JPS585193A - Preparation of immobilized enzyme entrapping with complex between high polymers - Google Patents

Preparation of immobilized enzyme entrapping with complex between high polymers

Info

Publication number
JPS585193A
JPS585193A JP10006781A JP10006781A JPS585193A JP S585193 A JPS585193 A JP S585193A JP 10006781 A JP10006781 A JP 10006781A JP 10006781 A JP10006781 A JP 10006781A JP S585193 A JPS585193 A JP S585193A
Authority
JP
Japan
Prior art keywords
enzyme
complex
temperature
ionic
immobilized enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10006781A
Other languages
Japanese (ja)
Inventor
Yoshihito Osada
義仁 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10006781A priority Critical patent/JPS585193A/en
Publication of JPS585193A publication Critical patent/JPS585193A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To control the entrapping ratio of an enzyme into a complex in entrapping and immobilizing the enzyme with the complex formed by the secondary intramolecular bonding strength, e.g. ionic hydrogen bonding or charge transfer interacting force, by changing the pH, solvent, temperature, etc. CONSTITUTION:A complex between high polymers formed by the so-called intramolecular bonding strength, e.g. ionic bonding, hydrogen boinding or charge transfer interacting force, can be obtained by mixing two high polymeric solutions capable of interacting on each other. In preparing the complex, an enzyme is added simultaneously, and the pH, ionic strength, solvent, temperature, etc. are changed to entrap the enzyme in the high polymeric complex. Thus, the entrapping ratio thereof and the reaction activity of the formed immobolized enzyme are controlled. The resultant immobilized enzyme is protected from inhibiting factors of enzymic activity, e.g. pH, temperature, ionic strength, metal, organic or inorganic reagents, by the high polymeric complex.

Description

【発明の詳細な説明】 本発明は高分子錯合体を利用して酵素を包括し、よって
固定化酵素を製造しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes a polymer complex to encapsulate an enzyme, thereby producing an immobilized enzyme.

従来、酵素の固定化に関しては、担体結合法、架橋法、
包括法等数多く知られているが、このうち、包・話法は
、酵素タンパク自身が固定化担体と化学的に結合してい
ないので数多くの酵素に適用できる利点がある。ポリ7
クリルアξドゲル中に包括した固定化酵素は工業的にも
利用されている好例であるが、本発明のような高分子間
錯合体形成を利用して包括する酵素固定化の例は、まだ
知られていない。
Conventionally, enzyme immobilization methods include carrier binding method, crosslinking method,
Many comprehensive methods are known, but among these methods, the envelope method has the advantage that it can be applied to a large number of enzymes because the enzyme protein itself is not chemically bonded to the immobilization carrier. poly7
Immobilized enzymes encapsulated in Krylua ξ-dogel are a good example of industrial use, but examples of enzyme immobilization that utilize complex formation between polymers as in the present invention are still unknown. It has not been done.

