removal of bone tumors, and even in the field of dentistry, alveolar +1i! This often occurs when the jawbone is wasted due to leakage and a prosthesis is required for the area. .

従来かかる場合には患者本人の腸骨等を切除し、骨欠損
個所に充てん【7、骨組織の欠損あるいは空隙をうめる
とともに当該組織の回復治癒を早めるという方法が多く
の’AA fi用いられている。
Conventionally, in such cases, the patient's own iliac bone, etc. was removed and the bone defect site was filled [7] In many 'AA fi' methods, the bone tissue defect or void was filled and the recovery of the tissue was accelerated. There is.

しかしながら、この方法を用いるには損傷個所以外の正
常な骨組織を1ノ除する必要があることから、患者の苦
痛は太e<、1〜かも手術に当り、多大の労力を要する
。さらに、骨欠損部等が大きな場合に11、それに埋込
むだけの十分な址の自家骨を採取できるとは限らず、不
足分については何らかの代用物を用いることを余儀なく
される。この代用物としては、/r、とえげ同種骨。
However, in order to use this method, it is necessary to remove one part of the normal bone tissue other than the damaged area, which may cause pain to the patient and require a great deal of labor during the surgery. Furthermore, if the bone defect is large (11), it is not always possible to collect enough autologous bone to fill it, and it is necessary to use some kind of substitute to make up for the shortage. Substitutes for this include /r, Toge allograft;

異種骨があるが埋込んだ生体組織と拒絶反応を伴うこと
などの点に問題が残されており、手術後の経過は必ずし
も良好と+、lいえず、未だ実用段階には至っていない
Although there is foreign bone, there are still problems such as rejection reactions with the implanted living tissue, and the postoperative course is not always positive, so it has not yet reached the stage of practical use.

このようなことから、骨欠損部及び空隙部に充てんした
場合生体親和性に優れ、当該欠損個所並びにその周辺部
における遺骨作用を促進し、骨組織欠損個所の構造機能
を修復及び回復せしめる人工材料の開発が望まれている
For this reason, artificial materials that have excellent biocompatibility when filled into bone defects and voids, promote the function of ashes in the defect and surrounding areas, and repair and restore the structural functions of bone tissue defects. development is desired.

生体の硬組織代替物質としては、各種金属合金及び有機
物等が用いられてきたが、生体内における環境下での溶
解劣化若しくは生体に対し毒性を有し、異物反応を伴う
といわれており、現在では生体との親和性に優れ、かつ
上記の欠点のないセラミックス系材料が用いられつつあ
る。このセラミックス系材料の中でも生体親和性に優れ
たアルミナ、カーボン、りん酸三カルシウムあるいはヒ
ドロキシアパタイトの焼結体若しくは単結晶からなる人
工骨9人工歯根などが一発されつつあシ注目を集めてい
る。
Various metal alloys and organic substances have been used as hard tissue substitutes for living organisms, but they are said to deteriorate due to dissolution in the living environment, to be toxic to living organisms, and to be accompanied by foreign body reactions. Ceramic materials, which have excellent compatibility with living organisms and do not have the above-mentioned drawbacks, are now being used. Among these ceramic materials, artificial bones and artificial tooth roots made of sintered bodies or single crystals of alumina, carbon, tricalcium phosphate, or hydroxyapatite, which have excellent biocompatibility, are beginning to attract attention. .

しかしながら、これらセラミックス系インブラント材は
いずれもセラミックス材料共通の硬くてもろいという欠
点を有し、現在のところこれらの材料として充分実用に
供し得る状態には至っていない。さらにこれら焼結体若
しくは単結晶体からなるセラミックスのブロックを骨欠
損部に充てんする試みもなされてはいるが、複雑な形状
の骨欠損部に充てんするにあたり該ブロックと骨組織と
の間に不均一な間隙が残存することなどから、充てんの
目的を達成することはできず、一方たとえばアルミナの
場合には、骨組織より著るしく硬いため充てん材周辺で
その刺激による骨吸収が起るなどの問題点があり、い壕
だ実用の域には達してい寿い。
However, all of these ceramic implant materials have the drawbacks that are common to ceramic materials, such as being hard and brittle, and so far they have not reached a state where they can be put to practical use. Furthermore, attempts have been made to fill bone defects with ceramic blocks made of these sintered compacts or single crystals, but when filling bone defects with complex shapes, there is a gap between the blocks and bone tissue. Because uniform gaps remain, the purpose of filling cannot be achieved. On the other hand, in the case of alumina, for example, since it is significantly harder than bone tissue, bone resorption occurs around the filling material due to stimulation. There are some problems, and it has not been put into practical use for a long time.

