JPS5853235A - Receiving system of maximum energy - Google Patents

Receiving system of maximum energy

Info

Publication number
JPS5853235A
JPS5853235A JP56150583A JP15058381A JPS5853235A JP S5853235 A JPS5853235 A JP S5853235A JP 56150583 A JP56150583 A JP 56150583A JP 15058381 A JP15058381 A JP 15058381A JP S5853235 A JPS5853235 A JP S5853235A
Authority
JP
Japan
Prior art keywords
antenna
circuit
current antenna
phase
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56150583A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
博 鈴木
Nobuo Nakajima
信生 中嶋
Kazuhiro Oguro
一弘 大黒
Tokio Taga
多賀 登喜雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56150583A priority Critical patent/JPS5853235A/en
Publication of JPS5853235A publication Critical patent/JPS5853235A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/084Equal gain combining, only phase adjustments

Abstract

PURPOSE:To obtain a phasing eliminating circuit which is best suited to various molding/demodulating systems, by converting with high efficiency the signal received through a current antenna and a magnetic current antenna into the 3rd receiving wave. CONSTITUTION:The outputs given through a loop antenna and a half-wave length dipole antenna are properly synthesized by a 180 deg. hybrid circuit 20, a 90 deg. circuit, etc. Thus a nondirectional magnetic current antenna output eH is obtained at a terminal P. At the same time, a nondirectional current antenna output eE is obtained at a terminal Q. These outputs eH and eE are converted into the 3rd receiving wave via a phase control circuit 18 and the circuit 20 to be supplied to a signal receiver 22. A phase control is given to the circuit 18 and a minute phase shifter 19 so that the received signal output power of the receiver 22 is set the maximum level.

Description

【発明の詳細な説明】 本発明は、移動通信におけるフェージングの影響を軽減
する受信方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reception method that reduces the effects of fading in mobile communications.

移動通信において、電波は建造物や樹木等で反射・屈折
しながら多重波として伝搬する場合が多く、受信点の周
囲には複雑な定在波が形成されている。したがって、周
囲の変動によって定在波のモードが変わる場合、または
受信点が移動して定在波を横切る場合には、受信レベル
が大きく変動する。特に、受信点が定在波の節の近傍に
あるときには受信レベルが極端に小さくなる。このよう
な変動はフェージングと呼ばれ、移動通信において克服
すべき重要な課題である。
In mobile communications, radio waves often propagate as multiple waves while being reflected and refracted by buildings, trees, etc., and complex standing waves are formed around the reception point. Therefore, when the mode of the standing wave changes due to changes in the surroundings, or when the reception point moves and crosses the standing wave, the reception level fluctuates greatly. In particular, when the reception point is near a node of a standing wave, the reception level becomes extremely low. Such fluctuations are called fading, and are an important problem to overcome in mobile communications.

フェージングを克服する方法の1つとして、エネルギー
密度受信方式が知られている。これは、定在波が立って
いるときに、電波の電界成分Eが節になる場所では、磁
界成分Hは腹になっているから、Eとト■を同時に受信
すれば、フェージングによる変動を軽減できろというも
のである。この考えは、J 、 R,、Pierceに
よって示唆され、E 、 N 、 G11bert  
(E 、 N 、  G11bert 、 ” Ene
rgy receptionfor mobile r
adio 、 ”  Be1l 5yst、 Tech
、 Journal、 XLIV。
An energy density reception method is known as one method for overcoming fading. This is because when there is a standing wave, where the electric field component E of the radio wave becomes a node, the magnetic field component H becomes an antinode, so if E and T are received at the same time, fluctuations due to fading can be eliminated. This means that it can be reduced. This idea was suggested by J.R., Pierce and E.N., G11bert.
(E, N, G11bert, ”Ene
rgy reception for mobile r
adio, ” Be1l 5yst, Tech
, Journal, XLIV.

1)I)、1779−1803.0ctober 19
65゜)。
1) I), 1779-1803.0ctober 19
65°).

