JPS5852889A - Optical transmitter - Google Patents

Optical transmitter

Info

Publication number
JPS5852889A
JPS5852889A JP56149629A JP14962981A JPS5852889A JP S5852889 A JPS5852889 A JP S5852889A JP 56149629 A JP56149629 A JP 56149629A JP 14962981 A JP14962981 A JP 14962981A JP S5852889 A JPS5852889 A JP S5852889A
Authority
JP
Japan
Prior art keywords
laser
resonator
optical
lnp
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56149629A
Other languages
Japanese (ja)
Other versions
JPS5918878B2 (en
Inventor
Kenichi Kubodera
憲一 久保寺
Juichi Noda
野田 壽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56149629A priority Critical patent/JPS5918878B2/en
Publication of JPS5852889A publication Critical patent/JPS5852889A/en
Publication of JPS5918878B2 publication Critical patent/JPS5918878B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping

Abstract

PURPOSE:To realize the small-sized device of single mode beams, which can be modulated at ultra-high speed, and to transmit an optical fiber having extra- large capacity over a long distance by simply using a semiconductor laser as the excitation light source of a solid state laser and combining the semiconductor laser, the solid state laser and a light modulator. CONSTITUTION:The GaAlAs laser 1 for excitation having 0.8mum wavelength, an LiNdP4O12 laser resonator 2 having 1.32mum oscillation wavelength, a Y3Fe5O12 optical isolator 3, an LiNbO3 light modulator 4 and a single mode optical fiber 5 for extracting beams are fixed and arranged to a supporting base 6 in this order. The laser resonator 2 can generate the single cascade mode oscillation of 1.32mum. Beams projected from the laser 1 for excitation are condensed by means of a rod lens 7A, and combined with a LNP crystal in the laser resonator 2. The LNP laser resonator 2 is formed by holding an LNP crystal plate 12 ground in 300mum thickness by a high reflector 13 and an output reflector 14. Each section 12-15 of a spacer 15 adjusting a space between the resonator mirrors 13, 14 is fixed into an outer box 16.

Description

【発明の詳細な説明】 ↓,・よび橿の各モードの単一性が常に保持されており
、しかも小形に構成される光フアイバ通信用の光送信装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical transmitter for optical fiber communication, which always maintains the unity of each mode of ↓, .

従来の光フアイバ通信用等の光送信装置としては、Ga
As 、 GaAIAs 、 InGaAsP等の半導
体レーザが単体で用いられ、その励起電流を直接変調す
ることにより、出力光に変調をかけるように構成されて
いる。しかしながら、半導体レーザにおいては、注入電
子の再結合寿命値と、放出された光子の共振器内に存在
する寿命値、すなわち光子寿命とで決められる時定数が
存在し、その逆数程廉の周波数( / GHz )が最
高変調速度限界となって、それ以上の高速変調を不可能
としている。
As a conventional optical transmitter for optical fiber communication, etc., Ga
A single semiconductor laser such as As, GaAIAs, or InGaAsP is used, and the output light is modulated by directly modulating its excitation current. However, in semiconductor lasers, there is a time constant determined by the recombination lifetime value of injected electrons and the lifetime value of emitted photons existing in the resonator, that is, the photon lifetime, and the frequency ( / GHz) is the maximum modulation speed limit, making higher-speed modulation impossible.

また、定常的に単一縦モードで発振する高品質な半導体
レーザを用いる場合にも、数百MHz程度以上の高速変
調をかけたときには、縦モードが極端に多重化し、その
結果、モード競合が起こって雑音を生じたり、ファイバ
のもつ分散特性から伝送波形に歪を生じ走りし、結局、
尤ファイバ伝送路の中継間隔長を短かくせざるを得ない
結果となっている。
Furthermore, even when using a high-quality semiconductor laser that constantly oscillates in a single longitudinal mode, when high-speed modulation of several hundred MHz or more is applied, the longitudinal modes become extremely multiplexed, resulting in mode competition. This may cause noise, or the dispersion characteristics of the fiber may cause distortion in the transmitted waveform.
As a result, it is necessary to shorten the relay interval length of the fiber transmission line.