従って、本発明の−II的は生体親和性に優れ、しかも
異物反応を伴わず短期間に生体硬組織と一体化する骨欠
損部及び空隙部充てん月である無機ファイバーを提供す
ることにある1、本発明の他の[」的は充−Cん部にお
ける遺骨作用を促進し、骨組織欠損個所の構造及び機能
を速かに修復及び回復せしめる骨欠損部及び空隙部充て
ん材である無機ファイバーを提供することにある。
Therefore, the second objective of the present invention is to provide an inorganic fiber that is excellent in biocompatibility and can be used to fill bone defects and voids that integrates with biological hard tissue in a short period of time without causing any foreign body reaction. Another object of the present invention is an inorganic fiber that is a filling material for bone defects and voids that promotes the ashes action in the filled area and quickly repairs and restores the structure and function of the bone tissue defect. Our goal is to provide the following.

本発明の更に別の1」的較1゛充てん個所の形状に適し
た形にきわめて容易になしうる骨欠損部及び空隙部充て
ん材である無機ファイバーを提供することにある。
Still another object of the present invention is to provide an inorganic fiber that is a filling material for bone defects and voids that can be very easily formed into a shape suitable for the shape of the filling site.

本発明によればCa/Pモル比(Ca/Pの原子比、以
下同じ)が0.3以上4.0以下であり、かつCa O
+ P 205を80重量%以下15重量%以上含有す
る無機ファイバー及び該無機ファイバーがその表面にり
ん酸カルシウム化合物を有する無機ファイバーが提供さ
れる。
According to the present invention, the Ca/P molar ratio (the atomic ratio of Ca/P, the same hereinafter) is 0.3 or more and 4.0 or less, and CaO
+ An inorganic fiber containing 80% by weight or less and 15% by weight or more of P 205 and an inorganic fiber having a calcium phosphate compound on its surface are provided.

まずCa/Pモル比が0.3〜4.0であシ、かつCa
O+P2O5を80〜15重量%(以下単に%と記す、
)含有する無機ファイバーについて説明する。
First, the Ca/P molar ratio is 0.3 to 4.0, and Ca
O + P2O5 80 to 15% by weight (hereinafter simply referred to as %)
) The contained inorganic fibers will be explained.

本発明の無機ファイバーのりんおよびカルシウムの原料
としてはりん酸四カルシウム、ヒドロキシアパタイト、
りん酸三カルシウム、プルツシャイ、ト、モネタイト等
りんおよびカルシウムを含ケ化合物を牟独7・若しくは
2れらと生石灰、消石灰、炭酸カルシウム等カルシウム
を含む化合物又はりん酸三アンモニウム、シん酸−水素
アルミニウム、シん酸ナトリウム、りん酸カリウム、り
ん酸等りんを含む化合物のうちから選ばれた1種若しく
は2種以上の混合物を、更に、前記カルシウムを含む化
合物とりんを含む化合物のそれぞれから選ばれ7’?、
 11m若しくは2種以上の混合物を適宜使用すること
ができる。
As raw materials for phosphorus and calcium in the inorganic fiber of the present invention, tetracalcium phosphate, hydroxyapatite,
Compounds containing phosphorus and calcium such as tricalcium phosphate, tricalcium phosphate, monetite, etc. and compounds containing calcium such as quicklime, slaked lime, calcium carbonate, or triammonium phosphate, phosphoric acid-hydrogen One type or a mixture of two or more selected from phosphorus-containing compounds such as aluminum, sodium sinate, potassium phosphate, phosphoric acid, etc., and further selected from each of the above-mentioned calcium-containing compounds and phosphorus-containing compounds. Re7'? ,
11m or a mixture of two or more types can be used as appropriate.

壕だ、CaO及びP2O,以外の成分の合計を20〜8
5%とする原料としてFjl、アルミニウム。
The total of the components other than CaO and P2O is 20 to 8.
Fjl, aluminum as a raw material to be 5%.

