JPS5851251A - Stirling cycle engine - Google Patents

Stirling cycle engine

Info

Publication number
JPS5851251A
JPS5851251A JP14903181A JP14903181A JPS5851251A JP S5851251 A JPS5851251 A JP S5851251A JP 14903181 A JP14903181 A JP 14903181A JP 14903181 A JP14903181 A JP 14903181A JP S5851251 A JPS5851251 A JP S5851251A
Authority
JP
Japan
Prior art keywords
engine
working chamber
temperature
regenerator
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14903181A
Other languages
Japanese (ja)
Inventor
Shisei Fujita
藤田 至成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14903181A priority Critical patent/JPS5851251A/en
Publication of JPS5851251A publication Critical patent/JPS5851251A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2270/00Constructional features
    • F02G2270/02Pistons for reciprocating and rotating

Abstract

PURPOSE:To smooth the timely fluctuation of the amount of heat transmission by a method wherein a regenerator is provided with a heat accumulating function in case the Stirling engine is constituted by employing large and small rotary piston engines, different in the volume of the operating chambres thereof, and adding a cooler, a regenerator and the like thereto. CONSTITUTION:Large high temperature and low temperature operating engines 1, 2 and the small low temperature and high temperature operating engines 3, 4 are constituted by employing single node peritrocoid rotary piston engines having two operating chambers and the rotors 1c-4c of each engines 1-4 are rotated cooperatingly. A high temperature operating fluid in the operating chamber 1a of the engine 1 is discharged into the regenerator 5 having the heat accumulating function while a low temperature operating fluid in the operating chamber 3b of the engine 3 is discharge into the regenerator 5 in the same manner. The operating fluid in the operating chamber 2a of the engine 2 is introduced into the operating chamber 3b of the engine 3 through the cooler 6 while the operating fluid in the operating chamber 4a of the engine 4 is introduced into the operating chamber 1b through a heater 7. According to this method, the desired Stirling engine may be constituted.

Description

【発明の詳細な説明】 本発明は単節ペリトロコイドにより形成されたロータリ
ーピストン機関を利用して、きわめて簡単な機構により
スターリングサイクルを形成させなから、動力を取り出
すことのできる新規なスターリング機関に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel Stirling engine that uses a rotary piston engine formed by a single bar peritrochoid to extract power without forming a Stirling cycle with an extremely simple mechanism. It is something.

スターリング機関と呼ばれる外熱機関は、等温圧縮、等
容積加熱、等温膨張、等容積冷却から成るスターリング
サイクルを行なうものであってその熱効率はカルノーサ
イクルと等しく、熱機関中で最も熱効率が高いものであ
る。利用できる熱源は広汎であって如何なる形態の熱源
も利用できるため、エネルギーの節減が重要な課題とな
っている今日に於いて、本機関の利用による省エネルギ
ー効果はきわめて大きいものである。また本機関は振動
、騒音がきわめて少なく、排ガス中の有害成分もまた少
い優れた熱機関としても知られている。
An external heat engine called a Stirling engine performs a Stirling cycle consisting of isothermal compression, isovolume heating, isothermal expansion, and isovolume cooling, and its thermal efficiency is equal to that of the Carnot cycle, making it the highest thermal efficiency among heat engines. be. Since there is a wide range of available heat sources and any type of heat source can be used, the energy saving effect of using this engine is extremely large in today's world where saving energy is an important issue. This engine is also known as an excellent heat engine with very little vibration and noise, and with little harmful components in the exhaust gas.

さらに、スターリングサイクルは可逆であり、この機関
を外部動力で、駆動すれば熱ポンプとして利用でき、ま
た冷凍サイクルとしても利用できるものである。
Furthermore, the Stirling cycle is reversible, and if the engine is driven by external power, it can be used as a heat pump or as a refrigeration cycle.

しめ・し、スターリング機関は理論的にはきわめて優れ
ているものの、スターリングサイクルを行なわせるため
には複雑な機構が、必要とされるため実用化が困難で、
末な広く普及されるに至っていない。
Although the Stirling engine is theoretically excellent, it is difficult to put it into practical use because it requires a complicated mechanism to run the Stirling cycle.
However, it has not yet become widely disseminated.

これは従来考えられていたスターリング機関には次の様
な種々の問題点があったためである。
This is because the Stirling engine as conventionally considered had various problems as follows.

従来のスターリング機関の例としては、ピストンとディ
スプレーサ−を組合せてスターリングサイクルを行わせ
る方式があるが、ピストンとディスプレーサ−の相対運
動で形成される空隙の変化により、膨張、圧縮を行なわ
せるために、ピストン、ディスプレーサ−の運動は複雑
とならざるを得す、単なるクランク機構では出力が取り
出せない。このためロンビック駆動方式などが採用され
るが、その運動は歪んた波形であり、また駆動機構は複
雑であって必然的に装置5− が大型となり、動力損失も大きいものである。
An example of a conventional Stirling engine is a system in which a piston and a displacer are combined to perform a Stirling cycle. The movement of the piston and displacer must be complicated, and a simple crank mechanism cannot produce the output. For this reason, a rhombic drive system or the like is employed, but the movement is a distorted waveform, and the drive mechanism is complex, resulting in a large device 5- and a large power loss.