及びW、 C,−Y、 Lee  ’(W、C,−Y、
 Lee、”Theoreticaland expe
rimental 5tudy of the pro
perties of thesignal from
 an energy density mobile
 radio antenna、 ”TEEE Tra
ns、 on vehicular technolo
gy、 vol、 VT−16+pp、、25−32.
0ctober 1.967、 )  によってその効
果が検討されている。
and W, C, -Y, Lee' (W, C, -Y,
Lee, “Theoretical and expe.
rimental 5tudy of the pro
parties of the signal from
an energy density mobile
radio antenna, ”TEEE Tra
ns, on vehicle technology
gy, vol, VT-16+pp, 25-32.
Its effects have been studied by 0ctober 1.967, ).

Leeが検削した受信方式を第1図、第2図に示す。第
1図はアンテナ部を示し、(a)はアンテナ、(b)は
分離回路である。同図の1は接地板、2と3は半波長ル
ープ、4,5.6は180°ノhイブリツド、7は整合
負荷である。なおノ・イブリッド回路について、同相出
力端子はT、逆相出力端子はOで示した。(b)の分離
回路により、アンテナが設置されている空間の電磁界成
分(Ex 、 Hx 、 Hy)が分離されて出力され
る。各成分は、それぞれ、第2図に示す受信回路で増幅
・検波される。8は受信機、9は二乗検波器、10は合
成器である。このように二乗検波出力を合成して、検波
出力としているので、位相情報を抽出することができず
適用できる変復調方式が限定されるという欠点があった
。また、3系列の受信機を必要とし移動通信機の小形化
に適合していないという欠点があった。
The receiving system tested by Lee is shown in Figures 1 and 2. FIG. 1 shows the antenna section, where (a) is the antenna and (b) is the separation circuit. In the figure, 1 is a grounding plate, 2 and 3 are half-wavelength loops, 4, 5.6 are 180° hybrids, and 7 is a matching load. Regarding the hybrid circuit, the in-phase output terminal is indicated by T, and the negative-phase output terminal is indicated by O. The separation circuit (b) separates and outputs the electromagnetic field components (Ex, Hx, Hy) of the space where the antenna is installed. Each component is amplified and detected by a receiving circuit shown in FIG. 8 is a receiver, 9 is a square law detector, and 10 is a combiner. Since the square-law detection outputs are combined as the detection output in this way, there is a drawback that phase information cannot be extracted and the applicable modulation/demodulation methods are limited. Another disadvantage is that it requires three series of receivers and is not suitable for miniaturization of mobile communication devices.

本発明は、最大直線距離が:半波長以下の大きさの立体
空間内部に設けられた電流アンテナで受信した2つの受
信波を、搬送波のままで第3の受信波に変換し、さらに
、第3の受信波電力が最大となるように制御することを
特徴とし、その目的は電流アンテナと磁流アンテナによ
って受信した電力を効率よく第3の受信波に変換し、フ
ェージングを克服することにある。立体空間が球形の時
は直径が半波長以下とし、立体空間が直方体の時は対角
線が半波長以下とする。立体空間が半波長より大きいと
きは、小形で移動性のあるアンテナとして適さない。
The present invention converts two received waves received by a current antenna provided inside a three-dimensional space with a maximum linear distance of less than half a wavelength into a third received wave with the carrier wave as it is, and It is characterized by controlling so that the power of the third received wave is maximized, and its purpose is to efficiently convert the power received by the current antenna and magnetic current antenna into the third received wave and overcome fading. . When the three-dimensional space is spherical, the diameter is less than half a wavelength, and when the three-dimensional space is a rectangular parallelepiped, the diagonal is less than half a wavelength. When the three-dimensional space is larger than half a wavelength, it is not suitable as a small and mobile antenna.