珪素、す) IJウム等を含む化イ)物から選ばれた1
種まだは2種以上の混合物を適宜使用することができる
。斤おこれらに代え、天然に存する物質例えば動物の骨
やカオリン等も、生体にとって有害となる成分たとえば
ひ素、カドミウム等を含んでいないか又はぞの名イ、j
量が少量であれば使用できる。
1 selected from compounds including silicon, IJium, etc.
A mixture of two or more types of seeds can be used as appropriate. In place of these, naturally occurring substances such as animal bones and kaolin may also be used that do not contain components harmful to living organisms such as arsenic, cadmium, etc.
It can be used in small quantities.

本発明の無機ファイバーはたとえば前述した原料を適宜
混合し、該混合物を底部にノズルを有するるつほに入れ
熔融し、清澄化させ、底部のノズルより熔融物を流出さ
せ、これに高圧気体をふきつけることにより綿状ファイ
バーとすることがアき、一方流出物をドラムに一!、き
とらせることにより長ファイバーとすることができる。
The inorganic fiber of the present invention can be produced by, for example, appropriately mixing the above-mentioned raw materials, putting the mixture into a melting pot with a nozzle at the bottom, melting it, clarifying it, letting the melt flow out from the nozzle at the bottom, and then injecting high-pressure gas into it. By wiping it, you can make it into cotton-like fibers, and then pour the spill into a drum! , can be made into long fibers by cutting.

このような形状とすることにより骨欠損部及び空隙部の
充てん材としての使用に際L 、その形状をきわめて容
易にかつ自由に変えうろこととなり、また塊状物に比し
て表面積を犬とすることができることから、新生骨の生
成量も多くしうる7、更に該形状とすることにより該フ
ァイバーを充てん材として使用した場合、連続した空孔
を付与することができ、したがって骨形成成分が充てん
材内部にまで進入することになる結果、骨組織欠損個所
の修復及び回復、更には生体硬組織と充てん材の一体化
を著しく早めることができる。
Due to this shape, when used as a filling material for bone defects and voids, the shape can be changed very easily and freely, and the surface area is smaller than that of lumps. Because of this, the amount of new bone generated can be increased.7 Furthermore, by forming the fiber into this shape, when the fiber is used as a filler, continuous pores can be provided, so that the bone-forming component can fill the fiber. As a result of penetrating into the interior of the material, the repair and recovery of the bone tissue defect site and the integration of the living hard tissue and the filler material can be significantly accelerated.

該無機ファイバーはCa/Pが0.3〜4.0であり、
かつCa 0−)−PtOs含有量が80〜15%の範
囲にあることが必をでちる。Ca/Pが0.3未満の場
合には熔融物の粘度が小さくなシすぎるため、ファイバ
ーとなすととが冒漬なためであり、Ca/Pが4.0を
越える場合、及びC11LO+P2O1含有量が80%
を越える場合には、ともに原料の融点が著しく高くなり
、熔融できなくなるか又は熔融できたとしても熔融物の
粘度がファイバーとするためには太きすぎるため、ファ
イバーを作シえないためである。一方CaO+PtO*
含有量が15%未満の場合には生体親和性が悪くなυ、
かつ新生骨生成能も低くなり、骨組織の修復及び回復が
遅くなるため好ましくない。
The inorganic fiber has a Ca/P of 0.3 to 4.0,
And it is necessary that the Ca0-)-PtOs content is in the range of 80 to 15%. If Ca/P is less than 0.3, the viscosity of the melt is too small and the fibers and eggplant are immersed.If Ca/P is more than 4.0, the viscosity of the melt is too small and the fibers and eggplant are immersed. 80% of the amount
If the melting point of the raw materials exceeds this, the melting point of both materials will become extremely high, making it impossible to melt them, or even if they can be melted, the viscosity of the melt will be too thick to make fibers, making it impossible to make fibers. . On the other hand, CaO+PtO*
If the content is less than 15%, the biocompatibility is poor,
Moreover, the ability to generate new bone is also lowered, and the repair and recovery of bone tissue is delayed, which is not preferable.

