JPS5851284A - Fluid pump - Google Patents
Fluid pumpInfo
- Publication number
- JPS5851284A JPS5851284A JP56148818A JP14881881A JPS5851284A JP S5851284 A JPS5851284 A JP S5851284A JP 56148818 A JP56148818 A JP 56148818A JP 14881881 A JP14881881 A JP 14881881A JP S5851284 A JPS5851284 A JP S5851284A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- liner
- cylinder liner
- piston
- muddy water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/16—Casings; Cylinders; Cylinder liners or heads; Fluid connections
- F04B53/162—Adaptations of cylinders
- F04B53/166—Cylinder liners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2251/00—Material properties
- F05C2251/10—Hardness
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Details Of Reciprocating Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、シリンダ内でのピストン作動によって流体
を吸入しかつ送給する流体ポンプの改良に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a fluid pump that draws in and delivers fluid by actuation of a piston within a cylinder.
r& 1′I;ポンプと]7ては、シリンダ内でピスト
ンを往復+i+、l)させるレシプロ型のポンプに始め
、ロータリ観、ダイヤフラム型、ギヤ型等のものがある
。Pumps include reciprocating pumps that move a piston back and forth within a cylinder, rotary pumps, diaphragm pumps, and gear pumps.
これらのうち、レシプロ71gの流体ポンプでは、シリ
ンダブロックに一雌で形成[7たシリンダ内でピストン
を往へ動さする横置のものや、シリンダブロックにシリ
ンダライ犬全裟肴してこのシリンダ内面チに沿ってピス
トン全往復動させるi’A”、!告のものなどがちる。Among these, the reciprocating 71g fluid pump has a horizontal type that moves the piston forward in a cylinder formed with one female [7] in the cylinder block, and a horizontal type that moves the piston forward in the cylinder block, and a cylinder block that has a cylinder with a cylinder block and a cylinder that moves the piston forward. I'A'', which makes the piston fully reciprocate along the inner surface, etc., etc.
一方、石油やガス等の天然資源の採掘、地熱の回収等を
t目的とした井戸の掘削に際してけ、陸ヒおよび海−ヒ
を問わず、掘削屑の搬出、掘削工襖の冷却、井戸壁面の
保護、油、ガス、蒸気婚の突噴防市等のために泥水・f
I& 珍ポンプ(マツドポンプ)を使用するのが゛直通
である。また、掘削後の井戸の崩J展を防(ヒするため
にケーシングと井戸りとの間にセメントミルクを圧入し
て固化式せる(・て際しては、セメントミルク、…14
ポンプ(グラウトポンプ)を使用することが多い。On the other hand, when drilling wells for the purpose of extracting natural resources such as oil and gas, recovering geothermal heat, etc., whether on land or at sea, it is necessary to carry out drilling waste, cool the drilling floor, and clean the well walls. muddy water and F for the protection of oil, gas, steam, etc.
The direct connection is to use the I & Chin pump (Matsudo pump). In addition, in order to prevent the well from collapsing after drilling, cement milk is press-fitted between the casing and the well well to solidify it.
A pump (grout pump) is often used.
