JPS5852116A - Method and equipment for conveying powdery or granular material with air - Google Patents

Method and equipment for conveying powdery or granular material with air

Info

Publication number
JPS5852116A
JPS5852116A JP14809981A JP14809981A JPS5852116A JP S5852116 A JPS5852116 A JP S5852116A JP 14809981 A JP14809981 A JP 14809981A JP 14809981 A JP14809981 A JP 14809981A JP S5852116 A JPS5852116 A JP S5852116A
Authority
JP
Japan
Prior art keywords
powder
air
concentration
pipe
transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14809981A
Other languages
Japanese (ja)
Inventor
Tetsuo Fujisawa
哲夫 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14809981A priority Critical patent/JPS5852116A/en
Publication of JPS5852116A publication Critical patent/JPS5852116A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/66Use of indicator or control devices, e.g. for controlling gas pressure, for controlling proportions of material and gas, for indicating or preventing jamming of material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Transport Of Granular Materials (AREA)

Abstract

PURPOSE:To prevent the pulsation of a powdery or granular material and the lag of its control, by detecting the concentration of the powdery or granular material in a mixed flow consisting of air and the material, to control the supplied quantity of the material and thereafter additionally supply the conveying air to the mixed flow to convey the material at a low concentration. CONSTITUTION:Air sent out from an air source 1 is divided to a primary conveyance pipe 3 and an air supply pipe 13 through a ramification pipe 18. The air in the pipe 3 flows to a mixer 4 through a Venturi pipe 8 and a section fitted with a back pressure gauge 9. A pulverized material in a hopper 5 is sent through a feeder 6 into the mixer 4 in which the material is mingled with air. The mingled flow from the mixer 4 reaches a confluence machine 2 through a constricted pipe 11. The revolution speed of an electric motor M is controlled depending on the output of a pressure difference detector 12 which corresponds to the concentration of the pulverized material (the flow rate of the material), so that the quantity of the pulverized material supplied to the mixer 4 is kept constant. In the confluence machine 2, the mingled flow joins air supplied from the pipe 13, so that the concentration of the pulverized material is made low. After that, the mingled flow is conducted to a burner 16 through a pipe 15.

Description

【発明の詳細な説明】 本発明は、粉粒体の空気輸送方法及びその装置に係り、
特に高濃度輸送方式と低濃度輸送方式の両省の長所を生
かして粉粒体の均一な輸送を図ったものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for pneumatic transportation of powder and granular materials,
In particular, it aims to uniformly transport powder and granules by taking advantage of the advantages of both the high-concentration transport method and the low-concentration transport method.

粉粒体の空気輸送において、粉粒体を貯蔵ホッパーから
輸送配管中へ定量的に供給し、最jlI目的地まで定量
性を艙持しつつ空気輸送する技術は、近年富みにその重
要性を増しつつある。
In the pneumatic transport of powder and granular materials, the technology of quantitatively supplying the powder and granular materials from a storage hopper into transport piping and transporting them pneumatically while maintaining quantitative properties to the final destination has gained increasing importance in recent years. It is increasing.

例えば、微粉炭を空気輸送して燃焼炉、1iiil@窯
、高炉などの各種工業炉へ燃料として倶輪する場合、こ
れら工業炉への微粉炭供給量が電動し、短期間なりとも
過大に供給されると、単に熱量の損失を伴なうばかりで
なく、−酸化炭素を多量に発生して爆発する危険性があ
ると同時に、炉内温度が異常に上昇し、設備、操業、−
品品質などの面で種々の弊害を発生する。 このような
理由により益々輸送の定量性に高い精度が要求されるよ
うになって来ている。
For example, when pulverized coal is transported pneumatically to be used as fuel in various industrial furnaces such as combustion furnaces, 1III@kilns, and blast furnaces, the amount of pulverized coal supplied to these industrial furnaces is electrically driven, resulting in an excessive supply even for a short period of time. If this happens, not only will there be a loss of heat, but there will also be a risk of an explosion due to the generation of a large amount of carbon oxide, and at the same time, the temperature inside the furnace will rise abnormally, causing damage to equipment, operations, and so on.
This causes various problems in terms of product quality, etc. For these reasons, there is an increasing demand for higher precision in quantitative transport.