長ファイバーはそのまま骨欠1貝部等に充てん材として
用いることもできるが、織物状とすることにより同様の
方法で若1.<は該欠損部又は骨折個所等の周囲に巻き
つけて用いることができる。骨欠損部にファイバーを充
てんし、更にその周囲に織物状としてまきつけるという
方法をとれば骨欠損部の修ゆ又は回復は、骨欠損部にフ
ァイバーを充てんしたのみの場合にくらべ治療期間が短
縮される。
Although long fibers can be used as fillers for bone defects, etc., they can also be used as fillers for bone defects, etc., but they can be used in the same manner as woven fibers. < can be used by wrapping it around the defect or fracture site. By filling the bone defect with fibers and then wrapping the fibers around it in the form of a fabric, the healing period for repairing or recovering the bone defect can be shortened compared to when the bone defect is only filled with fibers. Ru.

本発明の無機ファイバーはその表面にりん酸カルシウム
化合物を不せしめることが好ましく、りん酸カルシウム
化合物を無機ファイバー表面に有せしめる効果は無機フ
ァイバーの生体親和性を更に改良し、新生骨生成能をよ
り大きくすることにより生体骨組織の修復及び回復なら
び・  に骨組織と充てん材の一体化をより早くするこ
とにある。
The inorganic fiber of the present invention is preferably free of calcium phosphate compounds on its surface, and the effect of having a calcium phosphate compound on the surface of the inorganic fiber further improves the biocompatibility of the inorganic fiber and further enhances the ability to generate new bone. By increasing the size, the repair and recovery of the living bone tissue and the integration of the bone tissue and the filling material are made faster.

無機ファイバーの表面にシん酸カルシウム化合物を有せ
しめる方法としては、無機ファイバーをりん酸水溶液と
アン七ニヤ水の混合により、父はυん酸−水素アンモニ
ウム、りん酸二水素アンモニウム又はりん酸三アンモニ
ウムの水溶液又はこれらの混合溶液、又はこれらとりん
酸水溶液若しくはアンモニア水とを混合し所望のpHと
なし、これに浸漬させることにより該溶液中に存在する
りん酸基と無機ファイバーから溶出スるカルシウムイオ
ンとを反応せしめ、シん酸カルシウム化合物をファイバ
ーの表面に析出させる方法を用いることができる。
As a method for providing a calcium phosphate compound on the surface of an inorganic fiber, the inorganic fiber is mixed with an aqueous solution of phosphoric acid and an aqueous solution of ammonium hydrogen phosphate, ammonium dihydrogen phosphate, or trihydrogen phosphate. An aqueous solution of ammonium or a mixed solution thereof, or a mixture of these and an aqueous phosphoric acid solution or aqueous ammonia to a desired pH, and by immersion in this solution, the phosphoric acid groups present in the solution and inorganic fibers are eluted. A method can be used in which a calcium phosphate compound is precipitated on the surface of the fiber by reacting with calcium ions.

上記無機ファイバー表面にりん酸カルシウム化合物を析
出させるりん酸基を含む溶液のp’Hは2〜7にあるこ
とが必要である。溶液のpHが2未満の場合には無機フ
ァイバーが劣化し、ファイバーの強度が著しく低下する
だめこれを充てん材として使用するのに十分な強度のも
のが得られないためである。一方plIが7を超える場
合には無機ファイバー表面に析出するりん酸カルシウム
化合物がきわめてわずかとなるため、表面改質の効果が
はとんと期待′できないためである。
It is necessary that the pH of the solution containing a phosphoric acid group to precipitate a calcium phosphate compound on the surface of the inorganic fiber is between 2 and 7. This is because if the pH of the solution is less than 2, the inorganic fiber will deteriorate and the strength of the fiber will drop significantly, making it impossible to obtain a fiber with sufficient strength to be used as a filler. On the other hand, if plI exceeds 7, the amount of calcium phosphate compound precipitated on the surface of the inorganic fiber will be extremely small, so that no significant surface modification effect can be expected.

無機ファイバーの表面に析出させたりん酸カルシウム化
合物の種類は詳細には確定し得、ないが、X線回折の結
果より、りん酸基を含む前記溶液のpHが低い場合はプ
ルラシャイトが、pHが高い場合はアパタイトが主体と
な、っているものと思われる。
Although the type of calcium phosphate compound precipitated on the surface of the inorganic fiber cannot be determined in detail, the results of X-ray diffraction indicate that when the pH of the solution containing phosphate groups is low, plurashite is used; If it is high, it seems that apatite is the main component.