これらのポンプとしては、主にレシプロ型のポンプが使
用され、例えば添付図面に示す概略構造のものが使用さ
れる。すなわち、図において、1はシリンダ本体、2は
シリンダ本体1内にボルト6により1ml定したシリン
ダライナ、4はシリンダライナ2内で図示しないクラン
ク機構等により往復動するピストン、5は圧縮コイルば
ね6によって常時ポンプ本体7の弁座7aに押付けられ
て前記弁座7aと共に吸入弁を、構成する弁体、8は圧
縮コイルばね9によって常時ポンプ本体7の弁座7bに
押付けられて前記弁W7bと共に送給弁を構成する弁体
である。そして、ピストン4が図示右方向に移動すると
弁体5が弁座7aから離れて吸入弁が開き、泥水やセメ
ントミルク等が吸入される。次にピストン4が図示左方
向に移動すると吸入弁が閉じると共に弁体8が弁座7b
から離れて送給弁が聞き、上記泥水やセメントミルク等
を送り出し、ピストン4の往復動によって連続的に吸入
送給が行なわれる。また、泥水ポンプの場合には、地下
泥水の循環だけでなく、前述した諸口的に応じて泥水の
iig !l優剤として、パライト、ベントナイト、チ
ルナイト等の各種微細鉱物が添加される。そこで、峨下
より)8出された泥水中に含まれる大径粒はフィルター
によって除去されるが、1版創粒は泥水と共にポンプの
シリンダ(シリンダライナ2)内に入り、これがピスト
ン4によって圧送されることになるため、シリンダA−
(面を損場するおそれが非常に大きい。また、セメント
ミルクの)般送においても同様であり、シリンダ壁面の
1耐1廣粍性を考えると極度に過酷な媒体を圧送してい
ることになる。さらに、これらの圧送媒体は洲比重であ
り、このような泥水を地下数千メートルの栄さ壕で圧送
するため、ポンプ能力は数18r’Kf/an 2゜ス
トロークも数6ストローク/分前後の速就で運転される
ため、ヒ記h&細粒の存庄も加わってシリンダ内面の:
摩耗は非常に早く、耐用4帝は極度に短かいという間燻
全有している。As these pumps, reciprocating type pumps are mainly used, and for example, those having the schematic structure shown in the attached drawings are used. That is, in the figure, 1 is a cylinder body, 2 is a cylinder liner fixed to 1 ml by a bolt 6 in the cylinder body 1, 4 is a piston that reciprocates within the cylinder liner 2 by a crank mechanism (not shown), and 5 is a compression coil spring 6. The valve body 8 is always pressed against the valve seat 7a of the pump main body 7 and constitutes the suction valve together with the valve seat 7a, and the valve body 8 is constantly pressed against the valve seat 7b of the pump main body 7 by the compression coil spring 9 and together with the valve W7b. This is a valve body that constitutes a feed valve. Then, when the piston 4 moves to the right in the figure, the valve body 5 separates from the valve seat 7a, opening the suction valve, and muddy water, cement milk, etc. are sucked in. Next, when the piston 4 moves to the left in the figure, the suction valve closes and the valve body 8 moves to the valve seat 7b.
A feed valve separate from the feed valve sends out the muddy water, cement milk, etc., and the reciprocating movement of the piston 4 continuously sucks and feeds the water. In addition, in the case of a mud water pump, not only the circulation of underground mud water, but also the circulation of mud water according to the various points mentioned above. l Various fine minerals such as pallite, bentonite, and chillinite are added as additives. Therefore, the large diameter particles contained in the muddy water taken out from Toshita (8) are removed by a filter, but the first grains enter the pump cylinder (cylinder liner 2) together with the muddy water, and are pumped by the piston 4. cylinder A-
(There is a very high risk of damage to the surface.Also, the same is true for general conveyance of cement milk. Considering the perforation resistance of the cylinder wall surface, it means that an extremely harsh medium is being forced to be conveyed. Become. Furthermore, these pumping media have a specific gravity, and since such muddy water is pumped through a trench several thousand meters underground, the pumping capacity is several 18 r'Kf/an 2° stroke or around several 6 strokes/min. Since it is operated at high speed, the presence of small particles and the presence of fine particles on the inner surface of the cylinder:
It wears out very quickly, and its service life is extremely short.
その′ゲめ、シリンダブロック内にシリンダライナ葡装
着し、このシリンダライチ′f適宜交換するようにして
いる。この場合にもシリンダライナに対して種々の耐摩
耗性向上策、例えば浸炭、窒化。To solve this problem, a cylinder liner is installed inside the cylinder block, and this cylinder liner is replaced as needed. In this case as well, various measures are taken to improve the wear resistance of the cylinder liner, such as carburizing and nitriding.