このような粉粒体の輸送配管への定量供給方法としては
、最近減量方式による定量供給−が多用されるようにな
ってきている。 この方式14 bt [r粒体ホッパ
ーとホッパー内粉粒体の総重量を計量できるようにし、
ホッパー内粉粒体の排出状況を一定すンプリング局期で
計測し、その減少量を設定値と絶えず比較して誤差分を
修正しつつ排出量を制御する方式で、ホッパー内粉粒体
重量が下限になると一定量の粉粒体を排出しつつ粉粒体
を傘ツバ−に補給し、上限になると補給を断って前述の
方法と闘じ動作の制御を繰返すものである。
As a method for quantitatively supplying such powder or granules to transport piping, a quantitatively decreasing method has recently come into widespread use. This method 14 bt [R grain material hopper and the total weight of the powder material in the hopper can be measured,
This method measures the discharge status of powder and granules in the hopper at a constant sampling period, constantly compares the amount of decrease with a set value, and controls the discharge amount while correcting the error. When the lower limit is reached, a certain amount of powder and granules are discharged and replenished to the umbrella brim, and when the upper limit is reached, the supply is cut off and the control operation is repeated using the method described above.

しかしこの方式による定量供給機番°ま、供輪着度は比
較的高いが機−及び制御方式がII線であるため高価と
なり、特に複数の輸送先へ夫々の量を制御しつつ輸送す
る必要のある場合には経済−で採用しがたい。
However, although this method has a relatively high rate of loading, it is expensive because the machine and control system is II line, and it is especially necessary to transport to multiple destinations while controlling the amount of each. In some cases, it is difficult to adopt it due to economic reasons.

これに対して、輸送配管中の粉粒体濃度または粉粒体流
量を検出して供給機を制御する方式があり、この方式に
よれば簡単な設備で実施することができ、従って安価で
あるが下記の理由により協定精度が充分てない。
On the other hand, there is a method in which the feeder is controlled by detecting the powder or granule concentration or the powder or granule flow rate in the transport piping, and this method can be implemented with simple equipment and is therefore inexpensive. However, the accuracy of the agreement is not sufficient for the following reasons.

即ち、空気輸送配管中の粉粒体濃度の測定方法には、一
般に使用されている絞り管、拡大管、直管、曲り管路の
前後の圧力差を利用する方法の他、輸送空気量または輸
送空気背圧を利用する方法、輸送空気源の駆動用電流値
又は輸送配管の電気的特性を利用するものなどが挙げら
れる。 そしてこのような空気を利用した粉粒体の輸送
方式には、輸送空気中の粉粒体の漉変により大別して高
濃度方式と、低濃度方式とがある。
In other words, methods for measuring the concentration of powder or granules in air transport piping include methods that utilize the pressure difference before and after the generally used constricted pipe, expansion pipe, straight pipe, or bent pipe, as well as methods that use the pressure difference before and after the flow rate of air transported or Examples include methods that utilize transport air back pressure, methods that utilize the driving current value of a transport air source, or electrical characteristics of transport piping. Such air-based methods for transporting powder and granular materials are broadly classified into high-concentration methods and low-concentration methods, depending on the straining of the powder in the transport air.

前者の高濃度方式は、混合比(輸送粉粒体と輸送空気と
の重量比)が例えばS−WSg度以上で、輸送空気量は
少なくて済むが、輸送空気圧の制限上り比験的低速とせ
ざるを得す、そのため連続定量的に供給した粉粒体も輸
送配管金体−を生じ、輸送末端部において脈動して排出
される傾向にあり、特に輸送距−が長い場合、あるいは
輸送配管中に曲り部や艦直上昇部が多い場合には、粉粒
体が沈媛するなどにより脈動の度合いが強くなる。
In the former high-concentration method, the mixing ratio (weight ratio of transported powder and granular material to transported air) is, for example, S-WSg or higher, and the amount of transported air is small; As a result, powder and granules that are continuously and quantitatively supplied tend to form transport piping metal bodies and are discharged in a pulsating manner at the end of the transport, especially when the transport distance is long or during transport piping. If there are many curved parts or vertically rising parts, the degree of pulsation will become stronger due to factors such as sinking of powder and granules.