本発明の実施例をアンテナ部と受信部に分けて、そ八ぞ
れ、第3図と第4図に示す。第3図(a)はアンテナを
示し、】1と12は波長に比べて十分小さい半波長ルー
プ・アンテナ、13はダイポール・アンテナである。D
I I 021 Pl + F21 Gはアンテナ端子
である。11と12の磁界に対する感度が足りない場合
にはループをコイル状にすればよい。また、受信用装置
の筒体に設けたスロット・アンテナを11と12の替り
に用いることもできる。第3図(1))は、磁流アンテ
ナ合成回路である。14 、15は180’  ハイブ
リッド、]6は90°ハイブリツド、17は整合負荷、
PとQは出力端子である。14と15の逆相出力端子0
4と05には磁界■]xとHyに比例した受信波が得ら
れるから、それらを16で90°合成すれば、P端子に
無指向性磁流アンテナ出力eHが得られる。
An embodiment of the present invention is divided into an antenna section and a receiving section, which are shown in FIGS. 3 and 4, respectively. FIG. 3(a) shows the antenna, where 1 and 12 are half-wavelength loop antennas that are sufficiently small compared to the wavelength, and 13 is a dipole antenna. D
I I 021 Pl + F21 G is an antenna terminal. If the sensitivity to the magnetic field of 11 and 12 is insufficient, the loop may be made into a coil shape. Further, slot antennas provided on the cylindrical body of the receiving device may be used instead of 11 and 12. FIG. 3(1)) shows a magnetic current antenna synthesis circuit. 14, 15 are 180' hybrid, ]6 is 90° hybrid, 17 is matched load,
P and Q are output terminals. 14 and 15 negative phase output terminal 0
At 4 and 05, received waves proportional to the magnetic field [1]

また、Q端子に無指向性電流アンテナ出力eE が得ら
れることは明らかである。なお、上述の説明では各アン
テナと伝送線路は整合していると仮定し、整合回路は省
略した。
It is also clear that the omnidirectional current antenna output eE is obtained at the Q terminal. Note that in the above description, it is assumed that each antenna and the transmission line are matched, and the matching circuit is omitted.

第4図では、上述のようにして得られたeF、と艶から
第3の受信波eTを位相合成によって得ている。18は
制御移相器、19は制御用の微小移相器、20は180
°バイブIJ ソド、21は整合負荷、22は受信機、
おは検波器、24は制御用微小信号発生器、25は二乗
検波器、26は相関器、27は制御回路である。
In FIG. 4, the third received wave eT is obtained by phase synthesis from the eF and the light obtained as described above. 18 is a control phase shifter, 19 is a micro phase shifter for control, 20 is 180
° Vibe IJ Sodo, 21 is matching load, 22 is receiver,
24 is a control small signal generator, 25 is a square law detector, 26 is a correlator, and 27 is a control circuit.

J8と19の移相量をそれぞれφ、Δφとすれば、20
の同相合成出力eTは、 eT= AE 5in (ω(1) + AH3in 
(ω(1+θ−φ−Δφルー(1)となる。AF、とA
HはそれぞれeEとeHの振幅、θはeEに対するeH
の位相差である。微小移相量Δφを無視すれば、 eT =  AT  sin (ωct  十 φ) 
                       −(
2+となる。ただし、 である。第5図にAEとAHをパラメータにしたときの
ATと(θ−φ)との関係を示す。この図かられかるよ
うにAE−0またはAH−0という特別な場合を除けば
、θ−φ−〇のときにATが最大となる。そこで、φ−
θとなるように位相制御を行えば最大エネルギーを受信
することができる。このような制御の様子を第6図にベ
クトル図で示す。
If the phase shift amounts of J8 and 19 are φ and Δφ, respectively, then 20
The in-phase composite output eT is as follows: eT = AE 5in (ω(1) + AH3in
(ω(1 + θ - φ - Δφ Roux (1). AF, and A
H is the amplitude of eE and eH, respectively, and θ is eH with respect to eE.
is the phase difference. If the minute phase shift amount Δφ is ignored, eT = AT sin (ωct ten φ)
−(
It becomes 2+. However, . FIG. 5 shows the relationship between AT and (θ-φ) when AE and AH are used as parameters. As can be seen from this figure, except for the special case of AE-0 or AH-0, AT is maximum when θ-φ-〇. Therefore, φ−
If phase control is performed so that θ is achieved, the maximum energy can be received. The state of such control is shown in a vector diagram in FIG.

