JPS5851571A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS5851571A JPS5851571A JP14998681A JP14998681A JPS5851571A JP S5851571 A JPS5851571 A JP S5851571A JP 14998681 A JP14998681 A JP 14998681A JP 14998681 A JP14998681 A JP 14998681A JP S5851571 A JPS5851571 A JP S5851571A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- region
- breakdown
- electric field
- resistance layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 10
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 230000015556 catabolic process Effects 0.000 claims abstract description 19
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 230000005669 field effect Effects 0.000 claims description 3
- 230000005684 electric field Effects 0.000 abstract description 7
- 238000000034 method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/80—Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は電界効果トランジスタの如き半導体装置の高耐
圧化の方法、より詳しくは高抵抗層(バッフ7層若しく
は絶縁性基板)の表面の一部にドナー不純物を導入して
当該素子を高耐圧化したことを1fII黴とする半導体
装置の製造方法に関する・従来例えばFICテの高耐圧
化、すなわちブレークダウンが起こるドレイン・ソース
電圧を大きくする方法としては、リセス構造やドレイン
着しく番寡ンース電極の下Kn+ 層を設ける方法など
があった。これらの方法は、ドレイン電極付近の電界集
中が原因となって起こるブレークダウンに対して・工有
効であるが、高いゲート電圧において動作層と高抵抗層
との界面で起こるブレークダウンに対しては効果がない
、かかるブレークダウンは高抵抗層の絶縁破壊をまねく
可能性があり、PETの信頼性などに重大な影響を及ぼ
す。゛この意味においてPETの高耐圧化の新しい方法
が必要である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for increasing the breakdown voltage of a semiconductor device such as a field effect transistor, and more specifically, to a method for increasing the breakdown voltage of a semiconductor device such as a field effect transistor. Concerning a method of manufacturing a semiconductor device in which the element is made to have a high withstand voltage as a 1fII mold. - Conventionally, for example, methods for increasing the withstand voltage of FIC technology, that is, increasing the drain-source voltage at which breakdown occurs, have been achieved by using a recess structure or drain There has been a method in which a Kn+ layer is provided below the base electrode. These methods are effective against breakdown caused by electric field concentration near the drain electrode, but they are effective against breakdown that occurs at the interface between the active layer and the high resistance layer at high gate voltages. Such breakdown, which is ineffective, may lead to dielectric breakdown of the high-resistance layer, which seriously affects the reliability of PET. ``In this sense, a new method for increasing the voltage resistance of PET is required.
従来のショク)キバリ゛ヤグート形FIT (Mmll
FIT)y#F1丁の構造を第1図に示す。同図な参w
Aすると、気相成長法などで成長させたバッファ一層苦
しく壷工牛絶縁性基板である高抵抗層(例えばGllm
KCr をドープしたもの)6上に動作層5が形成さ
れており、当該動作層5上にソース電極1.ゲート電極
2.ドレイン電極3が形成されている。ゲート電極2の
下には空乏層4が同図に示すような形状で存在し、当皺
空乏層4はグー)電圧によってその形状を変え、ソース
・ドレイン電流を制御している。ソース・ドレイン電流
は、ゲート電圧が高い場合空乏層4が高抵抗層60近く
まで広がるため、同図矢印ムで示される狭い領域を流れ
る。Conventional shock) Kibari Yagut type FIT (Mmll
The structure of FIT)y#F1 is shown in Figure 1. Same figure lol
A, the buffer grown by vapor phase epitaxy, etc. is more difficult to process than the high-resistance layer (for example, Gllm), which is an insulating substrate.
An active layer 5 is formed on the active layer 5 (KCr-doped) 6, and a source electrode 1. Gate electrode 2. A drain electrode 3 is formed. A depletion layer 4 exists under the gate electrode 2 in the shape shown in the figure, and the wrinkled depletion layer 4 changes its shape depending on the voltage to control the source-drain current. When the gate voltage is high, the depletion layer 4 spreads to near the high-resistance layer 60, so that the source-drain current flows in a narrow region indicated by the arrow mark in the figure.