これに対して低濃度輸送方式は、混合比を例えば1〜3
41!度とし、比較的輸送空気量が多く、且つ高速で輸
送できるため、輸送配管内で粉粒体が脈動するのを極力
防止できるが、逆に調度変化による漉定値の羞が小さい
ため、測定霞度が充分でなく、なかんずく短管の圧力差
を利用する方法以外のものは、輸送配管金体の平均的粉
粒体制度に依存するため、測定精度が低いのみならず輸
送配管が長い場合、あるいは輸送配管中に曲り部や―直
上昇部が多い場合には、−一遅れの面でも陶■がある。
On the other hand, in the low concentration transport method, the mixing ratio is, for example, 1 to 3.
41! Because it can transport at a relatively large amount of air and at high speed, it is possible to prevent pulsation of the powder and granules in the transport piping as much as possible. In particular, methods other than those that utilize the pressure difference in short pipes depend on the average particle size of the transportation piping metal body, which not only results in low measurement accuracy but also when the transportation piping is long. Alternatively, if there are many bends or vertically rising sections in the transportation piping, there may be a slight delay.

このように輸送配管中の粉粒体濃度を測定して供給機を
制御する場合、上記いずれの方式を採るにしても、輸送
末端部での連続性、定量性の画で開園がある。
In this way, when controlling the feeder by measuring the concentration of powder or granular material in the transport pipe, no matter which method is adopted, there is a problem with continuity and quantitative performance at the end of the transport.

従って本発刺の目的は、上記高濃度輸送方式の濃度測定
一度の高い画と、低濃度輸送方式の脈動が小さい画の両
者の長所を生かした連続性、定量性の高い粉粒体°の空
気輸送方法及びその装置を提供することであり、その要
旨とする拠は、粉粒体の濃度の検出は高濃度−過方式の
もとで行って粉粒体濃度の測定精度を高め、それ“だけ
輸送配管への定量供給性を高め、更に粉粒体濃度測定後
の下流部分で輸送空気を追加供給して輸送経路の大部分
を低濃度輸送方式とすることにより輸送配管内での粉粒
体の脈動の発生を防止する点にある。
Therefore, the purpose of this pricking is to take advantage of the advantages of both the high-concentration transport method, which allows for high concentration measurement at once, and the low-concentration transport method, which has small pulsation, to produce highly continuous and quantitative powder and granule materials. The purpose of the present invention is to provide a pneumatic transportation method and a device for the same, and the gist thereof is to detect the concentration of powder or granule by using a high concentration-overpass method to increase the accuracy of measuring the concentration of powder or granule; “By improving the ability to supply a fixed quantity to the transport pipe, and by supplying additional transport air downstream after measuring the powder and granule concentration, and making most of the transport route a low-concentration transport method, the powder inside the transport pipe can be The purpose is to prevent the occurrence of pulsation of particles.

続いて添付したw−を参照しつつ、本発明を微粉炭を空
気輸送して燃焼炉へ供給するシステムに適用した実施例
について説明する。 ここに、第1m及び第2Wiは、
それぞれ本発明の一実施例に係る粉粒体の空気輸送装置
の系統図である。
Next, an embodiment in which the present invention is applied to a system for pneumatically transporting pulverized coal and supplying it to a combustion furnace will be described with reference to the attached w-. Here, the first m and the second Wi are
FIG. 3 is a system diagram of a pneumatic transportation device for powder and granular materials according to an embodiment of the present invention.