さらに、半導体レーザは主にへき開面を利用した平行平
面形の共振器構成であるので、横モードの安定性が悪く
、高出力発振時や高速変調時に出射ビーム形状が不安定
になったり、複雑化したりする欠点があった。
Furthermore, since semiconductor lasers have a parallel plane resonator configuration that mainly uses cleavage planes, the stability of the transverse mode is poor, and the emitted beam shape becomes unstable or complex during high-output oscillation or high-speed modulation. It had the disadvantage of becoming

そこで、本発明の目的は、上述の欠点を解決して、小形
にして、超高速変調の可能な単一モードレーザ光源を用
いた光送信装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned drawbacks and provide an optical transmitting device using a single-mode laser light source that is compact and capable of ultra-high-speed modulation.

かかる目的を達成するために、本発明では、半導体レー
ザを単に固体レーザの励起光源として使用し、固体レー
ザのもつ縦および横モードの純単−性と、本来の光変調
器のもつ高速性を生がして、半導体レーザと固体レーザ
と光変調器とを組合せ、小形にして超高速変調が可能な
単一モード光の光送信装置を実現し、以て長距離超大容
量光フアイバ伝送に提供し得るようKする。
In order to achieve such an object, the present invention uses a semiconductor laser simply as a pumping light source for a solid-state laser, and takes advantage of the pure simplicity of longitudinal and transverse modes of a solid-state laser and the high speed of an original optical modulator. By combining a semiconductor laser, a solid-state laser, and an optical modulator, we realized a compact, single-mode optical transmitter capable of ultra-high-speed modulation, and provided it for long-distance, ultra-high-capacity optical fiber transmission. K as much as possible.

以下に図面を用いて本発明の詳細な説明する。The present invention will be described in detail below using the drawings.

本発明光送信装置の一実施例を第1図に示す。An embodiment of the optical transmitter of the present invention is shown in FIG.

ここで、/け波長0.1 amの励起用GaA/As 
v−ザ、λは発振波長へ32 pmのLiNdP40,
2(以下LNPと称す)レーザ共′IM器、3はY、F
e5O12(以下YIGと称す)光アイソレータ、4’
 FiLiNbO,(以下LNと称す)光変調器、夕は
光取り田し用の単一モードファイバであり、これらのす
べてをこの順序で支持台乙に固定して配置する。なお、
レーザ共振器コ、光アイソレータ3および光変調′a4
1については後に別図を用いて詳細に説明する。
Here, GaA/As for excitation with a wavelength of 0.1 am
v-the, λ is 32 pm to the oscillation wavelength, LiNdP40,
2 (hereinafter referred to as LNP) laser IM device, 3 is Y, F
e5O12 (hereinafter referred to as YIG) optical isolator, 4'
A FiLiNbO (hereinafter referred to as LN) optical modulator and a single mode fiber for light extraction are all arranged in this order on a support base. In addition,
Laser resonator ko, optical isolator 3 and optical modulation 'a4
1 will be explained in detail later using separate drawings.

本実施例においては、励起用レーザlの¥伽波長はOl
に00±o、oosμmの範囲内であることが重要であ
る。この波長においてのみ、LNPレーザ共振器コは7
.32μmの単−縦モード発振を起こすことができる。
In this example, the wavelength of the excitation laser l is Ol
It is important that it be within the range of 00±o, oos μm. Only at this wavelength, the LNP laser cavity is 7
.. Single-longitudinal mode oscillation of 32 μm can be generated.

また、励起用レーザlの出射ビームはロッドレンズ7A
Kよって集光されてからLNPレーザ共振器λ内のLN
P結晶に結合されるが、このときの収束ビーム直径につ
いてもSOμm稈度以丁度以下ことが挙−縦モード発振
のための必安東件であることが確認された。
In addition, the emitted beam of the excitation laser l is transmitted through the rod lens 7A.
After the light is focused by K, the LN inside the LNP laser resonator λ
It was confirmed that the diameter of the convergent beam at this time, which is coupled to the P crystal, must be exactly less than the diameter of SOμm, which is a necessary condition for longitudinal mode oscillation.

L、NPレーザ共共振ココらの発振光の波長Vi/、3
2μmであり、  LNP結品の異方性に基づき、直線
偏波している。ま念、発振ビームのビーム指向角は約±
i、s0と小さいので、YIGアイル−タ3との結合に
あたっては、レーザ共振器コの中心軸とYIGアイソレ
ータ3の中心軸とが一致するようにレーザ共m器2とY
IGアイル−タ3とを整列させ、かつLIPレーザ光の
直線偏波方向とYIGアイル−タ30入射側偏光子の方
向とを一致させるだけで充分である。
L, NP laser resonance wavelength of oscillation light Vi/, 3
2 μm, and is linearly polarized based on the anisotropy of the LNP crystal. Please note that the beam direction angle of the oscillation beam is approximately ±
Since i and s0 are small, when coupling with the YIG isolator 3, the laser resonator 2 and Y
It is sufficient to align the IG filter 3 and to match the linear polarization direction of the LIP laser beam with the direction of the polarizer on the incident side of the YIG filter 30.

