JPS5851582A - Lateral excitation type gas laser - Google Patents

Lateral excitation type gas laser

Info

Publication number
JPS5851582A
JPS5851582A JP14873581A JP14873581A JPS5851582A JP S5851582 A JPS5851582 A JP S5851582A JP 14873581 A JP14873581 A JP 14873581A JP 14873581 A JP14873581 A JP 14873581A JP S5851582 A JPS5851582 A JP S5851582A
Authority
JP
Japan
Prior art keywords
discharge
cathode
anode
dielectric electrode
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14873581A
Other languages
Japanese (ja)
Other versions
JPS5840355B2 (en
Inventor
Masao Hishii
永井治彦
Masaaki Tanaka
佐藤行雄
Yukio Sato
田中正明
Haruhiko Nagai
田畑則一
Norikazu Tabata
菱井正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14873581A priority Critical patent/JPS5840355B2/en
Publication of JPS5851582A publication Critical patent/JPS5851582A/en
Publication of JPS5840355B2 publication Critical patent/JPS5840355B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0977Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser having auxiliary ionisation means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To enhance the preliminary ionization effect of a gas laser by suitably disposing dielectric electrodes which generates a silent discharge between an anode and a cathode for producing a glow discharge. CONSTITUTION:When a high frequency voltage is applied from a high frequency power source 7 to between a dielectric electrode 3 and an earth installed at the upstream side of a main discharge gap between an anode 1 and a cathode 2, a silent discharge is produced between the dielectric electrode 3 and, the cathode 2, the anode 3. When a discharge power is applied from a DC high voltage power source 6 to between the anode 1 and the cathode 2 in the gap uniformly preliminarily ionized in the laser optical axial direction 13 by this voiceless discharge, uniform and high power density discharge exciting medium is produced. When a full reflection mirror 11 and a partial reflection mirror 12 having suitable reflectivity are disposed oppositely via the medium, a laser oscillation occurs.

Description

【発明の詳細な説明】 この発明は無声放電補助グロー放電励起ガスレーザ装置
に係わり、レーザガス流の中で無声放電による予備電離
がグロー放電の大電力密度化、均質化に効果的に作用す
る動作条件を規定し苑ガス循環型の無声放電補助グ四−
放電励起カスレーザ装置に関する。このレーザ装置ハ。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a silent discharge auxiliary glow discharge excited gas laser device, and provides operating conditions under which preliminary ionization by silent discharge in the laser gas flow effectively increases the power density and homogenizes the glow discharge. Specifies the gas circulation type silent discharge auxiliary system.
The present invention relates to a discharge excited gas laser device. This laser device c.

発明者等により新規に開発さnたものであり。This was newly developed by the inventor and others.

レーザ装置の小型化とビームモードの改善が実現さnて
おり、加工等に応用さnる連続発振の大出力(レーザ出
力21 kv )レーザとして、従来の装置に較べ格段
に適したものである。
The laser device has been miniaturized and the beam mode has been improved, making it much more suitable than conventional devices as a continuous wave high-output (laser output 21 kV) laser for applications such as processing. .

以下、この発明に係る無声放電補助グロー放電励起co
2レーザ装置について説明する。第1図はこの発明の一
実施例の縦断面図、第2図にそのI−1を線よりみた横
断面図で、(1)は陽極。
Hereinafter, the silent discharge auxiliary glow discharge excitation co according to the present invention will be described.
2 laser device will be explained. FIG. 1 is a longitudinal cross-sectional view of one embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line I-1, where (1) is an anode.

(2)は陰極、 +31 tl無声放電のための誘電体
電極。
(2) is a cathode, a dielectric electrode for +31 tl silent discharge.