高分子間軸体(又は、高分子量コ/プレックス)は、互
いに相互作用するよう壕二種類の高分子溶液を混合する
事によって容JIK得る事ができる(高分子間軸体「高
分子間軸体」第7巻「機能高分子」(共立出版)第8章
参照)。例え、は正電荷を有すや41ビニルピリジウム
塩水溶液を等量の負電荷金有するポリスチレンスルホン
酸水済液と混合すると瞬時に沈デンを生成し、いわゆる
ポリイオンコンプレックスが得られる。このポリイオン
コンプレックスは、静電気的結合力によって形成された
高分子間錯合体でおって高分子量塩結合によって架橋し
た網目構造やラダー構造を有していると考えられている
。このような高分子間鍜μは、静電気的結合力に限らず
、ポリメタクリル酸(PMAA)やポリアクリル酸(F
AA)とポリビニルピロリドン(PVPdn)又はポリ
エチレングリコール(PEG)等の連錯関水素結合で形
成される高分子間錯合体、ポリアミノスチレンとポリ無
水マレイン酸等の間で発現する電荷移動相互作用で形成
される高分子間錯合体、その他ステレオコンプレックス
等、その種類は様々であり、本発明においてもその種類
や調整法を問わない。また、上記掲載文献にも記述があ
るように、高分子間錯合体の一方の成分を高分子として
、酵素と共に存在させ、他方の成分をモノマーとして共
存せしめ、いわゆる「マトリックス重合」の手法をもち
いて重合と同時に酵素を包括させる事も可能である。肝
要な事は、高分子間錯合体が作る網目ないしラダー構造
を利用して酵素を包括せしめ、よって固定化酵素の製造
をはかろうとする方法である。高分子間錯合体によって
形成される網目構造密度は、一般に極めて高くかつ安定
であって酵素を網目中に捕捉し、包括するに充分でめる
。しかも、本発明のような高分子間錯合体で得られる網
目は第一にたとえばアクリルアミドゲル等、化学的架橋
法によって形成した網目構造と異なり、錯合体生成の諸
条件、即ち−pHやイオン強度溶媒の種類、温度等によ
って容易に架橋密度やその分布、結合強度等を制御しう
る特徴を有している。しかも、この網目は適当に選んだ
条件下で高分子溶液を混合するだけで得られ、その工程
が極めて簡便容易、迅速であるばかりでなく経済的、効
率的でありて化学的架橋のような放射線や電子線、光等
による酵素の損傷失活、重合の為の加熱ないしは冷却、
減圧等の操作も必要としない。これが本発明の第2の特
徴である。
Polymer axes (or high molecular weight co/plexes) can be obtained by mixing two types of polymer solutions so that they interact with each other. (See chapter 8 of "Functional Polymers" (Kyoritsu Publishing), Vol. 7, "Functional Polymers" (Kyoritsu Publishing)). For example, when an aqueous solution of 41 vinylpyridium salt, which has a positive charge, is mixed with an aqueous solution of polystyrene sulfonic acid having an equal amount of a negative charge, a precipitate is instantly formed, and a so-called polyion complex is obtained. This polyion complex is an intermolecular complex formed by electrostatic bonding force, and is thought to have a network structure or ladder structure crosslinked by high molecular weight salt bonds. Such inter-polymer resistance is not limited to electrostatic bonding force, but is also caused by polymethacrylic acid (PMAA) and polyacrylic acid (F
AA) and polyvinylpyrrolidone (PVPdn) or polyethylene glycol (PEG), etc., formed by inter-polymer complexes formed by linked hydrogen bonds, and formed by charge transfer interactions between polyaminostyrene and polymaleic anhydride, etc. There are various types of inter-polymer complexes, other stereo complexes, etc., and the present invention does not limit the type or adjustment method. In addition, as described in the above-mentioned literature, one component of the polymer complex is made to coexist with the enzyme as a polymer, and the other component is made to coexist as a monomer, using the so-called "matrix polymerization" method. It is also possible to incorporate enzymes simultaneously with polymerization. What is important is a method that utilizes the network or ladder structure formed by the polymer complex to encapsulate the enzyme, thereby producing an immobilized enzyme. The network density formed by the interpolymer complexes is generally very high and stable enough to trap and entrap the enzyme within the network. Moreover, the network obtained by the inter-polymer complex of the present invention differs from the network structure formed by chemical cross-linking methods, such as acrylamide gel, in that it depends on the various conditions of complex formation, such as -pH and ionic strength. It has the characteristic that the crosslink density, its distribution, bond strength, etc. can be easily controlled by the type of solvent, temperature, etc. Moreover, this network can be obtained simply by mixing polymer solutions under appropriately selected conditions, and the process is not only extremely simple, easy, and quick, but also economical and efficient, and can be achieved by methods such as chemical crosslinking. Damage and inactivation of enzymes due to radiation, electron beams, light, etc., heating or cooling for polymerization,
No operations such as depressurization are required. This is the second feature of the present invention.

