JPS5852930B2 - Manufacturing method of partially tempered glass - Google Patents

Manufacturing method of partially tempered glass

Info

Publication number
JPS5852930B2
JPS5852930B2 JP9313476A JP9313476A JPS5852930B2 JP S5852930 B2 JPS5852930 B2 JP S5852930B2 JP 9313476 A JP9313476 A JP 9313476A JP 9313476 A JP9313476 A JP 9313476A JP S5852930 B2 JPS5852930 B2 JP S5852930B2
Authority
JP
Japan
Prior art keywords
glass
ultrasonic vibrations
ultrasonic
partially
different intensities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9313476A
Other languages
Japanese (ja)
Other versions
JPS5319317A (en
Inventor
博孝 永井
浩伸 坂田
博幸 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9313476A priority Critical patent/JPS5852930B2/en
Publication of JPS5319317A publication Critical patent/JPS5319317A/en
Publication of JPS5852930B2 publication Critical patent/JPS5852930B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

【発明の詳細な説明】 本発明は部分強化ガラスの製法に関するものであり、更
に詳しくは加熱されているガラスを冷却液に浸漬して急
冷し、熱処理による部分強化ガラスの製法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing partially strengthened glass, and more particularly to a method for producing partially strengthened glass by immersing heated glass in a cooling liquid to rapidly cool it and heat-treating the glass.

近年自動車の前面風防ガラスは強化ガラスに変って合せ
ガラスが使用される傾向にあり、一方ではエネルギー節
約の為車輛の軽量化が研究され、ガラスの薄板化が要望
されている。
In recent years, there has been a trend in the use of laminated glass instead of tempered glass for the front windshield of automobiles.On the other hand, research has been conducted to reduce the weight of vehicles in order to save energy, and there is a demand for thinner glass sheets.

自動車の前面風防ガラスに薄板の合せガラスを使用する
場合、薄板化による剛性強度不足のため強化ガラスを用
いることが望まれる。
When using thin laminated glass for the front windshield of an automobile, it is desirable to use tempered glass because the thinness of the glass results in insufficient rigidity and strength.

しかし、強化ガラスの合せガラスはもし破壊した時、前
方の視野がさえぎられるので、視野確保のため及び運転
者及び搭乗者の安全を守る上から部分強化ガラスを室内
側に配した合せガラスが最も望ましい。
However, if tempered laminated glass is broken, the forward view will be blocked, so laminated glass with partially tempered glass on the interior side is the best option to ensure visibility and to ensure the safety of the driver and passengers. desirable.

この部分強化ガラスは、4%以上の厚板に関しては歪点
以上、軟化点以下に加熱されているガラス面の強化した
い部分に空気を吹付け、部分的に異なる冷却速度を与え
る方法で製造され、自動車の前面風防などに実用化され
ているが、上記方法は3%以下の薄板ガラスでは冷却能
が不足し、部分強化ガラスの製法として適用出来ず、未
だか5る薄板ガラスに於ける部分強化ガラスの製法は確
立されていない。
This partially tempered glass is manufactured by blowing air onto the parts of the glass surface that have been heated above the strain point and below the softening point to give different cooling rates to different parts of the glass for thick plates of 4% or more. , has been put to practical use in the front windshield of automobiles, etc. However, the above method lacks cooling capacity for thin sheet glass with a thickness of 3% or less, and cannot be applied as a manufacturing method for partially tempered glass. The manufacturing method for tempered glass has not been established.

本発明の目的は自動車前面風防ガラスの軽量化の為に使
用される薄板合せガラス等に好適な薄板部分強化ガラス
の製法を提供する事である。
An object of the present invention is to provide a method for producing thin partially tempered glass suitable for thin laminated glass used to reduce the weight of automobile front windshields.

本出願人は、先に特願昭51−51329号に於いて、
ガラス物品を液冷強化する際に、冷却液に超音波振動を
附与しておき、歪点以上軟化点以下に加熱されているガ
ラスを上記冷却液に浸漬して強化する方法を提案した。
The present applicant previously wrote in Japanese Patent Application No. 51-51329,
When strengthening glass articles by liquid cooling, we proposed a method in which ultrasonic vibrations are applied to the cooling liquid, and the glass, which has been heated to a temperature above the strain point and below the softening point, is immersed in the cooling liquid to strengthen it.