YIGアイソレータ3からの出射光をロッドレンズ7B
を介してLNN変調シダ結合する。本実施例では、LN
N変調シダして広帯域で低電圧駆動の導波路形変調器を
採用しているので、入射口が小さく、従ってこのレンズ
結合においては、レンズ位置の微細な調整が必要とされ
る。そのために、本実施例においては、先ず部品/、7
に、2.3およびqを先に固定しておき、部品/、7A
、2およびダを動作させながら、ロッドレンズ7Bを3
軸微動装置(図示せず)K仮固定して、YIGアイソレ
ータ3とLN変調器−との間に挿入し、その微動装置を
調整することKよって最適位置、すなわちLNN変調シ
ダらの出射光パワーが最大となる位置を探し、その位置
で、ロッドレンズ7Bを支持板lを介して支持台乙に接
着固定し、最後にロッドレンズ7Bを微動装置から取り
外してレンズ取付けを完了きせる。尚、単一モード光フ
ァイバjは変調器ダの出射口に直接接着固定すればよい
The light emitted from the YIG isolator 3 is passed through the rod lens 7B.
LNN modulation fern coupling via. In this example, LN
Since the N modulation system employs a wide-band, low-voltage driven waveguide modulator, the entrance aperture is small, and therefore fine adjustment of the lens position is required in this lens coupling. For this purpose, in this embodiment, first, the parts /, 7
2.3 and q are fixed first, then parts/, 7A
, 2 and da, move the rod lens 7B to 3.
A shaft fine adjustment device (not shown) is temporarily fixed and inserted between the YIG isolator 3 and the LN modulator, and the fine adjustment device is adjusted to find the optimum position, that is, the output light power of the LNN modulator. Find the position where is maximum, and at that position, adhere and fix the rod lens 7B to the support base B via the support plate l, and finally remove the rod lens 7B from the fine movement device to complete the lens attachment. Incidentally, the single mode optical fiber j may be directly adhesively fixed to the output port of the modulator da.

本実施例の光送信装置を動作させるには、まず電流供給
リード線デに直流電流を印加して励起用レーザlを動作
させ、それによりLNPレーザ2を定常的に発振させる
。しかる後に、変調器lの出口[電極端子10Aに50
Ωの負荷抵抗(図示せず)を接続しておいて、入口側電
極端子/17BK変調信号電圧を印加する。これにより
LNPレーザコの定常光は変調信号に応じて変調を受け
る。その変調光を変調器ダから光ファイバSを経て取り
出す。
To operate the optical transmitter of this embodiment, first, a DC current is applied to the current supply lead wire D to operate the excitation laser 1, thereby causing the LNP laser 2 to oscillate steadily. After that, the outlet of the modulator l [50
A load resistor (not shown) of Ω is connected, and the inlet side electrode terminal/17BK modulation signal voltage is applied. As a result, the steady light of the LNP laser beam is modulated in accordance with the modulation signal. The modulated light is extracted from the modulator via an optical fiber S.

光ファイバjからは高速単一モードの信号光が得られる
A high-speed single mode signal light is obtained from the optical fiber j.

YIGアイソレータ3は、変調を受けた信号光が、変調
器ダの出射口あるいは光ファイバjの接続端面で反射さ
れて再びI、NPPレーザ振器2に戻ることを防いでい
る。レーザ共振器λはこの戻り光を受けると、不安定な
ノイズを発生する。
The YIG isolator 3 prevents the modulated signal light from being reflected at the exit of the modulator DA or the connecting end face of the optical fiber j and returning to the I, NPP laser oscillator 2 again. When the laser resonator λ receives this returned light, it generates unstable noise.