第1−において、空気源(υかも合流−働に至る一次輸
送配管(31の途中に定置■ノズル略よりなる混入機(
4)が介在しており、微粉炭ホッパー四からスクリュー
フィーダ略より成る供給機(6)によって取出された黴
粉炭岬の粉粒体は、仕切弁ff)を経て混入機G4>に
供給される。 混入−((転)より上流側にはベンチエ
リ管儂)及び背圧針((2)が配設されており、ペンチ
エリ管(8)内を11迦する空気の流量は、−ベンチュ
リ管(2)に接続された空気減蓋計−によって検出され
る。 崗、ペンチエリ管(2)はピトー管と置換しても
よい。 混入軸(4)と合流機(2)との閾には絞り管
部等よりなる粉粒体流量測定装置を設け、差圧検出ai
aによってIRり管部の前後の差圧を測定して絞り管■
内を流れる粉粒体と空気の混合流中の粉体の濃度なS#
fiする。 前記供給−一を駆動する電動機台には差圧
検出W@からの信号が入力され、混合流中の粉粒体の―
度の表化に対応して電動−輪を蜜達させへ供給機(2)
から混入機(2)へ供給する粉粒体の量を一定に制御す
る。 この際、−次輸送配管(3)への輸送空気量は、
lRり管−内を遷る混合流の、混合比が高濃度となるよ
うな輻で選定される。 空気ll田と合流機(2)とは
、上記ベンチュリ管(8)、混入機(4)、絞り管Iを
バイパスする空気供給配管−によって接続されており、
この空気供給配管Q3^の圧力は、その途中に設けた圧
力調整弁a−によって制御される。 合流機(2)の排
出側に連結された二次輸送配管(至)は、その末端にお
いてm鉤装置■等の外部装置と接続されている。IIは
1afIIA炉を示す。 又粉粒体の輸送配管中への供
給部における粉粒体の濃度は、背圧11t(勅によって
検出することも可能である。
In the first stage, a mixing machine consisting of a stationary nozzle (31
4) is interposed, and the pulverized coal cape powder taken out from the pulverized coal hopper 4 by the feeder (6) consisting of a screw feeder is fed to the mixing machine G4> via the gate valve ff). . Entrainment - (The Venturi tube (2) is placed upstream of the Venturi tube) and the back pressure needle ((2) are arranged, and the flow rate of air flowing through the Pentieri tube (8) is -Venturi tube (2) It is detected by an air cap meter connected to the air cap. The Pentieri tube (2) may be replaced with a Pitot tube. There is a constrictor tube section at the threshold between the mixing shaft (4) and the merging machine (2). A powder flow rate measuring device consisting of
Measure the differential pressure before and after the IR tube section using a, and check the throttle tube ■
The concentration of powder in the mixed flow of powder and air flowing inside S#
fi. A signal from the differential pressure detection W@ is inputted to the electric motor board that drives the supply-1, and the powder and granular material in the mixed flow is detected.
Electric wheel feeding machine (2) corresponding to the degree table
The amount of powder and granular material supplied from the mixing machine (2) to the mixing machine (2) is controlled to be constant. At this time, the amount of air transported to the next transport pipe (3) is:
The radius is selected so that the mixing ratio of the mixed flow passing through the IR pipe becomes high concentration. The air 1 field and the merging machine (2) are connected by an air supply pipe that bypasses the venturi pipe (8), the mixing machine (4), and the throttle pipe I,
The pressure of this air supply pipe Q3^ is controlled by a pressure regulating valve a- provided in the middle thereof. The secondary transport pipe (to) connected to the discharge side of the merging machine (2) is connected at its end to an external device such as an m-hook device (2). II indicates the 1afIIA furnace. Further, the concentration of the powder or granular material at the supply part into the transportation pipe of the powder or granular material can also be detected by a back pressure of 11t.

従って、空気1田より!l出された空気は、分岐部−を
龜て一次輸送配管(濁へ送り込まれる空気と、圧力調整
弁−を経て空気供給配管Oへ流入する空気に胸れ゛る。
Therefore, from the air 1 field! The discharged air is filled with air that flows into the air supply pipe O through the branch part and the primary transport pipe (air sent into the tank) and the pressure regulating valve.

 −次輸送配管(31に入った空気は、ペンチエリ管(
拗及び背FE針(窃取付部を経て混入−(旬に至る。 
混入機(2)では、微粉脚本ツバ−(鴫から供給機(6
)によって混入機(4に送り込まれた粉粒体が空気に混
入され、粉粒体と空気との混合流は、絞り管(2)を経
て合流機(2)に達する。 −次輸送配管(3)内では
粉粒体濃度が高いため配管(3)内の空気流量を一定に
すれば、筆圧ll11#M1器−によって測定された圧
力損失が粉粒体濃度、従って粉粒体流量とほぼ比例岡係
となる。 従って差圧検出−(2)より送出される信号
を用いて電動機台の一転達度を制御することにより、混
入機(2)への粉粒体の供給量を一定に制−することが
容易となる・ こうして合流機(2)へ達した混合流は
、空気供給配管0より合流機(2)へ供給された空気と
会流し、低濃度とな7つて二次輸送配管(至)を遁り、
aim羨置装2)に供給される。
-The air that enters the next transport pipe (31) is transferred to the Pentieri pipe (31).
Skull and dorsal FE needles (contaminated through the stolen attachment part - (reaching the end).
In the mixing machine (2), the feeder (6
) The powder and granules fed into the mixer (4) are mixed with air, and the mixed flow of the powder and air reaches the merging machine (2) via the throttle pipe (2). - Next transport pipe ( Since the powder concentration is high in pipe (3), if the air flow rate in pipe (3) is kept constant, the pressure loss measured by the pen pressure ll11#M1 device will be equal to the powder concentration and therefore the powder flow rate. Therefore, by controlling the degree of transfer of the electric motor using the signal sent from the differential pressure detection (2), the amount of powder and granular material supplied to the mixing machine (2) can be kept constant. The mixed flow that has reached the merging machine (2) in this way flows together with the air supplied to the merging machine (2) from the air supply pipe 0, resulting in a low concentration and a secondary Escape from the transportation piping,
Aim device 2).