めっき等の表面硬化処理を栴すことが良く行なわれるが
、従来の場合にはとくに泥水やセメント、ミルクなどの
微細粒を含む流体に対する耐醋耗性が十分でなく、耐用
時間は200時間前後であるという欠点を有していた。Surface hardening treatments such as plating are often performed, but in the conventional case, the wear resistance is not sufficient especially against fluids containing fine particles such as muddy water, cement, and milk, and the service life is around 200 hours. It had the disadvantage of being
この発明は、上述した従来技術の欠点に着目【〜てなさ
れたもので、ピストンが摺動するシリンダ内面の耐摩耗
性を著しく同上させ、流体ポンプの耐用寿命の増大をは
かることができるようにすることを目的としている。This invention was made by focusing on the above-mentioned drawbacks of the prior art, and it is possible to significantly improve the wear resistance of the inner surface of the cylinder on which the piston slides, thereby increasing the service life of the fluid pump. It is intended to.
この発明は、シリンダ内でのピストン作動によって流体
を吸入しかつ送給するポンプにおいて、前記ポンプのシ
リンダブロック自体をシリンダ内、壁とする場合にはそ
のシリンダ内面に、またシリンダブロックにシリンダラ
イナを装着する場合には前記シリンダライナの内面に、
耐摩耗性向上物質の物理的々蒸着(PVD)による硬化
膜全単層ないしは複数1−形成したことを特徴としてい
る。This invention relates to a pump that sucks in and delivers fluid by piston operation within a cylinder, and in which the cylinder block itself of the pump is inside the cylinder, or when the wall is used, a cylinder liner is installed on the inner surface of the cylinder, or on the cylinder block. When installing, on the inner surface of the cylinder liner,
It is characterized in that a single layer or a plurality of cured films are formed by physical vapor deposition (PVD) of a wear resistance improving substance.
耐摩耗性向上物質としては、Tie Zr e Ht
vV 、 Nl) 、 Ta等の元素周期表における■
族およびvIAO金(4の窒化物、炭化物、炭窒化物の
単体あるいは混合物等があり、具体的には’rtN*
Tt2N+Tic I TiC2g ZrN # Hf
N y vCHNbCH’rac 姉があり、さらに、
n、Az、si等の元素周期表におけるIl族および■
族の金属、半金属、半導体の単体あるいは混合物があり
、具体的にはBN 、 BC。As a wear resistance improving substance, Tie Zr e Ht
■ in the periodic table of elements such as vV, Nl), Ta, etc.
group and vIAO gold (4 nitrides, carbides, carbonitrides alone or in mixtures, etc., specifically 'rtN*
Tt2N+Tic I TiC2g ZrN # Hf
N y vCHNbCH'rac There is an older sister, and also,
Group Il and ■ in the periodic table of elements such as n, Az, si, etc.
There are single or mixtures of metals, semimetals, and semiconductors of the group, specifically BN and BC.
Az2o3t 5t2o、 y 51BN4等があり、
ちらにまた、Cr 、 Mo 、−V等の元素周期表に
おける■族の@属の窒化物、炭化物、炭窒化物の単体あ
るいは混合物があり、4体的にはWC、Cr、C8,c
r23c6゜MOS #昭2等がある。There are Az2o3t 5t2o, y51BN4, etc.
In addition, there are also single or mixtures of nitrides, carbides, and carbonitrides belonging to the @ group in the periodic table of elements such as Cr, Mo, and -V, and the four elements include WC, Cr, C8, and c.
There are r23c6°MOS #Show 2, etc.