本発明によって実現できる第3の特徴は11種々の重金
属や有機、無機化合物、カH・、温度、塩、その他の酵
素阻害因子から酵素・を保護する機能を有していること
である。本発明によって作られる高分子間架橋構造は化
学結合による−ものでない為、反応条件tlえる事によ
り容易にへ構成可能である。架橋密度や分布、結合強度
等も錯合体部位によって様々に変化して多様性を有して
いる。これら錯合体形成部位の、一部は、非結合性部位
(高分子間錯合体を形成しうる基でいな−がら、実際に
分子間結合に関与していない部分)と共に化学的にボテ
ンシャルが高くなっており1他のイオンや試薬が共存し
た時に優先的に結合する能力を有している。これが重金
属イオンやklH1塩基性有機物等酵素に対する阻害作
用を有する化合物が共存した時に酵素を保護する機能を
示す理由となっている。
The third feature that can be realized by the present invention is that it has the function of protecting enzymes from 11 various heavy metals, organic and inorganic compounds, potassium, temperature, salt, and other enzyme inhibitors. Since the inter-polymer crosslinked structure produced by the present invention is not based on chemical bonds, it can be easily constructed by changing the reaction conditions. The crosslinking density, distribution, bonding strength, etc. vary depending on the complex site, resulting in diversity. Some of these complex-forming sites are chemically highly potent, together with non-bonding sites (groups that can form intermolecular complexes but do not actually participate in intermolecular bonding). It has the ability to preferentially bind to other ions and reagents when they coexist. This is the reason why it exhibits the ability to protect enzymes when compounds that have inhibitory effects on enzymes, such as heavy metal ions and klH1 basic organic substances, coexist.

同じ理由で、本来、フリーの酵素が有する最適のp、H
域、イオン強度、温度等、いわゆる酵素の最適条件を変
化制御せしめる事も可能なのである。
For the same reason, the optimal p, H
It is also possible to change and control the so-called optimal conditions for enzymes, such as temperature, ionic strength, and temperature.

本発明に適用される酵素は制限はない。しかし高分子錯
合体に関しては、その成分となる高分子および錯合体そ
れ自身が酵素に対し、活性會失くしたり低下させた抄し
ないような組み合わせを選ぶ事が肝要である。また、高
分子錯合体の結合力や種類によっては、所定のIiH域
や温度、イオン強度など錯合体生成の条件以外では一解
離したり、結合がゆるみ酵素逸脱の原因になったりする
のでこの点も考慮に入れる事が必要である。逆に、高分
子間錯合体生成の条件が酵素活性の低下を屯たらすよう
な場合もめる。また、基質によっては、包括された酵素
と接触できず酵素活性を示さない場合がある事は他の固
定化法と同1様である。要は、以上?諸点を考j1!に
入れて最適の酵素−高分子錯合体の組み合わせを選び出
す事が1!!である。
There are no restrictions on the enzymes applicable to the present invention. However, when it comes to polymer complexes, it is important to choose a combination in which the component polymer and the complex itself do not lose or reduce their activity toward enzymes. Also, depending on the binding strength and type of the polymer complex, it may dissociate under conditions other than the complex formation conditions such as the specified IiH range, temperature, and ionic strength, or the bonds may become loose, causing enzyme deviation. It is also necessary to take this into account. On the other hand, there are also cases where the conditions for forming inter-polymer complexes result in a decrease in enzyme activity. Furthermore, as with other immobilization methods, depending on the substrate, it may not be able to contact the entrapped enzyme and exhibit no enzyme activity. In short, is that all there is to it? Considering various points j1! The first step is to select the optimal enzyme-polymer complex combination. ! It is.

次に本発明の実施例を示して詳しく説明する。Next, examples of the present invention will be shown and explained in detail.