同領域は動作層内で最も電界が高い。このとき同図破線
で示される如き径路、すなわち動作層高抵抗層界面Bか
ら高抵抗層領域Cを通り動作層高抵抗層界面りへの径路
でわずかではあるが電流が流れる。ところが、領域ムが
非常に狭いため上記微小電流が流れる高抵抗層領域C4
1簿くな9.その結果界面lに高電圧がかかるため、こ
の領域1でブレークダウンが起こる。かかるブレークダ
ウンにより、高抵抗層6が破壊される。この結果高抵抗
層6内を電流が流れるようになるため、ゲート電圧によ
るソース・ドレイン電流の制御が困−となり、 FIT
としての機能が失われる。かかる事実は半導体装置の信
頼性低下をまねくものである。This region has the highest electric field in the active layer. At this time, a small amount of current flows through the path shown by the broken line in the figure, that is, from the active layer high-resistance layer interface B through the high-resistance layer region C to the active layer high-resistance layer interface. However, since the area C4 is very narrow, the high resistance layer area C4 where the minute current flows
Don't keep one book9. As a result, a high voltage is applied to the interface 1, and breakdown occurs in this region 1. This breakdown destroys the high resistance layer 6. As a result, current flows in the high resistance layer 6, making it difficult to control the source/drain current using the gate voltage.
function is lost. This fact leads to a decrease in the reliability of the semiconductor device.
本発明の目゛的は上述したFICTの如き半導体装置の
高耐圧化の問題を解決するにあり、かかる目的のため、
本願の発明者は高抵抗層の一部にドナー不純物をドープ
することにより動作層高抵抗層界面のブレークダウンか
ら生じるFETの破壊を防ぐことができる高耐圧化した
装置の製造方法を提供する。The purpose of the present invention is to solve the above-mentioned problem of increasing the breakdown voltage of semiconductor devices such as FICT, and for this purpose,
The inventors of the present application provide a method of manufacturing a device with high breakdown voltage, which can prevent destruction of an FET caused by breakdown of the interface of the high resistance layer in the active layer by doping a portion of the high resistance layer with a donor impurity.
する。do.
113図は本発明の詳細な説明するための図である。同
図は第1図の71丁において、ソース電極1とドレイン
電極30間に定電圧を印加した場合に対応する模式的な
等価回路である。同図を参照すると、動作層高抵抗層界
面はそれぞれ1つの回路成分と考えられる為、同図では
ボックスで嵌状されている・また高抵抗層Cは等価的に
抵抗と考えられるため、図では抵抗の記号で衷現されて
いる。FIG. 113 is a diagram for explaining the present invention in detail. This figure is a schematic equivalent circuit corresponding to the case where a constant voltage is applied between the source electrode 1 and the drain electrode 30 in the case 71 of FIG. Referring to the same figure, since each active layer high-resistance layer interface is considered to be one circuit component, it is fitted with a box in the figure. Also, since the high-resistance layer C is equivalently considered to be a resistor, the figure It is expressed in the symbol of resistance.
なお同図において、Eはソース・ドレイン間に定電圧を
加えるための電源である。In the figure, E is a power supply for applying a constant voltage between the source and drain.
動作層高抵抗層界面Bで起こるブレークダウンの原因は
第3図を用いると、ボックスBKかかる電圧が大きすぎ
るためと説明される。従って、ブレークダウンを防ぐ[
tX、抵抗Cの値を大きクシ。Using FIG. 3, the cause of the breakdown occurring at the interface B of the active layer high resistance layer can be explained as being that the voltage applied to the box BK is too large. Therefore, preventing breakdown [
tX, increase the value of resistance C.
ボックスBKおける電圧降下を小さくする必要がある。It is necessary to reduce the voltage drop in box BK.
本履の発明者は上述した考察に基づき、MI図に示され
る空乏層4と高i抗層6とに1工さまれた動作層領域ム
の幅を太き(し、かつ微小電流゛が流れる高抵抗層領域
Cの界面V−沿った長さを長(することにより動作層高
抵抗層界面塾にかかる電圧を小さくできる方法を開発し
た。Based on the above-mentioned considerations, the inventor of the present invention increased the width of the active layer region formed by the depletion layer 4 and the high i resistance layer 6 shown in the MI diagram (and We have developed a method that can reduce the voltage applied to the active layer high-resistance layer interface by increasing the length of the flowing high-resistance layer region C along the interface V-.