なお、多重波ではなく1波だけを受信する場合には、θ
は到来角に一致しまたAE−AHとなる。したがって、
φ−−θ とする位相制御は、電流アンテナと磁流アン
テナの位相合成によって生じる指向性の最大となる方向
と到来方向とを一致させるようアダプティブに制御する
ことに相当する。
Note that when receiving only one wave instead of multiple waves, θ
coincides with the angle of arrival and becomes AE-AH. therefore,
The phase control of φ--θ corresponds to adaptive control so that the direction of maximum directivity caused by phase combination of the current antenna and the magnetic current antenna coincides with the direction of arrival.

位相制御は第4図の回路により次のように行う。Phase control is performed using the circuit shown in FIG. 4 as follows.

この回路ではまず、周波数frの発振器別をもとに19
を用いてΔφの微小移相変調を加える。frはフェージ
ングピンチの数倍以上とする。このΔφの位相変調を行
うと、φ←θのとき、乙の二乗検波出力にはfrの脈動
が観測される。そこで、26の相関器を用いてfrの周
波数成分を抽出する。抽出されたfr酸成分φの制御誤
差に関係し一5in (φ−θ)に比例する。したがっ
て、これを負帰還するようにφを制御すれば、φ−θと
なるように制御することができる。
In this circuit, first, 19
Add a minute phase shift modulation of Δφ using . The fr should be several times the fading pinch or more. When this phase modulation of Δφ is performed, a pulsation of fr is observed in the square-law detection output of B when φ←θ. Therefore, the frequency component of fr is extracted using 26 correlators. It is related to the control error of the extracted fr acid component φ and is proportional to −5in (φ−θ). Therefore, if φ is controlled so as to give negative feedback to this, it is possible to control φ to become φ−θ.

さて、最大エネルギー受信を行うために上述した方法で
は位相合成を行っているが、eEとeHを切替によって
選択することによってもほぼ同様な効果を得ることがで
きる。第7図に実施例を示す。この方法では、変換回路
としてあの切替回路が使われている。切替回路は受信機
20の出力レベルを29の制御回路で監視しながら切替
が制御される。切替アルゴリズムはeEとeHがアンテ
ナ近傍の電界と磁界のエネルギー密度を反映していると
いう物理的な事実を考慮すれば比較的容易に決められる
。例えば、第8図(a)に示すように2波干渉で定在波
が発生している場合には、レベルを監視している受信波
のパワーが極太値から3dB下がったときに切替えれば
、3dB程度のレベル変動を伴ないつつ最大エネルギー
受信ができる。切替の様子を第8図(1))に示す。な
お、同図には比較のため位相合成による受信方式の様子
第8図(C)に示しである。第8図で横軸は距離を示し
、第8図(1))は電流アンテナ(E)及び磁流アンテ
ナ(H)の指向性を示し、第8図(C)は合成波の指向
性を示す。
Now, in the method described above, phase synthesis is performed in order to perform maximum energy reception, but almost the same effect can be obtained by selecting eE and eH by switching. An example is shown in FIG. In this method, that switching circuit is used as a conversion circuit. Switching of the switching circuit is controlled while monitoring the output level of the receiver 20 by a control circuit 29. The switching algorithm can be determined relatively easily by considering the physical fact that eE and eH reflect the energy density of the electric field and magnetic field near the antenna. For example, if a standing wave is generated due to two-wave interference as shown in Figure 8(a), switch the switch when the power of the received wave whose level is being monitored drops by 3 dB from the extreme value. , it is possible to receive maximum energy with a level fluctuation of about 3 dB. The state of switching is shown in FIG. 8 (1)). For comparison, the receiving system using phase synthesis is shown in FIG. 8(C). In Fig. 8, the horizontal axis shows distance, Fig. 8 (1)) shows the directivity of the current antenna (E) and magnetic current antenna (H), and Fig. 8 (C) shows the directivity of the composite wave. show.