(4)は安定化抵抗、(5)は絶縁性陰極基板、(6)
は主放電としてのグロー放電を生成させるための直流高
圧電源、(7)は無声放電生成のための高周波高圧電源
、(8)は誘電体電極の冷却に用いら扛ている脱イオン
水、 (91ijレーザガスの流n方向。
(4) is a stabilizing resistor, (5) is an insulating cathode substrate, (6)
(7) is a high-frequency high-voltage power source for generating silent discharge; (8) is deionized water used for cooling the dielectric electrode; 91ij Laser gas flow n direction.

(Ilj無声放電補助グロー放電励起媒質の断面形状1
 (1’l) U無声放電を生成していないときのグロ
ー放電励起媒質の断面形状、anFi全反射ミラー、u
は部分反射ミラー、(13II′iレーザ光軸、Iはレ
ーザビームを示す。
(Cross-sectional shape 1 of Ilj silent discharge auxiliary glow discharge excitation medium
(1'l) U Cross-sectional shape of glow discharge excitation medium when no silent discharge is generated, anFi total reflection mirror, u
is a partially reflecting mirror, (13II'i is a laser optical axis, and I is a laser beam.

次に動作について説明する。陽極(1)と陰極(2)と
の間の主放電ギャップの上流側に設置さnた誘電体電極
(3)とアースとの間に高周波電源(7)により高周波
高電圧を印加すると、誘電体電極(3)と陰極(2)お
よび陽極(1)との間に無声放電(以後。
Next, the operation will be explained. When a high frequency high voltage is applied by a high frequency power source (7) between the dielectric electrode (3) installed upstream of the main discharge gap between the anode (1) and the cathode (2) and the ground, the dielectric A silent discharge (hereinafter referred to as "silent discharge") occurs between the body electrode (3) and the cathode (2) and anode (1).

SDと略記する)が生成さnる。この日りにエフ予備電
離さnたレーザガス(Co2−N2−He混合ガス)は
流nの向き(9)に沿って主放電ギャップ部に流入する
。8D補助放電によりレーザ光軸方向0に一様に予備電
離されたガス中で陽極(1)−陰極(2)間釦直流高圧
電源(6)により放電々カを投入すると、均質で〃・っ
高電力密度の放電励起媒質が生成で詐る。この放電励起
媒質を挾み全反射ミラーaυと適切な反射率を有する部
分反射ミラーa2とを対向して配置きせると、レーザ発
振が生じ1部分反射ミラーa2からレーザビームIが出
射する。
(abbreviated as SD) is generated. The laser gas (Co2-N2-He mixed gas) that has been pre-ionized on this day flows into the main discharge gap along the flow direction (9). When a discharge is applied between the anode (1) and the cathode (2) using the button DC high-voltage power supply (6) in a gas that has been pre-ionized uniformly in the laser optical axis direction 0 by the 8D auxiliary discharge, a homogeneous A high power density discharge excitation medium is deceived in the generation. When a total reflection mirror aυ and a partial reflection mirror a2 having an appropriate reflectance are placed facing each other with this discharge excitation medium in between, laser oscillation occurs and a laser beam I is emitted from the partial reflection mirror a2.

C02レーザを連続発振動作させるためには。In order to operate the C02 laser continuously.

よく知らnているように、放電励起媒質のガス温度を低
く維持することが必要不可欠で′あるので、第1図と第
2図に示さnているように、陰極(2)がレーザ光軸方
向a1に多数配列irt、かつレーザガスが1on76
6゜以上の速度でガス流の向′#(9)に送風循環され
ている。
As is well known, it is essential to maintain the gas temperature of the discharge excitation medium low, so the cathode (2) is aligned with the laser optical axis, as shown in Figures 1 and 2. Multiple arrays irt in direction a1 and laser gas 1on76
Air is blown and circulated in the direction of the gas flow (9) at a speed of 6° or more.