この方法は超音波振動の附与されていない冷却液で強化
した場合に比べて、ガラス表面の圧縮応力、ガラスの曲
げ強度が著じるしく増大し、ガラス物品の強化に好適な
方法である。
This method significantly increases the compressive stress on the glass surface and the bending strength of the glass compared to the case of strengthening with a coolant that is not subjected to ultrasonic vibration, and is a suitable method for strengthening glass articles. .

本発明は更に研究を重ねた結果見出されたもので、その
特徴とするところは歪点以上軟化点以下に加熱されたガ
ラスをそのガラス面に冷却液を介して、部分的に異なる
強度の超音波振動を附与せしめながら急冷し、ガラスを
部分的に強化することにある。
The present invention was discovered as a result of further research, and its feature is that glass heated above the strain point and below the softening point is heated to a temperature above the strain point and below the softening point, and then a cooling liquid is applied to the glass surface to create partially different strengths. The purpose is to partially strengthen the glass by rapidly cooling it while applying ultrasonic vibrations.

本発明に適用出来るガラスとしては、板ガラス容器ガラ
ス、理化学用ガラス等があり、空気吹付法では強化する
事の困難な厚味の薄い例えば3朋以下のガラスに特に好
適であり、その他厚味が部分的に変っているガラス物品
の強化にも適用出来る。
Examples of glass that can be applied to the present invention include plate glass container glass, glass for scientific use, etc., and it is particularly suitable for thin glass of 3 mm or less, which is difficult to strengthen by air blowing, and for other thick glass. It can also be applied to strengthen partially modified glass articles.

又、冷却液としては、植物油、鉱物油、溶融金属、合成
油、流動パラフィン等が用いられ、上記冷却液を適宜加
熱しておくことも出来る。
Further, as the cooling liquid, vegetable oil, mineral oil, molten metal, synthetic oil, liquid paraffin, etc. can be used, and the cooling liquid can be heated as appropriate.

本発明方法を実施するには、ガラスを浸漬するのに充分
な大きさの冷却槽内に上記冷却液を入れ、この冷却槽の
適宜箇所へ超音波振動素子を配し、加熱されたガラスを
浸漬した際冷却液を介してガラス面に部分的に異なる強
度の超音波振動が附与される様にしておく。
To carry out the method of the present invention, the above-mentioned cooling liquid is placed in a cooling tank large enough to immerse the glass, and ultrasonic vibrating elements are placed at appropriate locations in the cooling tank to immerse the heated glass. When immersed, ultrasonic vibrations of different intensities are applied to the glass surface via the cooling liquid.

本発明において、冷却液に浸漬されたガラスの面に部分
的に異なる強度の超音波振動を附与する方法として、例
えば超音波振動がガラス面に対し垂直に照射出来る冷却
槽中の適当な位置に配した超音波振動素子によりガラス
面に超音波振動を放射し、ガラス面と平行で、かつガラ
ス面の近傍で超音波振動素子側に配された所望形状の超
音波吸音材あるいは超音波反射材からなるマスク板によ
り超音波振動を部分的に遮蔽し、このマスクされた部分
に相当するガラス面は超音波振動が附与されないか、あ
るいは附与されても他の部分より弱く附与される様にす
る方法が挙げられる。
In the present invention, as a method of imparting ultrasonic vibrations of different intensities locally to the surface of the glass immersed in the cooling liquid, for example, an appropriate position in the cooling tank where the ultrasonic vibrations can be irradiated perpendicularly to the glass surface is used. Ultrasonic vibrations are emitted onto the glass surface by an ultrasonic vibration element placed on the glass surface, and ultrasonic sound absorbing material or ultrasonic reflection material of a desired shape is placed parallel to the glass surface and near the glass surface on the side of the ultrasonic vibration element. The ultrasonic vibrations are partially shielded by a mask plate made of material, and the glass surface corresponding to this masked part is not subjected to ultrasonic vibrations, or even if it is applied, the ultrasonic vibrations are applied weakly compared to other parts. There are ways to make it look like this.

又、別の方法として、所望形状の超音波振動素子を冷却
槽中に配し、ガラス面に対し垂直に超音波を照射すると
、この素子の形状に応じてガラス面は部分的に超音波振
動を附与される。
Another method is to place an ultrasonic vibrating element with a desired shape in a cooling tank and irradiate the glass surface with ultrasonic waves perpendicularly. will be granted.