11!2−に示した第2の実施例では、空気源が一次輸
送配管CIX)に空気を送り込む高圧空気*a*>と、
空気供給配管03りに空気をiり込む低圧空気鑞(1b
)とに分割されでおり、混入機@吟はエゼクタによって
構成されている・ この場合、粉粒体嵐量漏定装置とし
て混入Ii&@呻の前後の差圧を利用した検出器α2り
が設置されている。 また混入機(4x)より上流側に
はオリフィス−を設け、このオリフィス鵠によって生じ
る差圧を差圧検出器―にようで検出し、その検出量に応
じて輸送空気用流量調節弁−を作動さ曽−次輸送゛配管
G〜への空気流入量を一定に調節する。 更にホッパー
〇り全体が計重機(2)によって支えられており、ホッ
パーφり内の粉粒体量の粒化がIR出される0 ・従っ
てこの実施−では、高圧空気源α旬よ−−送出された空
気は、差圧検出seaからの曽せによって作動される流
量調節弁(2)によって定量化されて混入機@荀に流入
し、ホッパーSX)から1−#蓋フィーダ等よりなる供
給−優りによって搬出された粉粒体と混り合って合流機
a呻へ至る。 混入機(4m)においては、供給された
粉粒体を加速するために相当の空気エネルギーが消費さ
れるので、これが差圧として褒□われて(る。 この消
費量は混合比が太き6%場合にははぼ混合比に比例する
ため、諷入機藺後の差圧を測定することにより、精度良
(粉粒体濃度を測定することができる。 又、粉粒体供
給点からの運れも少なく、測定装置内での滞留時間が短
かいので、嫌ぼ脚ai重量が測定できる。 こうして得
られた粉粒体濃度に関する儒号を電動機−に送り1.供
給−(6m)を自動制御して粉粒体ホッパ7(SN)か
ら供給−により取出される粉粒体の量を−、定に保つ。
In the second embodiment shown in 11!2-, the air source is high-pressure air *a*> that feeds air into the primary transportation pipe CIX),
Low pressure air solder (1b) that introduces air into the air supply pipe 03.
), and the mixing machine @Gin is composed of an ejector. In this case, a detector α2 is installed as a particle storm leakage device that uses the differential pressure before and after the mixing Ii & @Gin. has been done. In addition, an orifice is provided upstream of the mixing machine (4x), and the differential pressure generated by this orifice is detected by a differential pressure detector, and the transport air flow control valve is operated according to the detected amount. Adjust the amount of air inflow to the next transport pipe G~ to a constant value. Furthermore, the entire hopper is supported by a weighing machine (2), and the granulation of the powder in the hopper is emitted by IR. Therefore, in this implementation, the high-pressure air source α is sent out. The air is quantified by the flow control valve (2) operated by the pressure from the differential pressure detection sea, flows into the mixer @X, and is supplied from the hopper SX) by a 1-# lid feeder, etc. It mixes with the powder and granules carried out by the flow and reaches the converging machine a. In the mixing machine (4 m), a considerable amount of air energy is consumed to accelerate the supplied powder and granular material, and this is rewarded as differential pressure. % is proportional to the mixing ratio, so by measuring the differential pressure after the input machine, it is possible to measure the powder and granule concentration with good accuracy. Since there is little transport and the residence time in the measuring device is short, the weight of the powder ai can be measured. The amount of powder and granular material supplied and taken out from the powder and granular material hopper 7 (SN) is maintained constant by automatic control.