第2図はLNPレーザ共撮器コの詳細な構造の一例を示
す。LNPレーザ共振器は、3oo pm厚に研磨され
たLNP結晶板12を、高反射鏡(発振波長lワ一μm
での反射率99.9%以上)/3と出力反射貌(同99
,7%程度)/4Iとで挾んで構成する。ここで、Bは
共振器鏡13と/lとの間隔を調整するスペーサである
。これら各部分/2〜/Sは外函l≦内に固定されてい
る。17は共振器の中心軸である。この構成において、
GaAlムロレーザlからの励起光が中心軸と平行方向
K LNP結晶板12に入射すると、LNPレーザ共振
器コは単−縦モードの定常的な発振を行なう。このとき
の励起条件については、すでに述べたとお秒である。ま
た、励起用レーザlの光出射中心軸とレーザ共振器コの
中心軸とが一致しているときは横モードについても単一
モードで発振することが確紹された。
FIG. 2 shows an example of the detailed structure of the LNP laser co-imager. The LNP laser resonator consists of an LNP crystal plate 12 polished to a thickness of 30 pm and a high reflection mirror (oscillation wavelength 1 μm).
reflectance of 99.9% or more)/3 and output reflection rate (99.9% or more)/3
, 7%)/4I. Here, B is a spacer that adjusts the distance between the resonator mirror 13 and /l. Each of these parts /2 to /S is fixed within the outer box l≦. 17 is the central axis of the resonator. In this configuration,
When the excitation light from the GaAl Muro laser I enters the K LNP crystal plate 12 in a direction parallel to the central axis, the LNP laser resonator performs steady oscillation in a single longitudinal mode. The excitation conditions at this time have already been described. It was also confirmed that when the light emission center axis of the excitation laser 1 and the center axis of the laser resonator 1 coincide with each other, oscillation occurs in a single transverse mode.

第3図は本実施例におけるYIGアイソレータ3の詳細
な構造を示す。厚さ2.コwxK研磨されたYIG結晶
/ltd%環状サマすウムコバルト磁石/ンと環状継鉄
2DAおよび〃Bとで構成された磁界(へコkoe以上
)内に設置されて4ts0フアラデ一回転子を構成する
。このファラデー回転子の両側には、む、いK 11s
°傾いな偏光子2/Aおよび2/Bを配設する。
FIG. 3 shows the detailed structure of the YIG isolator 3 in this embodiment. Thickness 2. A 4ts0 Huarade single rotor is constructed by installing it in a magnetic field (more than Hekokoe) consisting of a cowxK polished YIG crystal/ltd% annular Samusium Cobalt magnet/N and annular yokes 2DA and B. do. On both sides of this Faraday rotator, there are K 11s
Polarizers 2/A and 2/B that are tilted by .degree. are arranged.

nはこれら各部分/g 、 /9 、2DA 、 2D
B 、 )JA、jJBを収容する外函、Bはその中心
軸である。このような構造のYIGアイソレータ3によ
れば、すでに文献(Electronics Lett
er 、第13巻、第17/頁〜17コ頁)に報告され
ているとおり、一方向(例えば第3図の左から右への方
向)のTf!Ii率が極めて高く(損失/ dB以下)
、逆方向の透過率が極めて低くなる(損失3068以上
)ような良好なアイソレーションが実現される。
n is each of these parts /g, /9, 2DA, 2D
B, ) An outer box containing JA and jJB, B is its central axis. According to the YIG isolator 3 having such a structure, it has already been reported in the literature (Electronics Lett.
er, Volume 13, Pages 17/-17), Tf! in one direction (e.g. from left to right in Figure 3). Extremely high Ii rate (loss/dB or less)
, such good isolation is realized that the transmittance in the reverse direction is extremely low (loss 3068 or more).

第q図は本実施例におけるLN変調器qの一例として方
向性結合導波路杉LN変調器の詳細な構造を示す。この
変調器本体は、Lに基板結晶24Iと、この基板2グに
Tiイオンを拡散して形成した幅1μmで間airst
tmの2本の導波路25Aijよび2jBと、それぞれ
導波路」AおよびBB上に形成した進行゛波形電&xA
およびムBよ抄成る。刀は導波路2jAへの入射光の入
射中心軸、dは変調器の支持台である。この変ll器の
動作原理については、すでに文献(IEEE Jour
nal of Quantum Electro−ni
cs 、 QE −ty巻、 711I頁〜)に述べら
れたとおりであり、変調電圧(端子/θBに印加される
高層J―圧)tv程度で、帯域J GHz程度の高速変
調が口」能である。
FIG. q shows the detailed structure of a directionally coupled waveguide Sugi LN modulator as an example of the LN modulator q in this embodiment. This modulator main body has a substrate crystal 24I in L and a width of 1 μm formed by diffusing Ti ions into this substrate 2G.
The two waveguides 25Aij and 2jB of tm and the traveling waveform waves &xA formed on the waveguides ``A'' and BB, respectively.
It consists of a selection of ``MuB'' and ``MuB''. The sword is the central axis of incidence of light incident on the waveguide 2jA, and d is the support of the modulator. The operating principle of this transformer has already been described in the literature (IEEE Jour
nal of Quantum Electro-ni
As stated in ``Cs, Volume QE-ty, Page 711I ~), high-speed modulation in the band J GHz is possible with a modulation voltage (higher J-voltage applied to the terminal /θB) of the order of tv. be.