実施例1 分子量78万のポリメタクリル酸(PMAA)51量チ
水溶液100−に食塩10F加え、市販のイベルターゼ
を用い、PEGのかわりに、分子量a6万のポリビニル
ピロリドン(PVPdn)as重量%水溶液1oo w
i加え、他は5j!施例1六同様に調整したところ、は
ぼIoo  %の収率で高分子間錯合体が得られた。実
施例1の方法でインベルター(包括率をしらべたところ
約ao%であった。
Example 1 Add 10F of common salt to 100% of an aqueous solution of polymethacrylic acid (PMAA) having a molecular weight of 780,000, and use commercially available Ivertase.
In addition to i, the others are 5j! When prepared in the same manner as in Example 16, an interpolymer complex was obtained with a yield of about 10%. When the inverter (inclusion rate) was examined using the method of Example 1, it was approximately ao%.

次にこの固定化酵素a2pを用い、その活性を種々の紗
H域でしらべたところ表2の結果を得た。
Next, using this immobilized enzyme a2p, its activity was examined in various gauze H ranges, and the results shown in Table 2 were obtained.

表2 表2の結果はフリーの場合に有するインベルターゼの活
性の約so、−ss%であった。tたこのようにして得
られた固定化酵素をくり返し使用した処、酵素の逸脱は
はじめの16日間で、]/H4,5において約6チ、p
H1sにおいて約3チ紹められたが、シH?−0におい
ては、酵素の逸脱は認められなかつ友。又、PH6以上
では錯合体の溶解が生じた、 実施例4 分子量25万のポリスチレンスルホン酸ナトリクムの5
重量%水溶液にインベルターゼ水溶液10s1jt加え
、この溶液にカキマゼながらゆっくりとポリヒニルベン
ジルトリメチルアンモエウムクロ9(ド(分子量20万
)の511s水溶液’i lO(。
Table 2 The results in Table 2 were approximately so, -ss% of the activity of invertase in the free case. When the immobilized enzyme obtained in this way was used repeatedly, the enzyme deviation occurred during the first 16 days.
Approximately 3 Chi were introduced in H1s, but Shi H? -0, no deviation of the enzyme was observed. Further, at pH 6 or above, dissolution of the complex occurred.
Add 10s1jt of invertase aqueous solution to the wt% aqueous solution, and slowly add 511s aqueous solution of polyhinylbenzyltrimethylammonium chloride 9(de (molecular weight 200,000)) to this solution while stirring.

d加え、イオン結合に基づく高分子間錯合体をつくった
。この錯合体を水洗後F別乾燥し、白色粉末状の高分子
間錯合体をほぼ100%の収率で得次。このようにして
得られる固定化酵素をアセトン−臭化ナト9ウ。赫水で
溶解して、実施例1と同様の方法で紫外分光分析をおと
なつ九ところ、約80チのインベルターゼが包括されて
いることがわかった。この固定化酵素へ2Fをもちい種
々のPHで101量チシヨ糖溶液を基質として活性を測
定こうして得られる固定化酵素はPHx−”PHtsの
範囲で解離溶解する事はなく、固定化酵素としての機能
を広いPH域で発揮した。又、酵素の逸脱もs PH2
,−PH13の範囲ではじめへ1日間で約2%と低かっ
た。
In addition, we created an interpolymer complex based on ionic bonds. This complex was washed with water and then dried separately to obtain a white powdery polymeric complex with a yield of approximately 100%. The immobilized enzyme thus obtained was mixed with acetone and sodium bromide. When the mixture was dissolved in water and subjected to ultraviolet spectroscopic analysis in the same manner as in Example 1, it was found that about 80 invertases were contained. The activity of this immobilized enzyme was measured using 2F at various pH values using a 101 amount tisyosaccharide solution as a substrate. was exhibited in a wide PH range.Also, enzyme deviations were also observed at s PH2
, -PH was as low as about 2% within one day in the range of 13.

実施例5 刊 インベルターゼの阻害剤であるアメリン、Cu。Example 5 Published Amerin, Cu, an inhibitor of invertase.

)( 邸 に対する高分子間錯合体の保−作用をしらペ1−9 M存在させ実施例1,3.4で調整した固定化酵素につ
いて検討した処、表4の結果を得た。
) (When the immobilized enzyme prepared in Example 1 and 3.4 in the presence of 1-9M Shirape was examined for the preservation effect of the inter-polymer complex against the enzyme, the results shown in Table 4 were obtained.