なお、無機ファイバーの赤面にりん酸カルシウム化合物
を有せしめる方法としては、プルラシャイト、りん酸三
カルシウム、ヒドロ゛キシアパタイト等のりん酸カルシ
ウム化合物のスラリーを無機ファイバーの表面にU着ゼ
しめ、これを乾燥してりん酸カルシウム化合物を該ファ
イバーの表面に固定する方法等も使用しイ1する。
In addition, as a method for imparting a calcium phosphate compound to the blush of an inorganic fiber, a slurry of a calcium phosphate compound such as plurashite, tricalcium phosphate, hydroxyapatite, etc. is deposited on the surface of the inorganic fiber, and this is applied to the surface of the inorganic fiber. A method of fixing the calcium phosphate compound to the surface of the fiber by drying may also be used.

表面改質は単にファイバーのみでなく前述した長ファイ
バーを織物状となしたものについても同様に行うことが
でき、この織物状の表面改質したものを前述したように
骨欠損部周囲に巻きつける方法等に使用することも当然
可能である。
Surface modification can be performed not only on fibers but also on the aforementioned long fibers in the form of a woven fabric, and this surface-modified woven fabric is wrapped around the bone defect as described above. Of course, it is also possible to use it for methods etc.

本発明に係る無機ファイバーは単に外科及び整形外科の
分野への用途のみばかりでなく歯科における抜歯後の顎
堤低下防止のため、又は歯槽膿漏等によって生じた歯根
部周辺の骨欠損部などへの利用も当然可能であシ、更に
シん酸基を含む水の処理材としても用いることができる
The inorganic fiber according to the present invention is not only used in the fields of surgery and orthopedics, but also in dentistry to prevent alveolar ridge decline after tooth extraction, or to bone defects around tooth roots caused by alveolar pyorrhea, etc. Of course, it is also possible to use it as a treatment material for water containing sicic acid groups.

以下本発明を実施例により史に具体的に説明する。The present invention will now be explained in more detail with reference to Examples.

〔実施例1〕 るつばのノズル」−り熔融物を流出させ該151+、出
物をドラムに巻きとることにより1叱フアイバーの作製
を試みた。結果を第1表に7J<す。
[Example 1] An attempt was made to produce a 151+ fiber by flowing out the molten material through the nozzle of a crucible and winding the molten material around a drum. The results are shown in Table 1.

この結果、Ca/Pが0.2の場合r1いずれもファイ
バー化できなかったが、これはこれらを熔融した場合の
熔融物の活用°が低ずぎるためであった。一方、Ca/
Pが03又):i 1.7の場合でCa O+P、0.
  が90俤の場合には一応熔融物となるが、これらに
ついてにファイバーヲ作製するに肖り、しにしは断糸し
111(続l−でファイバー化することは困難であった
。Ca / L)が4.0で、かつCaO+P、O,が
90 V、の場合及びCa/Pが5.0の場合1fCF
−L 170 (1−C1/Cテも混合した原享1が熔
融せず、ファイバーを得ることを寸できなかった。
As a result, when Ca/P was 0.2, none of r1 could be made into fibers, but this was because the utilization of the melt when these were melted was too low. On the other hand, Ca/
(P is 03): When i is 1.7, Ca O+P, 0.
If it is 90 yen, it becomes a molten material, but when making fibers from these, it was difficult to break the thread and make it into a fiber with 111 (continued).Ca / L ) is 4.0, and when CaO+P,O, is 90 V, and when Ca/P is 5.0, 1fCF
-L 170 (Hara Kyo 1 mixed with 1-C1/Cte also did not melt, making it impossible to obtain fibers.

以上あげた以外の場合については、いずれの場合にも、
はぼ断糸すること力〈長ファイバーを作製しえた。
In any case other than those listed above,
By cutting the yarn, we were able to create long fibers.