このよう々耐摩耗性向上物質を表面に形成するに際して
、シリンダ(ライナー)内面に11喘岐覆することもあ
るが、シリンダ内面をあらかじめ硬化させておくことも
望ましい。例えば、■高災素鋼あるいは低合金鋼全焼入
れ焼もどしE7たのち内tfit高1司波焼入れして耐
摩耗性を付与したもの、■低合金鋼を焼入れ焼もど17
シたのち内iωを硬質クロムめっき処理して耐摩耗性を
付与したもの、■高炭素高クロム鋳鉄等を・焼入れ焼も
どしして耐摩耗性全付与したもの、■遠心鋳造法によっ
て内外層全異種成分にし、内層側に硬化性材料あるいは
耐摩耗性物質を鋳込み、必要に応じて熱処理によって内
面に耐摩耗性全付与したもの、■異種材料の内筒および
外筒を用意し、内筒に耐摩、耗性材料を使用し、外筒に
靭性オ科を使用して両瞳を焼き嵌めまたは冷し嵌めして
組立てることにより内面に耐、9粍性を付与したもの、
など全使用し、そのイ愛、前記シリンダ内面に耐摩耗性
向−E・物質を被覆することによって、より優れた特性
のシリンダ(ライナ)とすることができる。When forming such a wear resistance improving substance on the surface, it may be coated on the inner surface of the cylinder (liner), but it is also desirable to harden the inner surface of the cylinder in advance. For example, ■ High-strength steel or low alloy steel fully quenched and tempered E7 and then internally tfit high 1 wave quenched to give wear resistance, ■ Low alloy steel quenched and tempered 17
Afterwards, the inner iω is treated with hard chromium plating to give it wear resistance, ■ High carbon high chromium cast iron etc. is quenched and tempered to give it full wear resistance, ■ The inner and outer layers are completely coated by centrifugal casting. A hardening material or a wear-resistant material is cast into the inner layer side, and if necessary, heat treatment is applied to give the inner surface full wear resistance. Prepare an inner cylinder and an outer cylinder made of different materials, and The inner surface is made of wear-resistant and abrasion-resistant material, and the outer cylinder is made of tough metal, and both eyes are assembled by shrink-fitting or cold-fitting.
By coating the inner surface of the cylinder with a wear-resistant material, a cylinder (liner) with even better characteristics can be obtained.
シリンダ内面に・耐1蟹耗性向−ヒ′吻質を被覆するに
際しては物理的な蒸着法によることが良い。この物理的
な蒸着法には、真空蒸着、・イオンブレーティング、ス
パッタリングがあり、これによって金属および非優属を
問わず、シリンダ内面に対する密着力の高い硬化膜を均
一に貼成することができる。すなわち、l物理的な蒸着
法によれば、処理温度を比較的低温(常温〜500℃)
にして硬化膜全形成させることができるたν)、−ト記
したようにシリンダ内面を熱処理やめつき等によってあ
らかじめ表向硬化しておいたときでもそれらの軟化を防
ぐことができ、また硬化膜の硬さもHv1500〜22
00と非常に高く耐摩耗性に優れ念ものが得られ5、基
地との密層性が鎮めて良好であると共に、膜厚が薄いた
めに強靭性を有する膜が形成され、特に泥水やセメント
ミルク等の細粒物を含む流体を吸入送給するポンプのシ
リンダ内面の耐摩耗性改善に著しく寄与する。When coating the inner surface of the cylinder with the abrasion-resistant material, it is preferable to use a physical vapor deposition method. This physical vapor deposition method includes vacuum evaporation, ion blating, and sputtering, and it is possible to uniformly apply a cured film with high adhesion to the inner surface of the cylinder, regardless of whether it is made of metal or non-metallic material. . That is, according to the physical vapor deposition method, the processing temperature is relatively low (room temperature to 500°C).
Even if the inner surface of the cylinder is surface-hardened in advance by heat treatment or galvanizing, as mentioned above, it is possible to prevent the softening of the inner surface of the cylinder, and the cured film can be completely formed. The hardness is also Hv1500~22
00, which is very high and has excellent wear resistance5, and the layering property with the base is good, and the thin film thickness forms a strong film, especially in muddy water and cement. This significantly contributes to improving the wear resistance of the inner surface of the cylinder of a pump that sucks and delivers fluid containing fine particles such as milk.