誘電体電極体)は、断面が円形の鉄製パイプに1′ガラ
スライニングした円筒状のもの、またはガラスパイプの
内部に給電のための金属銀II!を備え喪ものが用いら
n、いず扛も、その内部は脱イオン水(8)Kより冷却
ざnている。陽極(11は一体の平板型金属電極であり
、その材料は銅である。また、陰極(21Fi、分割型
電極であり、10■@度のピッチでレーザ光軸方向0に
一列に並ベラrtている。それぞnの陰極は、先端が針
状であり、その材料はモリブデン、タングステン等であ
る。
The dielectric electrode body) is a cylindrical iron pipe with a circular cross section lined with 1' glass, or a metal silver II! for power supply inside the glass pipe. If a mourner is used, its interior is cooled by deionized water (8) K. The anode (11 is an integrated flat metal electrode, the material of which is copper), and the cathode (21Fi, a split electrode) is arranged in a row in the laser optical axis direction with a pitch of 10 degrees. Each of the n cathodes has a needle-like tip and is made of molybdenum, tungsten, or the like.

8Dの予備電離効果を顕著に具現化させるための諸条件
t−舒述する前に、第1図、第2図に示した一実施例と
してのレーザの概略仕様について述べる。
Before describing the various conditions for realizing the 8D preionization effect significantly, the general specifications of the laser as an example shown in FIGS. 1 and 2 will be described.

主放電ギャップ長(陽極(1)−陰極(2)間距離)は
75m、放電長Fi1 m l陰極本数11100本。
The main discharge gap length (distance between anode (1) and cathode (2)) is 75 m, discharge length Fi1 ml, number of cathodes 11,100.

安定化抵抗+4) Fis Okmである。誘電体電極
(3)の直径DFi?−30mφ、誘電体としてのガラ
スの肉厚は約1■、高周波高圧電源(7)の周波数は1
kHg−IMHg、電圧(O−ピーク値)は3−1kV
である。レーザガスはCO2−Co −N2− ”8の
混合気体、ガス圧力は3O−300)−ル、ガス流速は
20−109m/、。。である。
Stabilizing resistance +4) Fis Okm. Diameter DFi of dielectric electrode (3)? -30mφ, the thickness of the glass as a dielectric is about 1cm, the frequency of the high frequency high voltage power supply (7) is 1
kHz-IMHg, voltage (O-peak value) is 3-1kV
It is. The laser gas was a mixed gas of CO2-Co-N2-''8, the gas pressure was 3O-300), and the gas flow rate was 20-109 m/.

第3図に8D補助グロー放電の典型的な放電特性(支)
と通常のグロー放電の特性(→とが示さn−ている0両
特性の差異は8D放電の有無によるス流速:40m/s
6cである。第3図ρ島ら*BDの予備電離効果により
、放電々圧が顕著に低下すること1.最大投入電力が約
3倍に増大することが判る。また、第2図に示したよう
に、sn補助を加えた場合の励起媒質の断面形状a(I
が8D補助を加えない場合のその断面形状(101)(
図の斜線部分)より大きくかつ拡散ざnている。このよ
うに、SDの予備電離効果を顕著に具現化させるために
は1.誘電体電極(3)の配設位置とその直径、8Dの
電力と電源周波数、ガス圧力。
Figure 3 shows typical discharge characteristics (support) of 8D auxiliary glow discharge.
Characteristics of normal glow discharge (→ and n-0) The difference between the two characteristics is 8D.
It is 6c. Figure 3: Due to the pre-ionization effect of ρ Shima et al.*BD, the discharge pressure decreases significantly.1. It can be seen that the maximum input power increases approximately three times. Furthermore, as shown in Fig. 2, the cross-sectional shape a (I
Its cross-sectional shape (101) when 8D assistance is not added (
(the shaded area in the figure) is larger and more diffused. In this way, in order to realize the pre-ionization effect of SD significantly, 1. The location and diameter of the dielectric electrode (3), the 8D power and power frequency, and the gas pressure.