以上の構成により組立てられた本実施例の光送信装置の
特性をまとめると次のようになる。
The characteristics of the optical transmitter of this embodiment assembled with the above configuration are summarized as follows.

1)波長  八3/7μm 2)モード 縦および横単−モード、直線偏波5)出力
パワー o、ty mW (取出しファイバへの入射パ
ワー) 4) 変#111L圧 乙■ 5) 変調帯域 3 GHz 次に、1gl実施例の出カバ・ワーについて改善を図っ
た本発明の第2の実施例について説明する。
1) Wavelength 83/7μm 2) Mode Longitudinal and transverse single mode, linear polarization 5) Output power o, ty mW (power input to the extraction fiber) 4) Variable #111L pressure 5) Modulation band 3 GHz Next, a second embodiment of the present invention will be described in which the output power of the 1gl embodiment is improved.

この第2実施例では、第1実施例の励起用レーザ/の代
わりに高出力励起光源を用いる。その励起光源の一例を
第2図に示す。ここで、29はGaA/Asレーザアレ
イであゆ、このGaA/NSレーザアレイ〃からの出射
光を光ファイバ30.ファイバコネクタ3/ 、および
ロッドレンズ3ノを介して、中心軸33上の1点に収束
させる。評はコネクタ3ノの支持板、35 ハロラドレ
ンズ31を支持する半球レンズ、1Akiロツドレンズ
3λの外函である。この励起光源の詳細は、特願−昭3
3−61731号に説明されているとおりであり、この
励起光源を用いることによって第2実施例では、第1実
施例の数倍の出力パワーを得ることができる。
In this second embodiment, a high-output excitation light source is used in place of the excitation laser in the first embodiment. An example of the excitation light source is shown in FIG. Here, 29 is a GaA/As laser array, and the light emitted from this GaA/NS laser array is connected to an optical fiber 30. It is made to converge to one point on the central axis 33 via the fiber connector 3 and the rod lens 3. The details are a support plate for the connector 3, a hemispherical lens that supports the 35 Halorad lens 31, and an outer case for the 1Aki rod lens 3λ. For details of this excitation light source, please refer to the patent application
3-61731, and by using this excitation light source, the second embodiment can obtain an output power several times that of the first embodiment.

尚、以上の実施例で用いてきた。  LNPレーザ共振
器2の代わ抄に、NdP50,4. KNclP40,
2゜NdAl、(BO2)4等のネオジム直接化合物レ
ーザ納品を用いた固体レーザ共振器を用いることも可能
である。さらに方向性結合導波路形LN光変mi<<の
代わりに、LiTa0. 、 KH2PO4,ZnS 
、 GaAs結晶等を用いた種々のパランスフリッジ導
波路杉光変調器やバルク形光変調器を用いること本可能
である。
Incidentally, it has been used in the above embodiments. In place of the LNP laser resonator 2, NdP50,4. KNclP40,
It is also possible to use a solid state laser cavity using a neodymium direct compound laser supply such as 2°NdAl, (BO2)4. Furthermore, instead of the directionally coupled waveguide type LN optical variable mi<<, LiTa0. , KH2PO4,ZnS
It is possible to use various balance-fridge waveguide optical modulators or bulk optical modulators using GaAs crystals or the like.