一ト記硬化膜は必らずしも単層に限らず、痕数1−形成
することももちろん可能であり、複数層形成する場合に
各々の材質、特性を適宜変えることも可能である。Note that the cured film is not necessarily limited to a single layer, and it is of course possible to form only one trace, and when forming multiple layers, it is also possible to change the materials and characteristics of each layer as appropriate.
実施例 1
縮合金鋼によって筒トドを作成I−たのちこの筒体に対
して焼入れ焼もどしを施し、さらに内面に高周波焼入れ
を殉して内向の硬さがHv = 500〜550となる
ようにした。次にこの筒体會成空蒸油装置i+’こ取付
け、X空度5 X l O’ Torr (7)条件、
−,9、−−
で蒸発源としてTiCを用いて真空蒸着を行ない、筒体
の内面に膜厚10 Pmの硬化膜全形成したシリンダラ
イナを作成した。Example 1 A cylindrical seaweed was made from shrinkage alloy steel. Afterwards, the cylindrical body was quenched and tempered, and the inner surface was further induction hardened so that the inward hardness was Hv = 500 to 550. did. Next, install this cylindrical air-steam device i+', and set the conditions:
-, 9, -- vacuum evaporation was performed using TiC as an evaporation source to create a cylinder liner in which a cured film with a thickness of 10 Pm was entirely formed on the inner surface of the cylinder.
次に、図に示す流体ポンプのシリンダ本体1に上記シリ
ンダライナ2を取付け、ストローク数15 OSPMの
条1牛で油井−’rAtA MIJ用泥水の連続循環全
行なったところ、シリンダライナ2の耐用寿命は約20
00時間であった。Next, the above-mentioned cylinder liner 2 was attached to the cylinder body 1 of the fluid pump shown in the figure, and the continuous circulation of muddy water for oil well-'rAtA MIJ was performed with an OSPM row 1 cow with a stroke number of 15. The service life of the cylinder liner 2 was confirmed. is about 20
It was 00 hours.
実施例 2
低合金鋼によって筒体を作成したのちこの筒体に対して
焼入れ焼もどしを施し、さらに内面に硬1mクロムめっ
き処理を施した。次にこの筒体を真空蒸着装置に取付け
、真空度5 X 10 ’ Torrの条件で蒸発源
としてTtc を用いて真空蒸着を行ない、筒体の内面
に膜厚lOμmの硬化膜を形成したシリンダライナを作
成した。次いで、実姉例1と同様に試験したところ、そ
の耐用寿命は約2000時間であった。Example 2 A cylindrical body was made of low alloy steel, then quenched and tempered, and the inner surface was further plated with hard 1m chromium. Next, this cylindrical body was attached to a vacuum evaporation device, and vacuum evaporation was performed using TTC as an evaporation source at a vacuum degree of 5 × 10' Torr to form a cured film with a thickness of 10 μm on the inner surface of the cylindrical body. It was created. Then, when tested in the same manner as in Example 1, the service life was approximately 2000 hours.
実施例 3
高炭素間クロム鋳鉄によって筒体を作成したのちこの筒
体に焼入れ焼もとし7を廁した。次いでこの筒体をスパ
ッタリング装置に取付け、真空度5 X 10−3To
rr 、印加’fliFE5KVノ条件テターゲット条
件上ターゲツト材いてスパッタリングラ行ない、筒体の
内面に膜厚l pmの硬化IlQを形成17たシリンダ
ライナを作成した。次いで実施例1と同様に試験したと
ころ、その耐用寿命は約3000時間であった。Example 3 A cylindrical body was made of high carbon interchromium cast iron, and then a quenching temper 7 was applied to the cylindrical body. Next, this cylindrical body was attached to a sputtering device, and the vacuum level was 5 x 10-3To.