ガス流速などを最適化させる必髪がある。・第4図に、
lI誘電体電極3)の配設位置と最大グロー放電々力と
の関係を示す。図中、dは放電ギャップ長、!、はガス
流方向の陰極(21−誘電体電極(3)間の距離w12
ri陽極(1)−誘電体電極(3)間の距離である。d
−15+wの場合の最大グロー放電々力の等高融が描か
れている。最大電力40 kwが得られる領竣t!40
m≦11≦6.Om、@xツ251m1lI≦12≦6
11簡 の範囲内である。この領域はギヤツブ長d、ガ
ス流速などの変化により5図は、12を56日に設定し
、がっ12をパラメータとした最大グロー放電々カとS
D電力との関係を示す特性図である。この図から!、が
65■と大きくなると、l、−50s+aの場合に比べ
同等の予備電離効果を表わせしめるためには、より大き
い8D電力が必要となる。l、が150mすなわち2d
の場合になると、40kWの放電々カを投入するのにs
j、m50mの場合に比べ2倍以上のsn電力が必要と
なり、実用的でない。こnらの実験結果から、誘電体電
極(3)の配置位置として、概略 O≦1.≦2(!、
0≦12≦dの範囲内に選定するのが適していると伝え
る。っまり、tl、t2’を上記の範囲に設定す扛ば、
8Dの予備電離効果が有効に働く。なお、誘電体電極(
3)を陰極(2)の下流側(第4図に斜線で示さnてい
る)に設置した場合には、最大グロー放電々力が、誘電
体電極なしの場合に比べ、顕著に減少する。すなわちこ
の場合にti 8Dti逆にグロー放電に悪影響を与え
る。
It is necessary to optimize the gas flow rate, etc.・In Figure 4,
The relationship between the placement position of the lI dielectric electrode 3) and the maximum glow discharge force is shown. In the figure, d is the discharge gap length, ! , is the distance w12 between the cathode (21-dielectric electrode (3)) in the gas flow direction
This is the distance between the ri anode (1) and the dielectric electrode (3). d
The isochoric melting of the maximum glow discharge force for -15+w is depicted. Completed with maximum power of 40 kW! 40
m≦11≦6. Om, @xtsu251m1lI≦12≦6
It is within the range of 11. This region is affected by changes in gear length d, gas flow rate, etc. Figure 5 shows the maximum glow discharge and S with 12 set as a parameter and 56 days.
It is a characteristic diagram which shows the relationship with D electric power. From this diagram! When , becomes as large as 65■, a larger 8D power is required to exhibit the same pre-ionization effect as in the case of l, -50s+a. l is 150m or 2d
In the case of
This method requires more than twice the sn power as compared to the case of 50 m, which is not practical. From these experimental results, the placement position of the dielectric electrode (3) is approximately O≦1. ≦2(!,
Tell them that it is appropriate to select within the range 0≦12≦d. If you set tl and t2' within the above range,
The pre-ionization effect of 8D works effectively. Note that the dielectric electrode (
3) is installed downstream of the cathode (2) (indicated by diagonal lines in FIG. 4), the maximum glow discharge force is significantly reduced compared to the case without the dielectric electrode. That is, in this case, ti8Dti adversely affects glow discharge.

次に、誘電体電極(3)の断面直径りと最大グロー放電
々力との関係について述べる。直径りをギャップ長dと
同等程度に大きくすると、ガス流が誘電体電極により強
い擾乱を受け、最大グロー放電々力が減少する。また、
Dが小さくな°の範囲に設定すnば、効果的にSDの予
備電離作用を働かせることができる。
Next, the relationship between the cross-sectional diameter of the dielectric electrode (3) and the maximum glow discharge force will be described. When the diameter is increased to the same extent as the gap length d, the gas flow is strongly disturbed by the dielectric electrode, and the maximum glow discharge force is reduced. Also,
If D is set in a small range of degrees, the preionization effect of SD can be effectively exerted.

第6図1i 、 t、−t2−so−としたときの81
1電力に円る最大グロー放電々力の変化を示す特性図で
、8D電力の増大により最大グロー放電電力が増大して
いる一8D電力はグロー放電々力のわずか数チで顕著に
予備電離効果が表わn。
Figure 6 1i, t, -t2-so- 81
This is a characteristic diagram showing the change in the maximum glow discharge force per power.The maximum glow discharge power increases as the 8D power increases.The 8D power has a remarkable pre-ionization effect with just a few inches of the glow discharge power. is expressed n.