第1表 第1表 (細−き) イ1 〔1人とカイQ1タリ2 〕 実施1りり1における試験ノ1’x7,9.] 1.]
、3゜17.19で作製したファイバー全人の大腿骨に
人工的に作製した置火(11部(3L・IILψX 4
 m属L)に充てんし、12週間経過後の骨欠損部の様
子を観察した。その結果、試験ノに7,9,13゜17
.19のファイバーを使用した”44 合にtま、いず
れの場合も、周囲の骨組域とほとんど一体化しており、
充てん材と周囲の骨組織との境界はゆ」確で力かつ/こ
。しかしながら試験A 11のファイバーを使用した場
合には充てんしたファイバー表面にわずかに新生骨の生
成がみとめらhるのみで周囲の骨組織と充てん材とは明
確に区別することができた。
Table 1 Table 1 (Thin) A1 [1 person and Kai Q1 Tari 2] Test No. 1'x7, 9 in Practice 1 Riri 1. ] 1. ]
, 3゜17.19Fiber artificially prepared on the femur of all human beings (11 parts (3L・IILψX 4
The condition of the bone defect was observed after 12 weeks. As a result, 7,9,13゜17 on the exam.
.. 19 fibers were used, and in each case they were almost integrated with the surrounding skeletal area,
The boundary between the filler and the surrounding bone tissue is precise and tight. However, when the fiber of Test A11 was used, only a slight amount of new bone formation was observed on the surface of the filled fiber, and the surrounding bone tissue and the filling material could be clearly distinguished.

〔実施例3〕 実施例1における試験JIG、7. 13. 19と同
一組成の原料を用い実施例1と同様に底部にノズルを有
するるつば中に熔融物を作製し、該熔融物を底部のノズ
ルより流出さぜ、こhに同圧空気をふきつけることによ
り綿状のファイバーの作製を試みた。
[Example 3] Test JIG in Example 1, 7. 13. Prepare a melt in a crucible with a nozzle at the bottom in the same manner as in Example 1 using raw materials with the same composition as in Example 19, flow out the melt from the nozzle at the bottom, and blow the same pressure air over the crucible. In this way, we attempted to create cotton-like fibers.

この結果いずれの場合においても綿状のファイバーを得
ることができた。
As a result, flocculent fibers could be obtained in all cases.

これら音大の大腿骨に人工的に作製した骨欠損部(3+
amψX 411’l屑L)に充てんし、以後の経過を
観察した。その結果いずれの場合においても充てん後4
週間ですでに充てんしたファイバー表面に新生骨が多量
に生成していることが認められた。
Artificially created bone defects in these music-sized femurs (3+
amψX 411'l waste L) was filled, and the subsequent progress was observed. As a result, in either case, after filling 4
It was observed that a large amount of new bone had been generated on the fiber surface that had already been filled within a week.

〔実施例4〕 実施例1における試験A7,13.19で作製したファ
イバーを用い、該ファイバーをそれぞれ、りん酸−水素
アンモニウムを10 %含みりん酸又はアンモニヤ水に
てp I(1,0、2,0。
[Example 4] Using the fibers prepared in Tests A7 and 13.19 in Example 1, the fibers were treated with pI (1,0, 2,0.

4.0. 6.0. 7.0,8.(+にした水溶液中
にそれぞれ30分間ずつit fit 17、ファイバ
ーの表面処理を行つ〕こ。このようK t、てイ1#た
ファイバー表面を走査型甫、子顕倣鏡に1観察17だと
ころ、いずitの場合もp H1,0で処理したファイ
バーについてV」°、ファイバー表面が侵さハ、大きな
凸凹が見Cっれた。I) H8,0で処理したファイバ
ーはファイバー表面にほとんと析出物状のものは見られ
なかった。p ltl 2.0 、 4.0 、 6.
0 、 7.0で処理を行った場合のファイバー表面を
:′1析出物にておおわれていたが、□゛:中でも、p
 ]−14,0,6,0で処理したものにおいては、表
面がよシ均一に析出物でおおわれていた。
4.0. 6.0. 7.0,8. (Surface treatment of the fiber is carried out for 30 minutes each in the aqueous solution that has been adjusted to +).The surface of the fiber thus treated with K t and iron is observed with a scanning microscope and a submicroscope. However, in all cases, the fiber surface was corroded and large irregularities were observed for the fiber treated with pH 1,0. Almost no precipitate was observed. pltl 2.0, 4.0, 6.
When treated with 0 and 7.0, the fiber surface was covered with :'1 precipitates, but □゛: Among them, p
]-14,0,6,0, the surface was more uniformly covered with precipitates.

試験A13で作製したファイバーを上記各p11で処理
した場合の引張強さを第2表に示す。
Table 2 shows the tensile strength when the fibers produced in Test A13 were treated with each of the above p11.

第2表 この結果によれは、pHが10の場合には引張強さが著
しく低下していた。
The results in Table 2 show that when the pH was 10, the tensile strength was significantly reduced.