第2図は本発明の実施例を示すものである。同図におい
て第1図と同じ部分は同じ符号!示されている。FIG. 2 shows an embodiment of the invention. In this figure, the same parts as in Figure 1 have the same symbols! It is shown.
第2図を参照すると、気相成長法などで成長したパンフ
ァ層若しくは半絶縁層6のゲート電極2に相当する位置
付近7にドナー不純##(シリプン若しくは硫黄゛)を
濃度5 X 10” 〜I X 1G”(c(・ )で
イ□オン注入法などによりドーピングする。しかる後、
従来技術を用いて動作層5.ソース電極19ゲート電極
2.ドレイン電極3を形成する。かかる装置において、
空乏層は高紙、抗層6内に注入したドナー不純物により
埋設形成された不純物領域が存在するため、同図にイで
示すような形状となり、従来技術の場合(同図破@4で
示す)と比べその形状の傾斜がゆるやかになり領域ムの
幅も広いものになる。Referring to FIG. 2, donor impurity ## (silicon or sulfur) is added at a concentration of 5 x 10'' to the vicinity of the position 7 corresponding to the gate electrode 2 of the breadlayer or semi-insulating layer 6 grown by vapor phase growth or the like. Doping with I x 1G'' (c(・ ) by ion implantation method etc. After that,
Operation layer 5 using conventional techniques. Source electrode 19 Gate electrode 2. A drain electrode 3 is formed. In such a device,
Since the depletion layer has an impurity region buried by the donor impurity injected into the antilayer 6, the depletion layer has a shape as shown by A in the figure. ), the slope of the shape is gentler and the width of the area is wider.
上述のように本発明の装置においては、空乏層の傾きが
ゆるやかになるため、従来装置に比べ、動作層内で最も
電解が高い領域(第1図のムで示される領域)では電界
強度が弱くなる一方、A領域の長さは長くなる。従って
高抵抗層を流れる微小電流も従来装置に比べ広い範囲の
高抵抗層領域を流れるため、この領域での抵抗(第3図
のCに相当する)が増加する。上述の結果、第3図にお
いて抵抗Cの値を大きくすることができ、したがって界
面すでの電界を低減させることができる。As mentioned above, in the device of the present invention, the slope of the depletion layer is gentler, so compared to the conventional device, the electric field strength is higher in the region where the electrolysis is highest in the active layer (the region indicated by the square in Figure 1). While it becomes weaker, the length of region A becomes longer. Therefore, the minute current flowing through the high-resistance layer also flows through a wider range of the high-resistance layer region than in the conventional device, so the resistance in this region (corresponding to C in FIG. 3) increases. As a result of the above, the value of the resistance C in FIG. 3 can be increased, and therefore the electric field at the interface can be reduced.
以上説明した如く、高抵抗層の一部にドナー不純物を注
入することにより空乏層の傾きをゆるやかにし、S作層
高抵抗層界面にかかる電圧を低減させ、当該界面で発生
するブレークダウンを防ぐことができ、その結果高耐圧
性半導体装置の信頼性を向上させることができる。As explained above, by implanting donor impurities into a part of the high-resistance layer, the slope of the depletion layer is made gentler, the voltage applied to the S layer high-resistance layer interface is reduced, and breakdown occurring at the interface is prevented. As a result, the reliability of the high voltage semiconductor device can be improved.
ところで本発明において・工、第4図に示す如(ドナー
不純物注入領域イな変えることにより、空乏層の形状を
変化させ、FEYKおける必要十分な高耐圧を実現させ
ることもできる。tた1本発明の方法は本実施例以外の
FETの製造にも応用することができ、半導体装置の信
頼性向上に大いに貢献するものである。By the way, in the present invention, as shown in FIG. 4, by changing the donor impurity implantation region, the shape of the depletion layer can be changed and a sufficiently high breakdown voltage in FEYK can be realized. The method of the invention can be applied to manufacturing FETs other than those of this embodiment, and greatly contributes to improving the reliability of semiconductor devices.