増大関数、fは電源周波数、Cは誘電体電極の中ヤパシ
タンスである。8D電力Wを支配するパラメータ マ5
fscをそnぞれ変化させて最大グロー放電々力と8D
1に力との関係を調べた結果、第5図に示した1m59
waの特性曲線上に全ての測定点が並ぶことが判った。
In the increasing function, f is the power supply frequency and C is the capacitance of the dielectric electrode. Parameter governing 8D power W Ma5
Maximum glow discharge power and 8D by varying fsc.
As a result of investigating the relationship between 1 and force, 1m59 shown in Figure 5
It was found that all measurement points were lined up on the wa characteristic curve.

つまり。In other words.

8Dの予備電離効果に8D電力によってのみ規定さnて
いる。なお、実際に試験した電源周波数fの範囲は1 
keg −I MHz  であった。
The 8D pre-ionization effect is defined only by the 8D power. The range of the power supply frequency f actually tested was 1
keg-I MHz.

第1図に、8D補助を付加した場合の最大グロー放電々
力のガス圧力依存性を示す。30−ある。
FIG. 1 shows the gas pressure dependence of the maximum glow discharge force when 8D assistance is added. 30- Yes.

第8図に、最大グロー放電々力のガス流速依存性を示す
。ガス流速が20−100m/s+s。の範囲で、最大
グロー放電々力が単調増大している。
FIG. 8 shows the dependence of the maximum glow discharge force on the gas flow rate. Gas flow velocity is 20-100 m/s+s. In the range of , the maximum glow discharge force increases monotonically.

こnは、ガス流速に工りEIDの予備電離効果が大きく
なったものではなく、8D補助なしのグロー放電そのも
のがガス流速増大にエリ、その最大投入電力が増大する
ことによるものである。
This is not because the pre-ionization effect of EID is increased by changing the gas flow rate, but because the glow discharge itself without 8D assistance increases the gas flow rate, which increases the maximum input power.

以上詳細に述べたように、8Dの予備電離がグロー放電
の大電力密度化、均質化に効果的に作用するためには、
誘電体電極の設定位置およびその直径、8D電力、 S
I)周波数、ガス圧力。
As described in detail above, in order for 8D pre-ionization to effectively increase the power density and homogenize glow discharge, it is necessary to
Setting position of dielectric electrode and its diameter, 8D power, S
I) Frequency, gas pressure.

1 、ハ予備電離効果が顕著に具現化ざrt、、レーザ動作
に適した励起媒質が容易に得らnる。
1. The preionization effect is clearly realized, and an excitation medium suitable for laser operation can be easily obtained.