以上説明してきたように、本発明によれば、半導体レー
ザは単に固定レーザの励起光源として用いるのみであり
、固体レーザのもつ縦および横モードの純嚇−性を利用
するので、光変調器のもつ高速性を生かして、超高速の
変調が可能であり、しかも縦および橋モードが常に純粋
に単一であり、元ノアイバ通(,4に好適な光送信装置
を構成できる。
As explained above, according to the present invention, a semiconductor laser is simply used as an excitation light source for a fixed laser, and since the pure threatening nature of the longitudinal and transverse modes of a solid-state laser is utilized, the optical modulator is By taking advantage of its high speed, ultra-high-speed modulation is possible, and the longitudinal and bridge modes are always purely single, making it possible to construct an optical transmitter suitable for the original Noah transmission (4).

kつ一〇1本発明装置を従来の半導体レーザ単体のfU
、Nを用いた光送信装置と置き換えることにより、超晶
速変調が可能となって、伝送容置は増大し、七−ド雑音
と伝送歪は除去されて中継間隔距離を大幅に延長できる
k 101 fU of the conventional semiconductor laser unit
, N, it becomes possible to perform supercrystal-speed modulation, increase the transmission capacity, eliminate seventh-order noise and transmission distortion, and greatly extend the distance between repeaters.

しかも、本発明では、従来の固体レーザのように大形の
ボンピング光源を必要とせず、しかもYAG固体レーザ
の知く大形の結晶を用−ずにネオンウ直接化合物レーザ
結晶板を用いるので、装置の小形軽臆化を実現できる。
Moreover, unlike conventional solid-state lasers, the present invention does not require a large-sized pumping light source, and uses a neon compound laser crystal plate directly without using the large crystal known in YAG solid-state lasers. It is possible to realize a small and compact design.

さらに、本発明は、従来の半導体レーザ光源と比較して
、発振波長の周囲一度に対する安定性が高い利点を有す
るものであり、従来の半導体レーザ光源に装備される混
度制衛系を極端に簡略化または省略化することができる
Furthermore, compared to conventional semiconductor laser light sources, the present invention has the advantage of high stability with respect to a single wavelength around the oscillation wavelength. It can be simplified or abbreviated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明光送信装置の第1実施例の構成を示す斜
視図、第一図は第1実施例の構成要素であるLLNap
4o、、レーザ共振器の構成の一例を示す破断斜視図、
第3図は同じ< Y5Fe、0.2光アイソレータの構
成の一例を示す破断斜視図、第q図は同じ(LiNb0
.光質a器の構成の一例を示す斜視図、第3図は本発明
光送信装置の@一実施例の構成要素である高出力励起光
源の構成の一例を示す斜視図である。 / ・GaA/As v−ザ、 コ・・・LiNdP40uレーザ共振器、3・・・Y、
Fe、0.2光アイソレータ、ダ・・・LiNb0.光
変調器、 j・・・単一モード光ファイバ、t・・・支
持台、71.7B−・ロッドレンズ、l・・・支持板、
      9・・・電流供給リード@。 □ lOム・・・出口側電極端子、/DB・・・入口側電極
端子、//・・・中心軸、      12・・・Li
NdP40.、結&板、lj 高反射鏡、     l
り・・出力反射鏡、15・スペーサ、     16・
・・外函、/7 =・共振中心軸、   /l =・Y
、Fe50,2結晶、/9・・サマリウムコバルト磁石
、 2f)5)I)B・・継鉄、   2/i、2/Bi、
−・・偏光子、n 外函、       n 中し漬、
ノV・・LiNb0.基板結晶、 15に、EB  導
波路、AA’、!B・・・′wi極、   1・・・光
入射中心軸、2J ・支持台、      29− G
aA/As v−ザアレイ、3θ・・・光ファイバ、3
/・・・ファイノ(コネクタ、3)・ロッドレンズ、3
3・・・中心軸、3グ・コネクタ支持板、35・・・半
球レンズ、36・・外函。 特許出願人 日本電信電話公社 第1図 第2図 第3図 第5図
FIG. 1 is a perspective view showing the configuration of a first embodiment of the optical transmitter of the present invention, and FIG. 1 is a LLNap which is a component of the first embodiment.
4o, a cutaway perspective view showing an example of the configuration of a laser resonator;
Figure 3 is a cutaway perspective view showing an example of the configuration of the same Y5Fe, 0.2 optical isolator, and Figure q is the same (LiNb0
.. FIG. 3 is a perspective view showing an example of the structure of a light quality detector, and FIG. 3 is a perspective view showing an example of the structure of a high-output excitation light source, which is a component of an embodiment of the optical transmitter of the present invention. / ・GaA/As v-za, Co...LiNdP40u laser resonator, 3...Y,
Fe, 0.2 optical isolator, Da...LiNb0. Optical modulator, j... single mode optical fiber, t... support stand, 71.7B-- rod lens, l... support plate,
9... Current supply lead @. □ lOm...Exit side electrode terminal, /DB...Inlet side electrode terminal, //...Center axis, 12...Li
NdP40. , knot & board, lj high reflective mirror, l
ri...output reflector, 15.spacer, 16.
・・Outer box, /7 =・Resonance center axis, /l =・Y
, Fe50,2 crystal, /9... Samarium cobalt magnet, 2f) 5) I) B... Yoke, 2/i, 2/Bi,
---Polarizer, n outer box, n middle pickle,
NoV...LiNb0. Substrate crystal, 15, EB waveguide, AA',! B...'wi pole, 1... Light incidence center axis, 2J・Support stand, 29-G
aA/As v-the array, 3θ... optical fiber, 3
/...Fino (connector, 3), rod lens, 3
3... Central axis, 3G connector support plate, 35... Hemisphere lens, 36... Outer case. Patent applicant Nippon Telegraph and Telephone Public Corporation Figure 1 Figure 2 Figure 3 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザによる励起光源と、ネオジム面縁化合物レ
ーザ結晶板および該結晶板の厚さ方向のIIL11闘に
配設したレーザ共振器鏡を有する固体レーザ共振器と、
光アイソレータと、光変調器とを鶏備し、前記励起光源
の光出射中心軸、前記固体レーザ共振器の共振器中心軸
、前記光アイソレータの光入射中心軸および前記光変調
器の光入射中心軸を一致させ、前記励起光源、前記固体
レーザ共振器、前記光アイソレータおよび前記光変調器
をこの順序で配置し、前記光変調器に変調信号を印加し
て前記光変調器から光変調出力を取や出すようにしたこ
とを特徴とする光送信装置。
a solid-state laser resonator having an excitation light source using a semiconductor laser, a neodymium face-edge compound laser crystal plate, and a laser resonator mirror disposed in the IIL11 direction in the thickness direction of the crystal plate;
It includes an optical isolator and an optical modulator, and includes a light output center axis of the excitation light source, a resonator center axis of the solid-state laser resonator, a light input center axis of the optical isolator, and a light input center of the optical modulator. aligning the axes, arranging the excitation light source, the solid-state laser resonator, the optical isolator, and the optical modulator in this order, and applying a modulation signal to the optical modulator to obtain an optical modulation output from the optical modulator. An optical transmitter characterized in that it can be taken out or taken out.
JP56149629A 1981-09-24 1981-09-24 optical transmitter Expired JPS5918878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56149629A JPS5918878B2 (en) 1981-09-24 1981-09-24 optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56149629A JPS5918878B2 (en) 1981-09-24 1981-09-24 optical transmitter