第1図は従来技術におけるFETの構造なボす概略断面
図、第2図は本発明における1rNTの構造を示す概略
断面図、第3図はFIT [おけるソース・ドレイン電
極間の等価回路、第4図は本発明の他の実施例における
FETの概略断面図である。
1・・・ソース電極、2・・・グーF電極、3・−・ト
ンイン電極、4.イ、4′・τ・空乏層、5・・・動作
層、6・−高抵抗層。
7、τ・−・ドナー不純物注入領域
特許出願人 富士通株式会社
第1図
第2図
第3図Fig. 1 is a schematic cross-sectional view showing the structure of a FET in the prior art, Fig. 2 is a schematic cross-sectional view showing the structure of a 1rNT in the present invention, and Fig. 3 is an equivalent circuit between the source and drain electrodes in FIG. 4 is a schematic cross-sectional view of an FET in another embodiment of the present invention. 1... Source electrode, 2... Goo F electrode, 3... Ton-in electrode, 4. A, 4'・τ・depletion layer, 5・active layer, 6・−high resistance layer. 7. τ - Donor impurity implantation region Patent applicant Fujitsu Ltd. Figure 1 Figure 2 Figure 3
Claims (1)
において、該装置の動作層の下の高抵抗層の表面の一部
に、前記動作層とriiits度のドナー不純物濃度を
もった領域を層設することにより当該装置を高耐圧化し
たことを特徴とする半導体装置の製造方法。In a method of manufacturing a semiconductor device such as a field effect transistor, a region having a donor impurity concentration of the same degree as that of the active layer is formed on a part of the surface of a high resistance layer under the active layer of the device. 1. A method of manufacturing a semiconductor device, characterized in that the device has a high breakdown voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14998681A JPS5851571A (en) | 1981-09-22 | 1981-09-22 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14998681A JPS5851571A (en) | 1981-09-22 | 1981-09-22 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5851571A true JPS5851571A (en) | 1983-03-26 |
Family
ID=15486964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14998681A Pending JPS5851571A (en) | 1981-09-22 | 1981-09-22 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5851571A (en) |
-
1981
- 1981-09-22 JP JP14998681A patent/JPS5851571A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60130297T2 (en) | Semiconductor device with ESD protection | |
DE69616013T2 (en) | SEMICONDUCTOR ARRANGEMENT OF THE HIGH VOLTAGE LDMOS TYPE | |
US20040232510A1 (en) | HV-SOI LDMOS device with integrated diode to improve reliability and avalanche ruggedness | |
JP5342241B2 (en) | JFET with drain and / or source deformation implant | |
US4729001A (en) | Short-channel field effect transistor | |
KR950002067A (en) | Structure and manufacturing method of transistor | |
JPS595673A (en) | Lateral bidirectional notch fet | |
JP2011049599A (en) | Field effect transistor | |
EP0110331A2 (en) | A MOS transistor | |
US4454524A (en) | Device having implantation for controlling gate parasitic action | |
DE3806164A1 (en) | Semiconductor component having a high breakdown voltage | |
EP0071335B1 (en) | Field effect transistor | |
US4851889A (en) | Insulated gate field effect transistor with vertical channel | |
JPH03196546A (en) | Compound semiconductor integrated circuit device | |
US5034790A (en) | MOS transistor with semi-insulating field plate and surface-adjoining top layer | |
KR100523118B1 (en) | High-voltage ldmos transistor device | |
JPS63224260A (en) | Conductivity modulation type mosfet | |
US3999207A (en) | Field effect transistor with a carrier injecting region | |
JP2002185011A (en) | Semiconductor device | |
US5360983A (en) | Insulated gate bipolar transistor having a specific buffer layer resistance | |
US4584593A (en) | Insulated-gate field-effect transistor (IGFET) with charge carrier injection | |
WO2022085765A1 (en) | Semiconductor device | |
JPS62155567A (en) | Manufacture of insulated gate semiconductor device | |
US4641163A (en) | MIS-field effect transistor with charge carrier injection | |
JPS5851571A (en) | Manufacture of semiconductor device |