なお、磁流アンテナの実施例としては、先に説明したル
ープアンテナ、半ループアンテナ及びスロットアンテナ
の他に、例えば第9図(a)に示すシールド形ループア
ンテナ、第9図(b)に示す短絡ループアンテナ、及び
第9図(C)に示す一波長アンテすを2本合成したアン
テナが可能である。これらの図において、30はアース
、32は内導体、34は外導体、40は短絡点、50は
シールド板、52は1800ハイブリツドを示し、第9
図(C)における長さLlは半波長以内、L2は一波長
であるとする。
In addition to the above-described loop antenna, half-loop antenna, and slot antenna, examples of magnetic current antennas include, for example, a shielded loop antenna shown in FIG. 9(a), and a shielded loop antenna shown in FIG. 9(b). A short-circuit loop antenna and an antenna combining two single-wavelength antennas shown in FIG. 9(C) are possible. In these figures, 30 is the ground, 32 is the inner conductor, 34 is the outer conductor, 40 is the short circuit point, 50 is the shield plate, 52 is the 1800 hybrid, and the 9th
It is assumed that the length Ll in Figure (C) is within half a wavelength, and L2 is one wavelength.

以上説明したように、本発明によれば単一の受信機で電
波の電界エネルギーと磁界エネルギーな最大限に利用し
、フェージングを克服するととができる。また、搬送波
帯において第3の受信波に変換しているから、どんな変
復調方式にも適用できる。さらに、制御回路はIPない
し基底帯域で動作するからIC化は容易である。したが
って、簡単な機器構成でフェージングを克服することが
でき、特に小形な携帯用受信機に有用である。
As described above, according to the present invention, it is possible to utilize the electric field energy and magnetic field energy of radio waves to the fullest with a single receiver, and to overcome fading. Furthermore, since the signal is converted into the third received wave in the carrier band, it can be applied to any modulation/demodulation method. Furthermore, since the control circuit operates in the IP or base band, it is easy to integrate it into an IC. Therefore, fading can be overcome with a simple equipment configuration, which is particularly useful for small portable receivers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)及び(1))および第2図は、従来のエネ
ルギー密度受信方式の構成図、第3図(a)及び(1)
)および第4図は本発明の一実施例による位相合成方式
の構成図、第5図(a)〜(C)および第6図は本発明
による位相合成の説明図、第7図は本発明の別の構成例
、第8図(a)〜(C)は2波干渉の場合の動作説明図
、第9図(a)〜(C)は磁流アンテナの各種実施例を
示す。 1・・・接 地 板、2,3・・・半ループ・アンテナ
、4.5.6・・・180°ハイブリツド、7・・・整
合負荷、8−1.8−2.8−3・・・受 信 機、9
−1.9−2.9−3・・・二乗検波器、10・・・合
成器、11 、12・・・波長に比べて十分小さい半ル
ープ・アンテナ、13・・・ダイポール・アンテナ、 14、 、15・・・180°ハイブリツド、16・・
 90°ハイブリツド、 17−1 、17−2 、 ]?−3・・・整合負荷、
18.19・・・移相器、20・・1800ハイブリツ
ド、21・・・整合負荷、22・・・受信機、23・・
・検波器、24・・11発振器、25・・・二乗検波器
、26・相関器、27・・移相器制御回路、28・・切
替回路、29・・切替制御回路。 特許出願人 日本電信電話公社 特許出願代理人 弁理士 山 本 恵 − 紙3 図rb) e8.  eE 尾5 目 第8図 イイ丁J!゛ 毛q図cb) 勇q図CC) L。 “′1よ−よ 、  H 、ii、’  50
Figures 1 (a) and (1)) and Figure 2 are block diagrams of conventional energy density reception systems, and Figure 3 (a) and (1).
) and FIG. 4 are block diagrams of a phase synthesis method according to an embodiment of the present invention, FIGS. 5(a) to (C) and FIG. 6 are explanatory diagrams of phase synthesis according to the present invention, and FIG. FIGS. 8(a) to 8(C) are operation explanatory diagrams in the case of two-wave interference, and FIGS. 9(a) to 9(C) show various embodiments of the magnetic current antenna. 1... Ground plate, 2, 3... Half loop antenna, 4.5.6... 180° hybrid, 7... Matched load, 8-1.8-2.8-3. ...Receiver, 9
-1.9-2.9-3... Square law detector, 10... Combiner, 11, 12... Half-loop antenna, which is sufficiently small compared to the wavelength, 13... Dipole antenna, 14 , , 15...180°hybrid, 16...
90° hybrid, 17-1, 17-2, ]? -3...Matched load,
18.19... Phase shifter, 20... 1800 hybrid, 21... Matching load, 22... Receiver, 23...
- Detector, 24... 11 oscillator, 25... Square law detector, 26... Correlator, 27... Phase shifter control circuit, 28... Switching circuit, 29... Switching control circuit. Patent Applicant Nippon Telegraph and Telephone Public Corporation Patent Application Agent Megumi Yamamoto - Paper 3 Figure rb) e8. eE Tail 5 Eye Figure 8 Good Ding J!゛Fig.cb) Fig.CC)L. “'1 Yo-yo, H, ii,' 50