Publications (2)

Publication Number Publication Date
JPS5852889A true JPS5852889A (en) 1983-03-29
JPS5918878B2 JPS5918878B2 (en) 1984-05-01

Family

ID=15479396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56149629A Expired JPS5918878B2 (en) 1981-09-24 1981-09-24 optical transmitter

Country Status (1)

Country Link
JP (1) JPS5918878B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2581486A1 (en) * 1985-05-01 1986-11-07 Spectra Physics YAG-NEODYM LASER
FR2592238A1 (en) * 1985-12-19 1987-06-26 Spectra Physics SEMICONDUCTOR LASER PUMPED BY A LASER DIODE AND METHOD FOR REDUCING OR ELIMINATING NOISE IN THE LASER BEAM OF SUCH A LASER.
JPS62274788A (en) * 1986-05-19 1987-11-28 スペクトラ−フィジックス・インコ−ポレイテッド Solid state laser which has small size quick mating/unmatingtype laser head and is pumped by laser diode
JPS63168063A (en) * 1986-12-23 1988-07-12 スペクトラ−フィジックス・インコーポレイテッド Small size q switch solid laser pumped by diode
JPH01138632A (en) * 1987-11-25 1989-05-31 Sony Corp Optical head
JPH01214079A (en) * 1988-02-22 1989-08-28 Sony Corp Laser light source
EP0425516A1 (en) * 1988-05-19 1991-05-08 Univ South Florida Butt-coupled single transverse mode diode pumped laser.
US5369661A (en) * 1991-02-07 1994-11-29 Nippon Steel Corporation Semiconductor laser-pumped solid state laser system and optical coupling system coupling semiconductor laser with optical fiber
JP2013172100A (en) * 2012-02-22 2013-09-02 Mitsubishi Electric Corp Adjustment method of laser device and manufacturing method for laser device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6817041B2 (en) 2016-11-24 2021-01-20 Eneos株式会社 Conductive thermoplastic elastomer composition
JP7055808B2 (en) 2017-08-02 2022-04-18 Eneos株式会社 Rubber compositions, crosslinked rubber compositions, tires and industrial rubber parts
EP3831857A4 (en) 2018-07-30 2022-04-27 ENEOS Corporation Resin composition
JP7352466B2 (en) 2019-12-27 2023-09-28 Eneos株式会社 Composition for foam molding and foam molded product