更に上記素子を2ヶ以上配し、それぞれの素子から異な
る強度の超音波振動をガラス面に対し垂直に照射する方
法がある。
Furthermore, there is a method in which two or more of the above elements are arranged and ultrasonic vibrations of different intensities are irradiated perpendicularly to the glass surface from each element.

又、別の方法として、冷却槽中に定在波を発生させる方
法がある。
Another method is to generate standing waves in the cooling tank.

例えば、第1図に示す様に、冷却槽1の底部に超音波振
動素子2を上方へ向けて超音波を放射し、液面3に反射
される反射液と照射波との間で相互に干渉させ定在波4
を形成させると、定在波の腹部分は超音波振動の強度が
強(、節部分は超音波振動が弱くなり、超音波振動の強
度が異なる音場5が層状に形成される。
For example, as shown in FIG. 1, an ultrasonic vibration element 2 is directed upward at the bottom of a cooling tank 1 to emit ultrasonic waves, and the reflected liquid reflected on the liquid surface 3 and the irradiated waves mutually interact. Interfering standing waves 4
When formed, the intensity of ultrasonic vibration is strong at the antinode part of the standing wave (and the intensity of ultrasonic vibration is weak at the node part), and a layered sound field 5 with different intensities of ultrasonic vibration is formed.

この冷却槽へガラスを垂直に入れると、ガラスに超音波
振動が強く附与される部分、弱く附与される部分が交互
に帯状に現れる。
When glass is placed vertically into this cooling tank, parts of the glass to which ultrasonic vibrations are strongly applied and parts to which ultrasonic vibrations are applied weakly appear alternately in band-like shapes.

又、ガラスを垂直方向より傾斜して上記冷却槽へ入れる
と、ガラスに傾斜角に応じ帯状の巾の拡がった超音波振
動が附与される。
Furthermore, when the glass is placed in the cooling tank at an angle from the vertical direction, ultrasonic vibrations are imparted to the glass in a band-like width that increases depending on the angle of inclination.

又、第2図に示す様に、超音波振動素子2を冷却槽1の
側面に配し、水平方向に放射し、対向面で反射される反
射波と照射波の間で相互に干渉せしめ、冷却槽中へ定在
波4を形成させる。
Further, as shown in FIG. 2, an ultrasonic vibration element 2 is arranged on the side surface of the cooling tank 1, and the ultrasonic vibration element 2 is radiated in the horizontal direction, and the reflected wave and the irradiated wave reflected at the opposing surface mutually interfere with each other. A standing wave 4 is formed in the cooling tank.

この方法では垂直方向に超音波振動の強い層、弱い層5
が形成される為ガラスを水平方向に浸漬すると上記と全
く同様の効果が得られる。
In this method, there is a layer with strong ultrasonic vibration and a layer with weak ultrasonic vibration in the vertical direction.
is formed, so if the glass is immersed horizontally, the same effect as above can be obtained.

又上記方法で定在波を形成した液中に第3図に示す様に
ガラス板6を傾斜して浸漬すると、ガラス板には広い帯
状の異なる強度の超音波振動が付与される。
Further, when the glass plate 6 is immersed at an angle as shown in FIG. 3 in the liquid in which standing waves have been formed by the above method, a wide belt-shaped ultrasonic vibration of different intensities is applied to the glass plate.

この様にガラスを浸漬した際、上記した方法でガラス面
に部分的に異なる強度の超音波振動が附与される様に放
射しておき、歪点以上軟化点以下に加熱されているガラ
スを冷却槽へ浸漬して急冷すると、超音波振動が強く附
与されたガラス表面は他の面に比べより大きい圧縮応力
が生じ、部分的に強化塵の異なるガラス製品が得られる
When the glass is immersed in this way, ultrasonic vibrations of different intensities are radiated to the glass surface using the method described above, and the glass is heated to a temperature above the strain point and below the softening point. When the glass is immersed in a cooling bath to be rapidly cooled, the glass surface to which ultrasonic vibrations have been strongly applied will experience a larger compressive stress than other surfaces, resulting in a glass product with partially different levels of reinforcing dust.