Claims (1)

【特許請求の範囲】[Claims] 最大直線距離が半波長以下の立体空間内部に設けられる
無指向性電流アンテナ及び無指向性磁流アンテナと、各
アンテナからの受信波を検波前に位相合成及び切替又は
これらの組合せにより第3の受信波に変換する変換回路
と、変換回路の出力が最大となるごとく変換回路を制御
する制御回路とを有することを特徴とする最大エネルギ
ー受・は方式。
An omnidirectional current antenna and an omnidirectional magnetic current antenna are installed inside a three-dimensional space with a maximum straight distance of half a wavelength or less, and a third antenna is used by phase synthesis and switching, or a combination thereof, of the received waves from each antenna before detection. A maximum energy receiving system characterized by having a conversion circuit that converts into a received wave and a control circuit that controls the conversion circuit so that the output of the conversion circuit is maximized.
JP56150583A 1981-09-25 1981-09-25 Receiving system of maximum energy Pending JPS5853235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56150583A JPS5853235A (en) 1981-09-25 1981-09-25 Receiving system of maximum energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56150583A JPS5853235A (en) 1981-09-25 1981-09-25 Receiving system of maximum energy

Publications (1)

Publication Number Publication Date
JPS5853235A true JPS5853235A (en) 1983-03-29

Family

ID=15500052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56150583A Pending JPS5853235A (en) 1981-09-25 1981-09-25 Receiving system of maximum energy

Country Status (1)

Country Link
JP (1) JPS5853235A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181732A (en) * 1983-03-31 1984-10-16 Toshiba Corp Diversity receiving system in portable radio equipment
JPS60103781U (en) * 1983-12-20 1985-07-15 株式会社 明治フレツクス Spiral-wound laminate hose connection fittings
JPS6159093A (en) * 1984-08-28 1986-03-26 株式会社デンソー Hose connecting structure
JPS61168387U (en) * 1985-04-08 1986-10-18
JPH01135135A (en) * 1987-11-20 1989-05-26 Secom Co Ltd Electromagnetic field and polarized wave composite diversity reception system
JPH01212035A (en) * 1987-08-13 1989-08-25 Secom Co Ltd Electromagnetic field diversity reception system
JPH02236086A (en) * 1989-03-07 1990-09-18 Yokohama Rubber Co Ltd:The Join of hose and joint fitting
JPH0489A (en) * 1990-04-17 1992-01-06 Mitsubishi Motors Corp Metal joint for hose
WO2010023778A1 (en) * 2008-09-01 2010-03-04 パナソニック株式会社 Wireless device and measuring device provided with the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627512A (en) * 1979-08-13 1981-03-17 Pioneer Electronic Corp Antenna unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627512A (en) * 1979-08-13 1981-03-17 Pioneer Electronic Corp Antenna unit