こうして合流機c2りに到着する。以前の混合流の粉粒
体濃度は高濃度に保たれるが、合流−a!りで!、低圧
空気源αb)より送込まれた補充空気と混入機(4x)
より流出した混合流とが合流して低濃度となる。 この
ようにして画度の低、、<なった混合流は、二次輸送配
管−15x)を遡って31!鰯の―焼炉等に送られる。
In this way, it arrives at the merge plane c2. The powder concentration of the previous mixed flow is kept high, but the confluence - a! Ride! , supplementary air sent from low pressure air source αb) and mixing machine (4x)
It merges with the mixed flow that flows out further, resulting in a low concentration. In this way, the mixed flow, which has a low degree of resolution, flows back through the secondary transport pipe (15x) to 31! Sardines are sent to a kiln, etc.

 尚、ホッパー(5m)に付設した計重機(2)を補助
的に使用してホッパー争りからの粉粒体の実際の排出量
を計測し、差圧、検出−02勾にょる粉粒体流量の測寞
値と比稜して岡iwm値を補正することにより一定精度
を向上させるこ七がてきる。 又、この実−例では空気
源を高圧と低圧とに分けているので、空気圧−機の駆動
動力が嚢体として最小で済む。
In addition, the weighing machine (2) attached to the hopper (5 m) was used to measure the actual amount of powder and granules discharged from the hopper, and the differential pressure and detection -02 gradient were measured. By correcting the Oka iwm value by comparing it with the measured value of the flow rate, a certain degree of accuracy can be improved. In addition, in this example, the air source is divided into high pressure and low pressure, so the driving power of the pneumatic machine can be minimized for the bladder.

これらや方法及び装置におい・て、輸送配管中の粉粒体
濃度は一次輸送配管内では二次輸送配管内よりも高一度
であれば良く、又−次輸送配管での翰粒体′漉度或いは
、粉粒体流量の測定手段を限定するものではない。 尚
、高濃度輸送方式を利用する一次輸送配一は儀かの長さ
で済むため輸送空気圧の点からも高速輸送とすることが
でき、従って管内での粉粒体の脈動は少ないが、−次輸
送配管内での粉粒体の流動をより円滑にするため、−次
輸送配管を下流側へ斜め下向きに傾斜して配設したり、
或いは測定差圧を大きくするために上昇管とすることか
できる。 又、差圧発信器には短周期の態動を平均化す
るための緩衝器を設けることが望ましい。
In these methods, methods, and devices, the concentration of powder and granules in the primary transportation piping should be higher than that in the secondary transportation piping, and the concentration of powder and granules in the secondary transportation piping should be higher than that in the secondary transportation piping. Alternatively, the means for measuring the flow rate of powder or granular material is not limited. In addition, since the primary transport arrangement using the high concentration transport method requires only a long pipe length, it is possible to achieve high-speed transport from the viewpoint of transport air pressure, and therefore there is less pulsation of the powder inside the pipe, but - In order to make the flow of powder and granules smoother in the secondary transport pipe, the secondary transport pipe is arranged to be inclined diagonally downward towards the downstream side.
Alternatively, a rising pipe can be used to increase the measured differential pressure. Further, it is desirable to provide the differential pressure transmitter with a buffer for averaging short-period behavior.

本発明は以上述べたように、配管長の短い高濃度の輸送
状−下で粉粒体の濃度を検出し、濃度検出後に輸送空気
を補給して輸送経路の大部分を低濃度輸送方式となした
もねであるから、濃度検出のための差圧が大きくなり粉
粒体濃度の測定精度が向上すると共に輸送配管内ての粉
粒体の脈動が実生せず、制御連れの同層も解消し、且つ
濃度検出以後は比較的輪i*気量が多い低濃度輸送方式
に依るため高速で輸送でき、粉粒体の脈動も極力防止で
きる・ 又減量方、式の定量供給機と比瞭しても、連続
的な計測、−御が可能で、しかも安価である峰の長所を
有する。
As described above, the present invention detects the concentration of powder or granular material under a high-concentration transport form with a short piping length, replenishes transport air after detecting the concentration, and converts most of the transport route into a low-concentration transport method. Because it is a natural material, the differential pressure for concentration detection is large, and the measurement accuracy of powder and granule concentration is improved, and pulsation of powder and granule does not occur in the transportation pipe, and the same layer with control is also improved. Moreover, after the concentration is detected, it relies on a low-concentration transportation method with a relatively large volume of air, so it can be transported at high speed, and pulsation of powder and granules can be prevented as much as possible. Obviously, it has the advantage of being able to be measured and controlled continuously and being inexpensive.