A cylinder liner was prepared in which a hardened IlQ film with a thickness of 1 pm was formed on the inner surface of the cylindrical body by sputtering using the target material under the conditions of application of 'fliFE5KV'. Then, when tested in the same manner as in Example 1, the service life was approximately 3000 hours.
実施例 4
遠心鋳造法により中炭素嘲′を素材として筒体の外11
11部分を形成したあと引続いて高炭素高クロム鋳鉄を
素材として筒体の内(1111部分を形成し、この筒体
に熱処理を施した。次いで、この筒体をイオンブレーテ
ィング装置dに取付け、に空IJ5X10 ’’l’o
rr 、印加電圧−4KVの条件で蒸発源としてBN
e用いてイオンブレーティングを行ない、筒体の内面に
膜厚1μmの硬化膜を形成したシリンダライナを作成し
た。次いで実姉例1と同様に試験したところ、その耐用
寿命は約3000時間であった。Example 4 The outside of the cylindrical body 11 was made from a medium carbon material by centrifugal casting.
After forming the 11th part, the inner part of the cylindrical body (1111th part) was formed using high carbon high chromium cast iron as a raw material, and the cylindrical body was heat-treated.Then, this cylindrical body was attached to the ion brating device d. , empty IJ5X10''l'o
rr, BN as an evaporation source under the condition of applied voltage -4KV
A cylinder liner in which a cured film with a thickness of 1 μm was formed on the inner surface of the cylindrical body was prepared by performing ion blating using E. Then, when it was tested in the same manner as in Example 1, its useful life was about 3000 hours.
実施例 5
低合金鋼によって外筒を作成したのちこの外筒に対して
焼入れ焼もどしヲ殉し、また、高合金鋼によって前記外
筒に嵌合される内筒を作成したのちこの内筒に対して焼
入れ焼もどしヲ崩し、両筒全冷しばめして筒体を作成し
た。次にこの面体を真空蒸着装置1に取付け、真空に5
X 10 ’ Torrの条件で蒸発源としてTi
Cを用いて真空蒸着を行ない、筒体の内面に膜厚10μ
mの硬化膜を形成したシリンダライナーと作成した。次
いで実施例1と同様に試j倹したところ、その耐用寿宿
は約2000時間であった。Example 5 After an outer cylinder was made of low alloy steel, the outer cylinder was quenched and tempered, and an inner cylinder to be fitted to the outer cylinder was made of high alloy steel, and then the inner cylinder was On the other hand, a cylindrical body was created by breaking down the quenched and tempered cylinders and completely cooling and tight-fitting the two cylinders. Next, attach this face piece to the vacuum evaporation device 1, and put it in a vacuum for 5 minutes.
Ti as an evaporation source under the condition of X 10' Torr
Vacuum evaporation is performed using C to create a film thickness of 10 μm on the inner surface of the cylinder.
A cylinder liner with a cured film of m. Then, when it was tested in the same manner as in Example 1, its useful life was approximately 2000 hours.
比較例 1
実施例4と同様にして中炭素鋼および高炭素ζ1クロム
鋳鉄を用いて遠心鋳造法により筒体を作成し、筒体の内
面に初晶黒鉛を集合させたのち、この筒体に熱処理を施
してシリンダライナを作成した。次いで実施例1と同様
に試験したところ、その耐用寿畠は約210時間であっ
た。Comparative Example 1 A cylinder was made by centrifugal casting using medium carbon steel and high carbon ζ1 chromium cast iron in the same manner as in Example 4, and primary graphite was aggregated on the inner surface of the cylinder. A cylinder liner was created by applying heat treatment. Then, when tested in the same manner as in Example 1, the service life was approximately 210 hours.
比較例 2
実施例5と同様にして内外筒を作成L 、これらを冷し
ぼめ[7てシリンダライナを作成したのち、実施例1と
同様に試1倹したところ、そのrD+’r用−にす命は
約2501寺間であった。Comparative Example 2 The inner and outer cylinders were created in the same manner as in Example 5, and after cooling and compressing them, a cylinder liner was created, and a test was performed in the same manner as in Example 1. His life span was approximately 2,501 temples.