実施例 1 冷却液としてシリコンオイル(東芝シリコン株製品で商
品名東芝シリコンオイルY、)’−33)を冷却槽(8
0%X500%X560%深さ)に入れ、この冷却槽側
面(500%の面)中央に150X巾の超音波振動素子
を配し、水平方向に振動数29 KHzの超音波振動を
放射しておき、この中に680℃に加熱された100%
X300%、厚さ2.4Xのフロートガラス板を300
%辺が水平方向で、ガラス面の中央が150%巾で超音
波振動が附与される様に浸漬し、急冷した。
Example 1 Silicone oil (produced by Toshiba Silicon Co., Ltd., trade name: Toshiba Silicone Oil Y)'-33) was used as a cooling liquid in a cooling tank (8).
0% x 500% x 560% depth), a 150x width ultrasonic vibration element was placed in the center of the side (500% surface) of this cooling tank, and ultrasonic vibrations with a frequency of 29 KHz were radiated in the horizontal direction. 100% heated to 680℃
300x300%, 2.4x thick float glass plate
It was immersed so that the % sides were horizontal and the center of the glass surface was subjected to ultrasonic vibrations with a width of 150%, and was rapidly cooled.

(ガラスの両端はそれぞれ75駕巾で超音波振動が附与
されない。
(Both ends of the glass are each 75 sq. wide and no ultrasonic vibrations are applied.

)室温に冷却されたガラス板を取り出し、超音波振動が
附与されながら冷却された部分、及び超音波振動が附与
されないで冷却された部分について、ガラス表面の圧縮
応力および破片密度を測定した結果、表1に示す線に超
音波を放射されながら冷却された部分は、他の部分に比
べ表面圧縮応力および破片密度が大きく、一枚のガラス
で※※部分的に強化度が異なっていることが判った。
) A glass plate that had been cooled to room temperature was taken out, and the compressive stress and fragment density on the glass surface were measured for the part that was cooled while applying ultrasonic vibration and the part that was cooled without applying ultrasonic vibration. As a result, the parts that were cooled while being irradiated with ultrasonic waves along the lines shown in Table 1 had larger surface compressive stress and fragment density than other parts, and the degree of strengthening was different in parts of a single sheet of glass. It turned out that.

実施例 2 第4図に示す様に冷却槽1の側面に150X巾の超音波
振動素子2を500駕辺に1コづつ配しかつ超音波振動
を水平方向にそれぞれ放射した時に互に重なり合わない
様にしておき、この冷却槽内に実施例1で使用した冷却
液を入れ、一方の超音波振動素子の出力を他の素子の出
力の75%に弱めてそれぞれ照射しておく。
Example 2 As shown in Fig. 4, ultrasonic vibration elements 2 with a width of 150X are arranged on the side of the cooling tank 1, one on each 500 sides, and when ultrasonic vibrations are radiated in the horizontal direction, they overlap each other. The cooling liquid used in Example 1 is placed in this cooling tank, and the output of one ultrasonic vibration element is weakened to 75% of the output of the other element and irradiated.

この中に680℃に加熱された100%X300%厚さ
2.4Xのフロートガラス板を浸漬し、急冷した。
A 100% x 300% 2.4x thick float glass plate heated to 680°C was immersed in this and rapidly cooled.

(浸漬中、ガラス板の右半分100%X 150%は超
音波振動が強く附与され、左半分は弱く附与される様に
した。
(During immersion, ultrasonic vibration was strongly applied to the right half of the glass plate (100% x 150%), and weakly applied to the left half.

)室温に冷却扇上記ガラス板を取出し、冷却中超音波振
動を強く附与された部分、および弱く附与された部分に
ついて、ガラス表面の圧縮応力およびガラスの破片密度
の測定を行った結果、表2に示す様に、冷却中超音波振
動を強く附与された部分は、超音波振動を弱く附与され
た部分より表面圧縮応力、および破片密度が大きく、一
枚のガラス中で部分的に強化度が異なっていることが判
った。
) The above glass plate was taken out from the cooling fan to room temperature, and the compressive stress on the glass surface and glass fragment density were measured for the parts to which ultrasonic vibration was strongly applied during cooling and the parts to which ultrasonic vibrations were applied weakly. As shown in Figure 2, the parts to which ultrasonic vibrations are strongly applied during cooling have higher surface compressive stress and fragment density than the parts to which ultrasonic vibrations are weakly applied, and are partially strengthened in a single sheet of glass. It turned out that the degrees were different.