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2581486A1 (en) * 1985-05-01 1986-11-07 Spectra Physics YAG-NEODYM LASER
FR2592238A1 (en) * 1985-12-19 1987-06-26 Spectra Physics SEMICONDUCTOR LASER PUMPED BY A LASER DIODE AND METHOD FOR REDUCING OR ELIMINATING NOISE IN THE LASER BEAM OF SUCH A LASER.
JPS62274788A (en) * 1986-05-19 1987-11-28 スペクトラ−フィジックス・インコ−ポレイテッド Solid state laser which has small size quick mating/unmatingtype laser head and is pumped by laser diode
JP2660336B2 (en) * 1986-05-19 1997-10-08 スペクトラ−フィジックス・インコ−ポレイテッド Solid-state laser pumped by laser diode with small quick-disconnect laser head
JPS63168063A (en) * 1986-12-23 1988-07-12 スペクトラ−フィジックス・インコーポレイテッド Small size q switch solid laser pumped by diode
JP2729621B2 (en) * 1986-12-23 1998-03-18 スペクトラ−フィジックス・インコーポレイテッド Compact Q-switched solid-state laser pumped by a diode
JPH01138632A (en) * 1987-11-25 1989-05-31 Sony Corp Optical head
JPH01214079A (en) * 1988-02-22 1989-08-28 Sony Corp Laser light source
JP2712232B2 (en) * 1988-02-22 1998-02-10 ソニー株式会社 Laser light source
EP0425516A1 (en) * 1988-05-19 1991-05-08 Univ South Florida Butt-coupled single transverse mode diode pumped laser.
US5369661A (en) * 1991-02-07 1994-11-29 Nippon Steel Corporation Semiconductor laser-pumped solid state laser system and optical coupling system coupling semiconductor laser with optical fiber
JP2013172100A (en) * 2012-02-22 2013-09-02 Mitsubishi Electric Corp Adjustment method of laser device and manufacturing method for laser device

Also Published As

Publication number Publication date
JPS5918878B2 (en) 1984-05-01

Similar Documents

Publication Publication Date Title
US5651019A (en) Solid-state blue laser source
US5499256A (en) Polarized frequency-selective optical source
US5136598A (en) Modulated high-power optical source
US6259711B1 (en) Laser
US6763042B2 (en) Apparatus and method for frequency conversion and mixing of laser light
Nagai et al. Low-noise operation of a diode-pumped intracavity-doubled Nd: YAG laser using a Brewster plate
US5898716A (en) Structure of a passively mode-locked optical fiber laser
US5412674A (en) Compact rapidly modulatable diode-pumped visible laser
JP2941855B2 (en) Ring laser resonator
JPS5852889A (en) Optical transmitter
US5121404A (en) Optically pumped solid laser
WO1996025779A1 (en) Optical source with mode reshaping
US3466565A (en) Laser mode selection
US3947780A (en) Acoustooptic mode-locker frequency doubler
US4194168A (en) Unidirectional ring laser apparatus and method
EP0559139A1 (en) Short-wavelength light generating apparatus
US5450429A (en) Efficient linear frequency doubled solid-state laser
US6724787B2 (en) Low noise solid state laser
KR0174775B1 (en) Lasing system with wavelength=conversion waveguide
US6958845B2 (en) Optical control element
JPH10190119A (en) Method and device for operating laser system for free-space optical communication
US6628692B2 (en) Solid-state laser device and solid-state laser amplifier provided therewith
US5469455A (en) Fiber optic ring laser
WO2007066747A1 (en) Fiber laser
US6570904B1 (en) Two-mirror figure “8” ring resonantor