上記各実施例および比較例に示すように、この発明によ
るものではシリンダ内面の1耐用寿命が約2000〜3
000時間と茗るしく延長しており、従来のものに比べ
て約10倍も寿命全員くすることができた。また、シリ
ンダライナを用いず、シリンダ本体に一体でシリンダラ
イナしたものに対しても適用した結果、従来の場合に比
較して者しく・耐用寿命全延醍させることができた。As shown in the above embodiments and comparative examples, the cylinder inner surface has a service life of about 2,000 to 3
The lifespan of the new model has been extended to 1,000 hours, which is approximately 10 times longer than conventional models. Furthermore, as a result of applying the present invention to a cylinder liner that is integrated into the cylinder body without using a cylinder liner, it has been possible to extend the overall durability and durability compared to the conventional case.
E状上着、明してきたように、この発明((よれ(−f
1必要に応じあらかじめlモ@硬化され、ちるいし1酎
)17粍件材料によって形成されたシリンダ内面に、耐
摩耗性物質の物理的な蒸着による硬化模會彰代したから
、シリン夛内面に対する密;t!強度のすぐれた硬化膜
によってシリンダ内面の耐暖耗性を著しく向ヒさせるこ
とができると同時に、薄い硬化膜であっても良好な特性
を示すことから従来の浸炭や窒化あるいは硬質めっきの
ように硬化層の剥離のおそれもなく、シリンダ内面の寿
命延長によってシリンダ(ライナ)の交換]碩明分少な
くすることができ、流体吸入・流体送・拾の中断回数の
著しい低下および補修作業時間の大幅な短縮化を実現す
ることができるという非常にすぐれた効果分有する。E-shaped jacket, as I have explained, this invention ((twist (-f
1) If necessary, the inner surface of the cylinder formed of the material is hardened by physical vapor deposition of a wear-resistant substance, so that the inner surface of the cylinder is hardened. ;t! A hardened film with excellent strength can significantly improve the wear resistance of the inner surface of the cylinder, and at the same time, even a thin hardened film has good properties, so it is not as effective as conventional carburizing, nitriding, or hard plating. There is no risk of peeling of the hardened layer, and the life of the inner surface of the cylinder is extended, so the number of cylinder (liner) replacements can be reduced by a considerable amount, significantly reducing the number of interruptions in fluid suction, fluid delivery, and pickup, and greatly reducing repair work time. It has an extremely excellent effect of being able to achieve a shortening of the length.
添付図はこの発明が適用されうる流体ポンプの一構造例
を示す1つi面説明図である。
1・・・シリンダ本体、2・・・シリンダライナ。
特許出願人 大同特殊鋼株式会社
代理人升理士 小 塩 四。The attached drawing is an i-plane explanatory view showing an example of the structure of a fluid pump to which the present invention can be applied. 1... Cylinder body, 2... Cylinder liner. Patent applicant Daido Steel Co., Ltd. Agent Masu Shio 4.