実施例 3 実施例1で用いた冷却液、冷却槽を用い超音波振動素子
を冷却槽底面に配し、垂直方向に放射し冷却槽中に定在
波を第1図の様に形成せしめ、680℃に加熱したフロ
ート板ガラスを垂直に浸漬し急冷した。
Example 3 Using the cooling liquid and cooling tank used in Example 1, an ultrasonic vibration element was placed on the bottom of the cooling tank and radiated in the vertical direction to form standing waves in the cooling tank as shown in Figure 1. A float glass plate heated to 680°C was vertically immersed and rapidly cooled.

室温に冷却層上記ガラスを取出し表面圧縮応力を観測し
た結果、帯状に表面圧縮応力の強い部分、弱い部分が交
互に存在していた。
The glass above the cooling layer was taken out to room temperature and the surface compressive stress was observed. As a result, it was found that there were alternating band-shaped areas with strong surface compressive stress and areas with weak surface compressive stress.

実施例 4 実施例3で用いた冷却液、冷却槽を用い実施例3と同様
の方法で定在波を形成せしめ、680℃に加熱したフロ
ートガラス板を垂直から45°傾斜して浸漬し、室温に
冷却層ガラス表面の圧縮応力を観測した結果、圧縮応力
の強い部分、弱い部分が交互に帯状に存在し、この帯状
の巾は実施例3よりも広かった。
Example 4 Using the cooling liquid and cooling tank used in Example 3, a standing wave was formed in the same manner as in Example 3, and a float glass plate heated to 680°C was immersed at an angle of 45 degrees from the vertical. As a result of observing the compressive stress on the surface of the cooling layer glass at room temperature, regions with strong compressive stress and regions with weak compressive stress were alternately present in a band shape, and the width of this band shape was wider than in Example 3.

以上説明した様に、本発明によると、従来困難とされて
いた薄板例えば3X以下の厚さの部分強化ガラスが得ら
れる。
As explained above, according to the present invention, it is possible to obtain a thin plate, for example, partially tempered glass having a thickness of 3X or less, which has been considered difficult in the past.

尚、本発明はこれに限定されるものでなく、例えば板厚
の異なるガラス物品の強化にも適用出来る。
Note that the present invention is not limited to this, and can be applied to, for example, strengthening glass articles having different plate thicknesses.

即ち、厚さの薄い部分に超音波振動を強く放射すれば厚
さの厚い部分と同じ強化が出来る。
That is, if ultrasonic vibration is strongly radiated to a thin part, it can be strengthened in the same way as a thick part.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施するために用いられる冷却槽の一
例の縦断面図である。 第2図は本発明を実施するために用いられる別の冷却槽
の縦断面図である。 第3図は第2図の冷却槽へガラス板を傾斜して浸漬した
状態の断面図である。 第4図は本発明を実施するために用いられる冷却槽の別
の例の平面図である。 1・・・・・・冷却槽、2・・・・・・超音波振動素子
、3・・・・・・冷却液面、4・・・・・・超音波の定
在波、5・・・・・・定在波により形成した異なる強度
の超音波の音場、6・・・・・・ガラス板。
FIG. 1 is a longitudinal sectional view of an example of a cooling tank used for carrying out the present invention. FIG. 2 is a longitudinal sectional view of another cooling tank used to carry out the present invention. FIG. 3 is a cross-sectional view of the glass plate immersed in the cooling tank of FIG. 2 at an angle. FIG. 4 is a plan view of another example of a cooling tank used to carry out the present invention. 1...Cooling tank, 2...Ultrasonic vibration element, 3...Cooling liquid level, 4...Ultrasonic standing wave, 5... ... Ultrasonic sound field of different intensities formed by standing waves, 6 ... Glass plate.