以上のようにいずれの阻害剤の場合においても高分子間
錯合体による酵素の保護作用が見られる2+ が、特に、ア= IJン、HP   の場合に顕著であ
ったO 実施例6 実施例4と同じ方法で、糸状菌グルコースオキシダーゼ
20 ims水溶液20 mを使用して酵素固定化をは
かっ九〇得られた固定化酵素の酵素包括率を実施例4と
同様の方法でしらべたところ、約45チであった。この
固定化酵素IPをもちい、GIH45にて10 %グル
コース水溶液をもちいて紫外吸収スペクトルによって酵
素活性をしらべたところ% a x lo  M/MI
Nで酸化さ れている事が明らかになり、高活性を有す
る固定化酵素が得られた事がわかった。
As mentioned above, the protective effect of the enzyme due to the inter-polymer complex was observed in all the inhibitors.2+ was particularly remarkable in the case of A = IJ and HP.Example 6 Example 4 In the same manner as in Example 4, the enzyme was immobilized using 20 ml of a 20 ims aqueous solution of filamentous fungal glucose oxidase.The enzyme coverage rate of the obtained immobilized enzyme was examined in the same manner as in Example 4, and was found to be approximately 45 It was Chi. When this immobilized enzyme IP was used and the enzyme activity was examined by ultraviolet absorption spectrum using a 10% glucose aqueous solution at GIH45, % a x lo M/MI
It became clear that the enzyme was oxidized with N, indicating that an immobilized enzyme with high activity was obtained.

実施例7 実施例4で詞製した固定化酵素5りを直径1゜噛のカラ
ムにつめ19H4L6の緩衝液で充分洗浄、*a後ショ
糖2チ含有するpH4−の緩衝溶液100WLlを1d
/分の流速でカラム上部から流下させた。カラムを透過
した溶液を旋光度法によりて分析した処、シ曹糖の82
チが加水分解されている事がわかった。
Example 7 Five volumes of the immobilized enzyme prepared in Example 4 were packed into a column with a diameter of 1° and thoroughly washed with a 19H4L6 buffer solution.
It was allowed to flow down from the top of the column at a flow rate of /min. When the solution that passed through the column was analyzed by optical rotation method, 82
It was found that chi was hydrolyzed.

以上 特許出願人   長 1)義 仁that's all Patent applicant Head 1) Yoshihito

Claims (1)

【特許請求の範囲】 (1)  高分子連鎖間におけるイオン結合、水素結合
、電荷移動相互作用力など、いわゆる2次的分子間結合
力によって生成する高分子間錯合体によって包括する固
定化酵素の製造方法。 (2) (1)の製造法に関しs  pHs イオン強
度、溶媒、温度等を変化せしめ、高分子錯体中への酵素
包括率及び生成した固定化酵素の反応活性を制御する事
を特徴とする特許請求範囲(1)の製造方法。 (2))(l)の製造法によって生成する固定化酵素に
関し、高分子錯合体によってs  DHs温度、イオン
強度、金属、有機無機試薬その他種々の酵素活性阻害の
要因から酵素を保躾する事を特徴とする特許請求範囲(
1)の製造方法。 (4)  (1)の製造法によって生成する固定化酵素
に関し、高分子錯合体の存在によって、本来酵素がフリ
ーの状態で有する最適、p・H1温度、イオン種やイオ
ン強度等最適条件を変化させる事を特徴とする特許請求
範囲(υの製造方法。
[Scope of Claims] (1) An immobilized enzyme enclosed by an intermolecular complex generated by so-called secondary intermolecular binding forces such as ionic bonds, hydrogen bonds, and charge transfer interaction forces between polymer chains. Production method. (2) A patent relating to the production method of (1) characterized in that the ionic strength, solvent, temperature, etc. are changed to control the enzyme inclusion rate in the polymer complex and the reaction activity of the produced immobilized enzyme. Manufacturing method according to claim (1). (2)) Regarding the immobilized enzyme produced by the production method of (l), the enzyme can be protected from various enzyme activity inhibition factors such as sDHs temperature, ionic strength, metals, organic and inorganic reagents, etc. using a polymer complex. Claims characterized in (
1) Manufacturing method. (4) Regarding the immobilized enzyme produced by the production method in (1), the presence of a polymer complex changes the optimum conditions that the enzyme originally has in a free state, such as pH/H1 temperature, ionic species, and ionic strength. Claims characterized in that (a method for producing υ)
JP10006781A 1981-06-28 1981-06-28 Preparation of immobilized enzyme entrapping with complex between high polymers Pending JPS585193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10006781A JPS585193A (en) 1981-06-28 1981-06-28 Preparation of immobilized enzyme entrapping with complex between high polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10006781A JPS585193A (en) 1981-06-28 1981-06-28 Preparation of immobilized enzyme entrapping with complex between high polymers