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181732A (en) * 1983-03-31 1984-10-16 Toshiba Corp Diversity receiving system in portable radio equipment
JPS60103781U (en) * 1983-12-20 1985-07-15 株式会社 明治フレツクス Spiral-wound laminate hose connection fittings
JPS6159093A (en) * 1984-08-28 1986-03-26 株式会社デンソー Hose connecting structure
JPH0532639B2 (en) * 1984-08-28 1993-05-17 Nippon Denso Co
JPS61168387U (en) * 1985-04-08 1986-10-18
JPH0245590Y2 (en) * 1985-04-08 1990-12-03
JPH01212035A (en) * 1987-08-13 1989-08-25 Secom Co Ltd Electromagnetic field diversity reception system
JPH01135135A (en) * 1987-11-20 1989-05-26 Secom Co Ltd Electromagnetic field and polarized wave composite diversity reception system
JPH02236086A (en) * 1989-03-07 1990-09-18 Yokohama Rubber Co Ltd:The Join of hose and joint fitting
JPH0489A (en) * 1990-04-17 1992-01-06 Mitsubishi Motors Corp Metal joint for hose
WO2010023778A1 (en) * 2008-09-01 2010-03-04 パナソニック株式会社 Wireless device and measuring device provided with the same
JP5304790B2 (en) * 2008-09-01 2013-10-02 パナソニック株式会社 Wireless device and measuring device including the same

Similar Documents

Publication Publication Date Title
Re et al. Circularly polarized retrodirective antenna array for wireless power transmission
JPS5853235A (en) Receiving system of maximum energy
CN103050787B (en) Antenna
Fusco et al. High-performance IQ modulator-based phase conjugator for modular retrodirective antenna array implementation
Re et al. Retrodirective antenna array for circularly polarized wireless power transmission
US3144648A (en) Dual mode spiral antenna
Re et al. An active retrodirective antenna element for circularly polarized wireless power transmission
RU2296398C1 (en) Device for forming polarization of radio-signals of receiver-transmitters
CN109660285A (en) Wave beam forming implementation method based on total reference in a kind of MIMO system
Liu et al. Chirp-Rate Shift Keying Modulation for Mechanical Antenna Based on Rotating Dipoles
US11145971B1 (en) Poynting vector synthesis via coaxially rotating electric and magnetic dipoles
Girnyk et al. A simple cell-specific beamforming technique for multi-antenna wireless communications
US3757334A (en) Stabilized communication and control system
Buchanan et al. Bit error rate performance enhancement of a retrodirective array over a conventional fixed beam array in a dynamic multipath environment
Lawrence et al. A polarimetric line-of-sight channel model for MIMO satellite communications
Nagai et al. A mobile radio antenna system having a self-diplexing function
Gnanamani et al. Rf energy harvesting using 2× 4 circular microstrip array antenna for 5g-iot zero power wireless sensors
Jorgensen et al. Retrodirective antenna systems for wireless communications
JPS63238726A (en) Microwave transmitter/receiver
US20190391223A1 (en) Eloran receiver with ferromagnetic body and related antennas and methods
Lewis Newnes communications technology handbook
US4760399A (en) Method for generating antenna follow-up signals
Ishii et al. Wireless power transmission scheme employing phase control for WSN
Lad et al. design and performance evaluation of two-unit yagi-uda array for UHF satellite communication
Kim et al. Beam training technique for millimeter-wave cellular systems using retrodirective arrays