この発明はレーザガスの気流を挾んで相対向するように
配設さn直流高電圧が印加されてグロー放電を生成する
陽極と陰極、および上記レーザガスの気流中であって上
記両電極x9は上流側に配設さn高周波高電圧が印加さ
nて上記両電極との間で無“声放電を生成する誘電体電
極を備えたものにおいて、上記両電極の放電ギャップ長
ff1a、上記誘電体電極と陰極とのガス流方向の距離
を!1.陽極との距離を12.上記誘電体電極の直径f
Dとすると、上記誘電体電極レーザ装置が実現できる。
This invention comprises an anode and a cathode which are arranged to face each other across the laser gas airflow, and to which a DC high voltage is applied to generate a glow discharge. A dielectric electrode is arranged to generate a silent discharge between the two electrodes when a high-frequency high voltage is applied thereto, and the discharge gap length ff1a between the two electrodes and the dielectric electrode are Distance from the cathode in the gas flow direction! 1. Distance from the anode 12. Diameter f of the above dielectric electrode
If D, the dielectric electrode laser device described above can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る無声放電補助グロー放電励起ガ
スレーザ装置の縦断面図、第2図はその1−1線よりみ
た横断面図、第3図はグロー放電の電圧−電流特性を示
す図、第4図は誘電体電極の配設位置と最大グロ゛−放
電々力との関係を説明するための図、第5図は誘電体電
極のガス流方向配設位置による放電特性の変化を示す特
性図、第6図は最大グロー放電々力と無大グロー放電々
力とガス圧力との関係を示す特性図、第8図は最大グロ
ー放電々力とガス流速との関係を示す特性図である。 図において、(IIFi陽極、(2)は陰極、襲1鰐電
体電極、(4)は安定化抵抗、(5)は絶縁性陰極基板
。 (6)は直流高圧電源、(7)は高周波高圧電源、(8
)は脱イオン水、(91はレーザガスの流n方向を示す
矢印、(1(l無声放電補助グロー放電励起媒質の断面
形状、 (101)はグロー放電励起媒質の断面形状、
611は全反射ずラー、azは部分反射iラー。 α3はレーザ光軸、04)iレーザビームである。 なお1図中同一符号はそnぞn同一または相当部分を示
す。 出願人  工業技術院長  石 坂 誠 −@3FgJ 第4図 第5図 o           /           z
SDt力  (KW) 第6図 SDv力(KW) 第7図 第8図 ガスi速 (m/sec)
Fig. 1 is a longitudinal cross-sectional view of a silent discharge auxiliary glow discharge excited gas laser device according to the present invention, Fig. 2 is a cross-sectional view thereof taken along line 1-1, and Fig. 3 is a diagram showing voltage-current characteristics of glow discharge. , Fig. 4 is a diagram for explaining the relationship between the position of the dielectric electrode and the maximum discharge force, and Fig. 5 shows the change in discharge characteristics depending on the position of the dielectric electrode in the gas flow direction. Figure 6 is a characteristic diagram showing the relationship between maximum glow discharge force, infinite glow discharge force and gas pressure, and Figure 8 is a characteristic diagram showing the relationship between maximum glow discharge force and gas flow velocity. It is. In the figure, (IIFi anode, (2) is a cathode, (2) is a negative electrode, (4) is a stabilizing resistor, (5) is an insulating cathode substrate, (6) is a DC high voltage power supply, (7) is a high frequency High voltage power supply, (8
) is deionized water, (91 is an arrow indicating the n direction of laser gas flow, (1(l) is the cross-sectional shape of the silent discharge auxiliary glow discharge excitation medium, (101) is the cross-sectional shape of the glow discharge excitation medium,
611 is total reflection zlar, and az is partial reflection ilar. α3 is the laser optical axis, and 04) i is the laser beam. Note that the same reference numerals in each figure indicate the same or corresponding parts. Applicant Makoto Ishizaka, Director General of the Agency of Industrial Science and Technology -@3FgJ Figure 4 Figure 5 o/z
SDt force (KW) Fig. 6 SDv force (KW) Fig. 7 Fig. 8 Gas i speed (m/sec)

Claims (2)