Claims (1)
吸入しかつ送給するポンプの前記シリンダ内面に、1酎
摩耗性向上物質の物理的な蒸着による硬化膜を形成した
ことを特徴とする流体ポンプ。 (2) シリンダ内面が熱処理によってあらかじめ硬
化されたものである特許請求の範囲第(1)項記載の流
体ポンプ。 (3) シリンダ内面が硬質めっきによってあらかじ
め硬化されたものでちる特許請求の範囲第(1)項また
は第(2)項記載の流体ポンプ。 (4) シリンダ内面が耐摩耗性材料によってあらか
じめ形成されたものである特許請求の範囲第(1)項記
載の流体ポンプ。[Claims] (1) A hardened film is formed on the inner surface of the cylinder of a pump that sucks in and delivers fluid by the action of a piston within the cylinder, by physically depositing a substance that improves abrasion properties. Characteristic fluid pump. (2) The fluid pump according to claim (1), wherein the inner surface of the cylinder is hardened in advance by heat treatment. (3) The fluid pump according to claim (1) or (2), wherein the inner surface of the cylinder is hardened in advance by hard plating. (4) The fluid pump according to claim (1), wherein the inner surface of the cylinder is formed in advance from a wear-resistant material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56148818A JPS5851284A (en) | 1981-09-22 | 1981-09-22 | Fluid pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56148818A JPS5851284A (en) | 1981-09-22 | 1981-09-22 | Fluid pump |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5851284A true JPS5851284A (en) | 1983-03-25 |
Family
ID=15461397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56148818A Pending JPS5851284A (en) | 1981-09-22 | 1981-09-22 | Fluid pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5851284A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60192883A (en) * | 1984-03-15 | 1985-10-01 | Nichiriyoo:Kk | Liquid pressure-feeding device |
JPS6235851A (en) * | 1985-08-09 | 1987-02-16 | Canon Inc | Pump apparatus |
FR2963953A1 (en) * | 2010-08-19 | 2012-02-24 | Bosch Gmbh Robert | PISTON PUMP AND METHOD OF MAKING SUCH A PUMP |
-
1981
- 1981-09-22 JP JP56148818A patent/JPS5851284A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60192883A (en) * | 1984-03-15 | 1985-10-01 | Nichiriyoo:Kk | Liquid pressure-feeding device |
JPS6235851A (en) * | 1985-08-09 | 1987-02-16 | Canon Inc | Pump apparatus |
FR2963953A1 (en) * | 2010-08-19 | 2012-02-24 | Bosch Gmbh Robert | PISTON PUMP AND METHOD OF MAKING SUCH A PUMP |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103339421B (en) | For piston ring and the manufacture method thereof of internal combustion engine | |
US8105692B2 (en) | Process equipment wear surfaces of extended resistance and methods for their manufacture | |
JP2008510863A (en) | Abrasion resistant coating and process for producing the same | |
Riddle et al. | Friction and wear reduction via an Ni-B electroless bath coating for metal alloys | |
JP3793990B2 (en) | Combination of internal combustion engine cylinder liner and piston ring | |
US20060236972A1 (en) | Piston with a skirt having a low coefficient of friction | |
JP4311803B2 (en) | Surface coating mold and manufacturing method thereof | |
JP2007119907A (en) | Wear-resistant coating, and its manufacturing method | |
CN1667133A (en) | Ferrous seal sliding parts and producing method thereof | |
CN1384218A (en) | Cocooned tool for middle and high temperature processing and with excellent sintering resistance and abrasive resistance | |
CN1156598C (en) | PCVO plasma impregnation composite reinforced method for precise vane hot forging die | |
JPS5851284A (en) | Fluid pump | |
CN109253080B (en) | Long-life composite coating plunger for plunger pump | |
JP2002307128A (en) | Coating tool for warm and hot working having excellent seizure resistance and wear resistance | |
JP4989829B2 (en) | Valve device for die casting mold | |
US2624688A (en) | Subzero treatment of chromium alloy steel | |
CN103836186A (en) | Ceramic thin film cast iron piston ring and manufacturing method thereof | |
CN107858604B (en) | High-wear-resistance iron-based powder metallurgy internal spline, clutch outer cover and clutch | |
CN101586237A (en) | Hot spray processing technique for alloy coating of AOF bidirectional protecting oil pump plunger | |
WO1994003280A1 (en) | Coating of components | |
CN113718195A (en) | High-pressure-resistant abrasion-resistant protective composite coating and preparation method and application thereof | |
Eyre | Wear characteristics of castings used in internalcombustion engines | |
JPH05255896A (en) | Sliding-contact member excellent in wear resistance and producing device therefor | |
CN100425830C (en) | Mud pressure pump and method for manufacturing mud pressure cylinder | |
JP2902542B2 (en) | Roll bearing |