〔実施例5〕 実施例1における試験A 7.、 19で作製したファ
イバー及び、該ファイバーを実施例4と同様の方法にて
、pH2,0,4,0,6,0,7,0゜s、 o v
cて表面処理を行ったファイバーを用い、犬の大腿骨に
人工的に作製した骨欠損部(3朋ψ×4目L)に充てん
し、3週間経過後の新生骨の生成の様子を観察した。
[Example 5] Test A in Example 1 7. , 19 and the fiber prepared in the same manner as in Example 4 at pH 2, 0, 4, 0, 6, 0, 7, 0°s, o v
A bone defect (3 mm x 4 mm) artificially created in a dog's femur was filled with the fibers that had been surface-treated using the above methods, and the state of new bone formation was observed after 3 weeks had elapsed. did.

この結果、ファイバーの表面処理を行わない場合にくら
べ表面処理を行ったファイバーは、p H8,0で表面
処理を行った場合を除き、いずれの場合も、よシ多量の
新生骨の生成が見られた。p f18.0で表1m処ノ
ー1(を1Jつた場合は、表面処11を行わないで使用
1した場合と線汀同じであった。
As a result, compared to the fibers without surface treatment, the fibers with the surface treatment produced a larger amount of new bone in all cases, except for the case with the surface treatment at pH 8.0. It was done. When P f18.0 and Table 1m treatment No. 1 (1J) were applied, the line resistance was the same as when using No. 1 without surface treatment.

特許出願人  三菱鉱業セメント株式会社手続補正曹(
自発) 昭和56年11月2G日 特許庁長官 島 1)春 樹 殿 1、事件の表示 昭和56年特許願第146182号 2、発明の名称 無機ファイバー 3、補正をする者 代表者小林入切 4、代理人〒165躯03−999−2075住 所 
 東京都中野区鷺宮5丁目15番3号氏 名(8373
)  弁理士  1)中 貞 夫5、補正命令の日付 
自発補正 8、補正の内容 (1)  明細書の第14頁の第1表中試験慮21の行
の「N a 211 P O4−1を1−NaH2P0
4j  に訂正する。) 以上
Patent applicant: Mitsubishi Mining and Cement Co., Ltd.
Voluntary) November 2, 1980 Commissioner of the Japan Patent Office Shima 1) Haruki Tono1, Indication of the case 1982 Patent Application No. 1461822, Name of the invention Inorganic fiber3, Representative of the person making the amendment Irikiri Kobayashi4 , Agent Address: 165 03-999-2075
5-15-3 Saginomiya, Nakano-ku, Tokyo Name (8373)
) Patent attorney 1) Sadao Naka 5. Date of amendment order
Voluntary amendment 8, contents of amendment (1) “Na 211 P O4-1 is changed to 1-NaH2P0” in the row of test consideration 21 in Table 1 on page 14 of the specification
Corrected to 4j. ) that's all

Claims (2)

【特許請求の範囲】[Claims] (1)  Ca/Pモル比が0,3以上4.0以下であ
り、かつCaO+ Pt Osを80重量%以下15重
量%以上含有することを特徴とする無機ファイバー〇
(1) Inorganic fiber characterized by having a Ca/P molar ratio of 0.3 or more and 4.0 or less, and containing CaO + Pt Os in an amount of 80% by weight or more and 15% by weight or more
(2)該無機ファイバーがその表面にりん酸カルシウム
化合物を有する特許請求の範囲第1項に記載の無機ファ
イバー。
(2) The inorganic fiber according to claim 1, wherein the inorganic fiber has a calcium phosphate compound on its surface.
JP56146182A 1981-09-18 1981-09-18 Inorganic fiber Granted JPS5854023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56146182A JPS5854023A (en) 1981-09-18 1981-09-18 Inorganic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56146182A JPS5854023A (en) 1981-09-18 1981-09-18 Inorganic fiber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63243933A Division JPH01148812A (en) 1988-09-30 1988-09-30 Production of inorganic fiber

Publications (2)

Publication Number Publication Date
JPS5854023A true JPS5854023A (en) 1983-03-30
JPH0130927B2 JPH0130927B2 (en) 1989-06-22

Family

ID=15401985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56146182A Granted JPS5854023A (en) 1981-09-18 1981-09-18 Inorganic fiber