【特許請求の範囲】[Claims] (1) レーザガスの気流を挾んで相対向するように配
設さn直流高電圧が印加されてグロー放電を生成する陽
極と陰極、および上記レーザガスの気流中であって上記
両電極より打上流側に配役さn高周波高電圧が印加さn
て上記両電極との間で無声放電を生成する誘電体電極を
備えたものにおいて、上記両電極の放電ギャップ長をd
、上記誘電体電極と陰極とのガス流方向の距離を! 、
陽極との距離を12゜上記誘電体電極の直径fDとする
と、上記誘電体電極の直径りを3■<D<−の範囲内と
し、かグ当該誘電体電極をO≦j1≦2d・及び0≦l
、≦覆の範囲内に配設せる構造とじたことを特徴とする
横方向励起型ガスレーザ装置。
(1) An anode and a cathode arranged to face each other across the laser gas airflow, to which a DC high voltage is applied to generate a glow discharge, and an anode and a cathode that are in the laser gas airflow and are on the upstream side of the two electrodes. A high frequency high voltage is applied to the
and a dielectric electrode that generates a silent discharge between the two electrodes, the discharge gap length between the two electrodes is d.
, the distance between the dielectric electrode and the cathode in the gas flow direction! ,
If the distance from the anode is 12° and the diameter of the dielectric electrode is fD, then the diameter of the dielectric electrode is within the range of 3<D<-, and the dielectric electrode is O≦j1≦2d and 0≦l
A lateral excitation type gas laser device characterized in that the structure is closed so that the device can be disposed within a range of ,≦cover.
(2)  誘電体電極に印加する高周波電圧の周波数が
1 kHz〜I MEg の範囲内であり、かつ無声放
電々力がレーザ励起放電々力の10−以下であることを
特徴とする特許請求の範囲第1項記載の横方向励起型ガ
スレーザ装置。
(2) A patent claim characterized in that the frequency of the high-frequency voltage applied to the dielectric electrode is within the range of 1 kHz to IMEg, and the silent discharge force is 10 − or less of the laser-excited discharge force. The lateral excitation type gas laser device according to scope 1.
JP14873581A 1981-09-22 1981-09-22 Laterally pumped gas laser device Expired JPS5840355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14873581A JPS5840355B2 (en) 1981-09-22 1981-09-22 Laterally pumped gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14873581A JPS5840355B2 (en) 1981-09-22 1981-09-22 Laterally pumped gas laser device

Publications (2)

Publication Number Publication Date
JPS5851582A true JPS5851582A (en) 1983-03-26
JPS5840355B2 JPS5840355B2 (en) 1983-09-05

Family

ID=15459433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14873581A Expired JPS5840355B2 (en) 1981-09-22 1981-09-22 Laterally pumped gas laser device

Country Status (1)

Country Link
JP (1) JPS5840355B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606035A (en) * 1984-03-22 1986-08-12 Agency Of Industrial Science And Technology Lateral excitation type gas laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606035A (en) * 1984-03-22 1986-08-12 Agency Of Industrial Science And Technology Lateral excitation type gas laser

Also Published As

Publication number Publication date
JPS5840355B2 (en) 1983-09-05

Similar Documents

Publication Publication Date Title
US4414488A (en) Apparatus for producing a discharge in a supersonic gas flow
US4718072A (en) Corona discharge preionizer for gas laser
US5719896A (en) Low cost corona pre-ionizer for a laser
Bergman et al. Overtone bands lasing at 2.7–3.1 μm in electrically excited CO
EP0532751B1 (en) Transverse discharge pumping type pulse laser
US4542529A (en) Preionizing arrangement for transversely excited lasers
US5313486A (en) Discharge excitation pulsed laser oscillation device
JPH0787255B2 (en) High frequency discharge excitation laser device
US4677637A (en) TE laser amplifier
JPH06164042A (en) Gas-laser oscillation apparatus
JP2002502548A (en) Ultrasonic and subsonic lasers with RF discharge excitation
US4381564A (en) Waveguide laser having a capacitively coupled discharge
JPS5851582A (en) Lateral excitation type gas laser
US4606035A (en) Lateral excitation type gas laser
Sabotinov et al. A copper HyBrID laser with 2 W/cm/sup 3/specific average output power
EP0020624B1 (en) Pulsed discharge gas laser apparatus
US4905248A (en) Metal vapor laser apparatus
JP3154584B2 (en) Discharge excitation gas laser device
US4807242A (en) Gas laser discharge tube
JP2001177173A (en) Gas laser oscillator
RU2557327C2 (en) Gas-discharge excimer laser (versions)
JPS5850788A (en) Lateral mode excitation type gas laser device
JPS5851581A (en) Lateral excitation type gas laser
JPH04335584A (en) Carbon dioxide laser device
JP2792312B2 (en) Gas laser tube