【図面の簡単な説明】[Brief explanation of the drawing]

111図及q籐2図は1それでれ本発明の一実施一に係
る粉粒体の空気輸送装置の系allである。 (符号の説明) 1、1亀、 lb−空気源、 399. is、 15
!−輸送配管4、4X−に人機、   !!、51L−
粉粒体ホツバーa、 @x −・・供給機、   2.
2x−合繊機12、12に−・差圧検出11(粉粒体の
濃度を検出する装置)、       13.13m−
空気供給配管。 特許出願人  株式金社神戸製鋼所 代 珊 人  弁理士本庄武男
Figure 111 and Figure q and Figure 2 are all systems of a pneumatic transportation device for powder and granular materials according to one embodiment of the present invention. (Explanation of symbols) 1, 1 turtle, lb-air source, 399. is, 15
! -Transport piping 4, 4X-, man and aircraft! ! , 51L-
Powder hopper a, @x--supplier, 2.
2x - Synthetic fiber machine 12, 12 - Differential pressure detection 11 (device for detecting the concentration of powder and granular material), 13.13m -
Air supply piping. Patent applicant: Kanesha Co., Ltd., Kobe Steel, Ltd., Mr. San, Patent attorney: Takeo Honjo

Claims (1)

【特許請求の範囲】 1、輸送配管中を流れる空気流に粉粒体を供給して空気
と粉粒体との混合流となし、粉粒体を輸送する粉粒体の
空気輸送方法において、粉粒体の輸送配管中への供給部
付近で混合流中の粉粒体濃度を検出して粉粒体供給量を
sumすると共に、上記粉粒体濃度の検出部を透過した
徒の混合流に輸送空気を追加供給して粉粒体濃度を低下
させ、その後は低濃度の混合流として輸送する如くなし
た粉粒体の空気輸送方法。 2、  m粒体を空気に混入した時の粉粒体の加速エネ
ルギーによるに圧によって粉粒体の濃度を検出する如く
なした特許請求の範闘第1項に記載の空気輸送方法。 3、空気源に連らなる輸送配管の途中に設けた混入機に
、粉粒体ホッパーより粉粒体を取出す供給機を連結し輸
送配管内の輸送空気に粉粒体を混入して空気輸送する粉
粒体の空気輸送装置において、混入機の下流に合流機を
配賢し、この合流機に一端が空気源に連らなる空気供給
配管を接続し、合流機より下流の粉粒体の濃度を低下葉
しめて輸送すると共に、合流機より上流側の輸送配管に
粉粒体の濃度を検出する装置を設けたことを特徴とする
粉粒体の空気輸送装置。 4、粉粒体の一度を検出する装置として、混入機前後の
差圧を検出する差圧検出器を用いた特許請求の範囲第3
項に記載の空気輸送装置。
[Scope of Claims] 1. A method for pneumatic transportation of powder and granular materials, in which the powder and granular materials are supplied to an air flow flowing through a transportation pipe to form a mixed flow of air and the powder and granular materials, and the powder and granular materials are transported, The powder and granule concentration in the mixed flow is detected near the supply part into the powder and granule transportation piping, and the powder and granule supply amount is summed, and the waste mixed flow that has passed through the powder and granule concentration detection part is A method for pneumatically transporting powder and granules by supplying additional transport air to reduce the concentration of the powder and granules, and then transporting the powder and granules as a mixed flow with a low concentration. 2. The pneumatic transportation method according to claim 1, wherein the concentration of the powder or granule is detected by the pressure generated by the acceleration energy of the powder or granule when the m-particle is mixed into air. 3. A feeder that takes out powder and granules from a powder hopper is connected to a mixing machine installed in the middle of a transport pipe connected to an air source, and the powder and granules are mixed into the transport air in the transport pipe for pneumatic transport. In a pneumatic transportation device for powder and granular materials, a merging machine is arranged downstream of the mixing machine, and an air supply pipe whose one end is connected to an air source is connected to the merging machine, and the powder and granular material downstream from the merging machine is A pneumatic transport device for powder and granular material, characterized in that the powder and granular material are transported while being reduced in concentration, and a device for detecting the concentration of the powder and granular material is provided in the transportation piping upstream of the merging machine. 4. Claim 3, which uses a differential pressure detector that detects the differential pressure before and after the mixing machine as a device for detecting the amount of powder or granular material.
Pneumatic conveyance device as described in Section.
JP14809981A 1981-09-18 1981-09-18 Method and equipment for conveying powdery or granular material with air Pending JPS5852116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14809981A JPS5852116A (en) 1981-09-18 1981-09-18 Method and equipment for conveying powdery or granular material with air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14809981A JPS5852116A (en) 1981-09-18 1981-09-18 Method and equipment for conveying powdery or granular material with air