Publications (1)

Publication Number Publication Date
JPS585193A true JPS585193A (en) 1983-01-12

Family

ID=14264113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10006781A Pending JPS585193A (en) 1981-06-28 1981-06-28 Preparation of immobilized enzyme entrapping with complex between high polymers

Country Status (1)

Country Link
JP (1) JPS585193A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60232243A (en) * 1984-04-28 1985-11-18 Res Dev Corp Of Japan Adsorbent comprising crosslinked high-molecular polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60232243A (en) * 1984-04-28 1985-11-18 Res Dev Corp Of Japan Adsorbent comprising crosslinked high-molecular polymer
JPH0117412B2 (en) * 1984-04-28 1989-03-30 Shingijutsu Kaihatsu Jigyodan

Similar Documents

Publication Publication Date Title
EP0088964B1 (en) Process for preparing insoluble, only slightly expandable polymers of basic vinyl-heterocyclic compounds, and their use
Broun et al. New methods for binding enzyme molecules into a water‐insoluble matrix: Properties after insolubilization
DE2746275C2 (en) Adsorbents for proteins
DE1908290C3 (en) Acrylamide copolymer
JPH04325078A (en) Method of eliminating heavy metal ion from wine and winelike beverage
EP0556271A1 (en) Biological active material covalently immobilized on to azlactone-functional polymeric supports and method for preparing it.
EP0354909A1 (en) Variable crosslinked polymeric supports.
DE2633259A1 (en) PROCESS FOR THE PRODUCTION OF IMMOBILIZED ENZYMES
DE2705377A1 (en) PROCESS FOR PREPARING A COMPOSITION CONTAINING AN INSOLUBLE ENZYME AND / OR INSOLUBLE BACTERIA CELLS
DE3027929A1 (en) METHOD FOR PRODUCING POLYSACCHARIDE COPOLYMERISATES FROM CARRIER WITH ENZYMATIC ACTIVITY
EP0308206B1 (en) Polyaldehyde activated membranes, their production and use
US3915797A (en) Immobilized enzymes
Yamashita et al. Two-step imprinting procedure of inter-penetrating polymer network-type stimuli-responsive hydrogel-adsorbents
JPS585193A (en) Preparation of immobilized enzyme entrapping with complex between high polymers
MXPA02004644A (en) Method for producing monodispersed gel-like cation exchangers.
US4961852A (en) Polyaldehyde activated membranes
SU654170A3 (en) Method of obtaining 6-aminopenicillan acid
JPS60232243A (en) Adsorbent comprising crosslinked high-molecular polymer
Weigel et al. [21] Preparation of polyacrylamide gels containing copolymerized ω-acrylamidoalkyl glycosides
JP2002020422A (en) Method for producing monodisperse cation exchanger gel
JPH01207141A (en) Compound adsorbent and its production
DE2748858C2 (en)
JPS6025117B2 (en) Immobilization method for bacterial enzymes
RU2068703C1 (en) Method of magnoinnune sorbent preparing
US3700610A (en) Copolymers of vinylpyridines with 1,3,5-triacryloylhexahydro-1,3,5-triazine