Country Status (1)

Country Link
JP (1) JPS5854023A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017118A (en) * 1983-07-06 1985-01-29 Mitsubishi Mining & Cement Co Ltd Calcium phosphate fiber
JPS61196271A (en) * 1985-02-26 1986-08-30 Canon Inc Developer supply device
JPS61201018A (en) * 1985-02-26 1986-09-05 Toa Nenryo Kogyo Kk Apatite wool
JP2005245800A (en) * 2004-03-05 2005-09-15 Hosoda Denki:Kk Acidic water containing promotion agent, acidic water containing implant, and mouth wash liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645814A (en) * 1979-09-25 1981-04-25 Kureha Chem Ind Co Ltd Hydroxyapatite, its ceramic material and its manufacture
JPS57117621A (en) * 1981-01-10 1982-07-22 Mitsubishi Mining & Cement Co Ltd Inorganic fiber of calcium phosphate and an implant material utilizing its properties
JPS584821A (en) * 1981-07-02 1983-01-12 Mitsubishi Mining & Cement Co Ltd Production of calcium phosphate fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5645814A (en) * 1979-09-25 1981-04-25 Kureha Chem Ind Co Ltd Hydroxyapatite, its ceramic material and its manufacture
JPS57117621A (en) * 1981-01-10 1982-07-22 Mitsubishi Mining & Cement Co Ltd Inorganic fiber of calcium phosphate and an implant material utilizing its properties
JPS584821A (en) * 1981-07-02 1983-01-12 Mitsubishi Mining & Cement Co Ltd Production of calcium phosphate fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017118A (en) * 1983-07-06 1985-01-29 Mitsubishi Mining & Cement Co Ltd Calcium phosphate fiber
JPS61196271A (en) * 1985-02-26 1986-08-30 Canon Inc Developer supply device
JPS61201018A (en) * 1985-02-26 1986-09-05 Toa Nenryo Kogyo Kk Apatite wool
JPH022974B2 (en) * 1985-02-26 1990-01-22 Toa Nenryo Kogyo Kk
JP2005245800A (en) * 2004-03-05 2005-09-15 Hosoda Denki:Kk Acidic water containing promotion agent, acidic water containing implant, and mouth wash liquid

Also Published As

Publication number Publication date
JPH0130927B2 (en) 1989-06-22

Similar Documents

Publication Publication Date Title
US6224635B1 (en) Implantation of surgical implants with calcium sulfate
Kurashina et al. In vivo study of calcium phosphate cements: implantation of an α-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement paste
JPS6017118A (en) Calcium phosphate fiber
Schepers et al. Bioactive glass particles of narrow size range: a new material for the repair of bone defects
Thomas et al. Calcium sulfate: a review
US5296026A (en) Phosphate glass cement
DE69024993T2 (en) Coated biomaterials and processes for their production
Chow Calcium phosphate cements: chemistry, properties, and applications
US6379453B1 (en) Process for producing fast-setting, bioresorbable calcium phosphate cements
Manjubala et al. Bone in-growth induced by biphasic calcium phosphate ceramic in femoral defect of dogs
NL8503340A (en) IMPLANT MATERIAL FOR REPLACING HARD TISSUE OF THE LIVING BODY.
JPH078294B2 (en) Grafting material consisting of calcium hydroxide treated polymer
Chow Calcium phosphate materials: reactor response
Haque et al. In vitro and in vivo research advancements on the magnesium phosphate cement biomaterials: A review
Hubbard PHYSIOLOGICAL CALCIUM-PHOSPHATES AS ORTHOPEDIC BIOMATERIALS.
Demirel et al. Effect of strontium-containing compounds on bone grafts
KR20210006600A (en) Bone cement composition for periodontal tissue
US20230390455A1 (en) Method for Manufacturing a Calcified Tissue Substitute
JPS5854023A (en) Inorganic fiber
Kim et al. Comparison of a synthetic bone substitute composed of carbonated apatite with an anorganic bovine xenograft in particulate forms in a canine maxillary augmentation model
JPH0236684B2 (en)
JPS6269823A (en) Calcium phosphate based fiber
RU2320353C1 (en) Material for medicinal using
Sugawara et al. Evaluation of biphasic calcium phosphate cement in rat calvarial model
US20240245827A1 (en) Method for Manufacturing a Calcified Tissue Substitute