Publications (1)

Publication Number Publication Date
JPS5852116A true JPS5852116A (en) 1983-03-28

Family

ID=15445218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14809981A Pending JPS5852116A (en) 1981-09-18 1981-09-18 Method and equipment for conveying powdery or granular material with air

Country Status (1)

Country Link
JP (1) JPS5852116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175322A (en) * 1986-01-28 1987-08-01 Kawasaki Heavy Ind Ltd Transport method for pulverized/granular substance
JP2014124583A (en) * 2012-12-26 2014-07-07 Shinagawa Refractories Co Ltd Device and method for transporting powder and granular material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035883A (en) * 1973-08-02 1975-04-04
JPS5125285A (en) * 1974-08-26 1976-03-01 Outboard Marine Corp Ryujobutsuo kinitsuni okurikomu hoho oyobi sochi
JPS5212633A (en) * 1975-07-21 1977-01-31 Riken Keikinzoku Kogyo Kk Surface treatment for coloring alloy material
JPS52126881A (en) * 1976-04-19 1977-10-25 Denka Engineering Preventive method of clogging of transportation pipe in pulverulent and granular body transportation device and its device
JPS5661227A (en) * 1979-10-17 1981-05-26 Denka Consult & Eng Co Ltd Constant flow rate transporting system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035883A (en) * 1973-08-02 1975-04-04
JPS5125285A (en) * 1974-08-26 1976-03-01 Outboard Marine Corp Ryujobutsuo kinitsuni okurikomu hoho oyobi sochi
JPS5212633A (en) * 1975-07-21 1977-01-31 Riken Keikinzoku Kogyo Kk Surface treatment for coloring alloy material
JPS52126881A (en) * 1976-04-19 1977-10-25 Denka Engineering Preventive method of clogging of transportation pipe in pulverulent and granular body transportation device and its device
JPS5661227A (en) * 1979-10-17 1981-05-26 Denka Consult & Eng Co Ltd Constant flow rate transporting system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175322A (en) * 1986-01-28 1987-08-01 Kawasaki Heavy Ind Ltd Transport method for pulverized/granular substance
JP2014124583A (en) * 2012-12-26 2014-07-07 Shinagawa Refractories Co Ltd Device and method for transporting powder and granular material

Similar Documents

Publication Publication Date Title
HU193520B (en) Process for regulating material-stream
JPH06115690A (en) Pulverized coal discharge quantity control device
RU2010123979A (en) SOLID PARTICULAR INJECTION SYSTEM
CN105621105B (en) The subsidiary conduit control system of Pneumatic conveyer and Pneumatic conveyer
US4198860A (en) Method and apparatus for measuring particulate matter flow rate
JPH0461284B2 (en)
CN104457224B (en) A kind of quantitative feed system of dry method cement rotary kiln raw material of improvement and manufacturing technique method
JPS6067325A (en) Granular powder collecting device
JPS5852116A (en) Method and equipment for conveying powdery or granular material with air
HU194395B (en) Method for measuring mass flow of solid material
CN207390481U (en) The grey transport system of purification
CN209406021U (en) A kind of denitrfying agent transportation system
EP0116764B1 (en) Apparatus for blowing powdery refining agent into refining vessel
JP2004035913A (en) Method and device for controlling blowing of granular powder
US3585269A (en) Process of operating a hollow electrode for use in closed, electrothermal reduction furnaces
CN108394727A (en) A kind of energy-saving extra long distance automatic pneumatic transport system
Yang et al. Recent patents on pressurization and dedusting for pneumatic conveying
CN205708874U (en) Discharge tube of bulk powder transport truck road and bulk powder goods tanker
JPS5974822A (en) Powdered material supplying method
JP2001031246A (en) Granular and powdery material intermittent discharge apparatus
US3178164A (en) Apparatus for injecting particulate material into furnaces
JP3528696B2 (en) Method and apparatus for blowing powder
TOMITA et al. Pneumatic transport of solids by a blow tank system
JP2019056152A (en) Powder and granular material blowing device, calibration curve preparation device, and preparation method for calibration curve
CN108584461A (en) A kind of dynamic measurement system for pulverulent material