Claims (1)

【特許請求の範囲】 1 歪点以上、軟化点以下に加熱されたガラスを、その
ガラス面に冷却液を介して部分的に異なる強度の超音波
振動を附与せしめながら急冷することにより、部分的に
強化する事を特徴とする部分強化ガラスの製法。 2 ガラス面に附与される超音波振動をガラス面近傍に
おいて、マスク板により部分的に遮蔽し、超音波振動が
ガラス面に部分的に異なる強度で附与せしめられる様に
した事を特徴とする特許請求の範囲第1項記載の部分強
化ガラスの製法。 3 複数個の超音波振動素子によりそれぞれ異なる強度
の超音波を冷却液に放射し、ガラスに部分的に異なる強
度の超音波振動を附与せしめられる様にした事を特徴と
する特許請求の範囲第1項記載の部分強化ガラスの製法
。 4 冷却液に超音波振動の定在波を形成し、ガラスに部
分的に異なる強度の超音波振動を附与せしめられる様に
した事を特徴とする特許請求の範囲第1項記載の部分強
化ガラスの製法。
[Claims] 1. Glass that has been heated to a temperature above the strain point and below the softening point is rapidly cooled while applying ultrasonic vibrations of different intensities to the glass surface through a cooling liquid. A manufacturing method for partially tempered glass, which is characterized by its strength. 2. Ultrasonic vibrations applied to the glass surface are partially shielded by a mask plate in the vicinity of the glass surface, so that the ultrasonic vibrations are applied to the glass surface with different intensities locally. A method for producing partially tempered glass according to claim 1. 3 Claims characterized in that a plurality of ultrasonic vibrating elements emit ultrasonic waves of different intensities to the coolant, thereby imparting ultrasonic vibrations of partially different intensities to the glass. A method for producing partially tempered glass according to item 1. 4. Partial reinforcement according to claim 1, characterized in that a standing wave of ultrasonic vibrations is formed in the coolant so that ultrasonic vibrations of different intensities can be imparted to the glass partially. Glass manufacturing method.
JP9313476A 1976-08-06 1976-08-06 Manufacturing method of partially tempered glass Expired JPS5852930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9313476A JPS5852930B2 (en) 1976-08-06 1976-08-06 Manufacturing method of partially tempered glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9313476A JPS5852930B2 (en) 1976-08-06 1976-08-06 Manufacturing method of partially tempered glass

Publications (2)

Publication Number Publication Date
JPS5319317A JPS5319317A (en) 1978-02-22
JPS5852930B2 true JPS5852930B2 (en) 1983-11-26

Family

ID=14074043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9313476A Expired JPS5852930B2 (en) 1976-08-06 1976-08-06 Manufacturing method of partially tempered glass

Country Status (1)

Country Link
JP (1) JPS5852930B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386336A (en) * 1989-08-30 1991-04-11 Motozou Ueda Manufacture of drainage cage for sink

Also Published As

Publication number Publication date
JPS5319317A (en) 1978-02-22

Similar Documents

Publication Publication Date Title
JP2638640B2 (en) Self-supporting cardboard roof liner and method of forming same
CN104703793B (en) The glass laminate of crushing performance for optimization constructs
US3592726A (en) Composite vehicle closure comprising an inner sheet of chemically strengthened glass
US3505160A (en) Laminated safety glass
US6663738B2 (en) Method for preparation of a polyolefin foil and its utilization
CN102893049A (en) Impact absorbing member
KR101863472B1 (en) Component for transport device and panel member
US6878432B2 (en) Panel
US11518146B2 (en) Method of forming a vehicle interior system
CN113302115A (en) Automobile inner plate and automobile cover plate
JPS5852930B2 (en) Manufacturing method of partially tempered glass
US5067649A (en) Bonding metal components
US4081254A (en) Method of tempering glass product
CN109476538A (en) Laminated glass for use in vehicles
JP2023524617A (en) Metal alloy surface modification method and related metal alloy products with improved bond durability
GB1573074A (en) Laminates for deep drawing
US3801397A (en) Processing of laminated transparent panels
JPS5891042A (en) Tempered glass
JP2020526785A (en) Methods for reducing vehicle structure and cabin noise
JP2000344551A (en) Production of glass plate and glass plate
JP2018500203A (en) Composite parts and their manufacturing methods and uses
JPH01259118A (en) Rough material for press forming
JP2003286048A (en) Method for manufacturing tempered glass
EP4010187A1 (en) Lamination method for automotive interiors with decreased bend stress and improved hit performance
CN111989302A (en) Carrier interior systems with crack resistant curved cover glass and methods for forming these carrier interior systems