他の開としては、4組のピストンを互いに90°づつ位
相をずらせて作動させ、瞬り合ったピストン間でスター
リングサイクルを行なわせ、各ピストンの往復連動はス
ワッシュプレートにより回転運動に変換し出力軸から取
り出す方式があるか、この方式も往復運動を回転連動に
変換する機構は複雑であって、その作動も円滑でなく、
また出力軸にスラストを生じるため、スラスト軸受など
も必要となり、機械的エネルギーの損失も大きいもので
ある。
Another method is to operate four sets of pistons with their phases shifted by 90 degrees from each other, and perform a Stirling cycle between the twinkling pistons, and the reciprocating movement of each piston is converted into rotational motion by a swash plate and output. Is there a way to take it out from the shaft? Even with this method, the mechanism that converts reciprocating motion to interlocking rotation is complicated, and its operation is not smooth.
Further, since thrust is generated on the output shaft, a thrust bearing or the like is required, resulting in a large loss of mechanical energy.

これらの列ではいづれも再生器に蓄熱型を使用している
が、再生器に高温、低温の両極端の作動流体が頻繁に出
入りするため熱疲労の問題かあり、使用可能な材料に苦
慮しているの乃f現状である。
All of these lines use a heat storage type regenerator, but since working fluids at both extremes of temperature and high temperature frequently enter and exit the regenerator, there is a problem of thermal fatigue, and it is difficult to find materials that can be used. This is the current situation.

また作動流体の漏洩を防ぐためのシールも困難な問題で
ある。スターリング機関の作動流体としてはヘリウム、
水素などの軽いガスを高圧で封入するため、ディスプレ
ーサ−シャフトやピストン、ピストンロッド周辺からの
副fi !>’激しく、対策に苦慮しているのが現状で
ある。この対策の1つとし□てロールソックスシールナ
トが考えられているが、長時間の使用に耐えるものでは
ない。
Also, sealing to prevent leakage of working fluid is a difficult problem. Helium is the working fluid for the Stirling engine.
In order to enclose light gas such as hydrogen at high pressure, there is a secondary fi from around the displacer shaft, piston, and piston rod! >'The current situation is that we are struggling to take countermeasures. A roll sock seal nut has been considered as one of the countermeasures against this problem, but it cannot withstand long-term use.

この様に従来のスターリング機関は種々の問題点を含ん
でいるため、この改良策か色々と考案されている。例え
ば、特開11sa−134136では大、小のシリンダ
ー1対ないしは複数対を組合せ、これらと加熱器、冷却
器、再生器とを結ぶ作動流体の循環路を設は各ピストン
の一衡程毎に循環路りの弁を開閉してスターリングサイ
クルを形成させる方法が提案されている。
Since the conventional Stirling engine has various problems as described above, various improvements have been devised. For example, in JP-A No. 11sa-134136, one or more pairs of large and small cylinders are combined, and a working fluid circulation path connecting these to a heater, a cooler, and a regenerator is set up for each stroke of each piston. A method has been proposed in which a Stirling cycle is formed by opening and closing valves in the circulation path.

この方法は、確かに従来の欠点をある程度緩和するもの
であるが、次に指摘する様な別の問題点を多く持ってお
り決して満足できるものではない。
Although this method certainly alleviates the conventional drawbacks to some extent, it has many other problems as pointed out below, and is by no means satisfactory.

先づ作動流体の循環路トに多数の開閉弁逆止弁を設けな
ければならず循環路の形状が大きくなり複雑となること
、父、大、小の大きさ、形−7− 状の異なるシリンダーをクランク軸を介して連結するこ
とは、クランク部の・1゛法が入きく異なるため、通常
の内燃機関の多シリンダー機関の様に一体の構造のケー
シングにすることが困難で、機関全体の形状が大きく重
くなること、式t、 iiで、作動流体のシールについ
ては依然として改善が困難であって、特にピストンロン
ドの様な往復運動に加え横方向の力がかかる部分を高温
高圧のガスに対してシールすることはきわめて困難であ
ること等の問題点がある。
First, it is necessary to provide a large number of on-off valves and check valves in the working fluid circulation path, making the shape of the circulation path larger and more complicated. Connecting the cylinders via the crankshaft requires a different method for the crank part, so it is difficult to create a casing with an integrated structure like in a normal multi-cylinder internal combustion engine, and it is difficult to connect the cylinders through the crankshaft. It is still difficult to improve the sealing of the working fluid, especially in parts such as piston ronds, where lateral force is applied in addition to reciprocating motion, by using high-temperature, high-pressure gas. There are problems such as the fact that it is extremely difficult to seal against.

本発明者らは、全く新しい機構により、これらの問題点
を解決した新規なスターリング機関を発明し、既に特願
56−105208.56−1.18011等として提
案している。
The present inventors have invented a new Stirling engine that solves these problems using a completely new mechanism, and have already proposed it in Japanese Patent Application No. 56-105208.56-1.18011.

しかし、この発明は、従来のスターリング機関の欠点を
殆んど解決したものであるが、熱交換器型の再生器に流
入する高温の作動流体の量と、低温の作動流体の量とは
、毎秒常に一定ではなく、作動機関のローターの回転位
置により再生器に、高温の作動流体の流入量の多いとき
と、低温の作動流体の量流入量の多いときとが生じる。
However, although this invention solves most of the drawbacks of the conventional Stirling engine, the amount of high-temperature working fluid flowing into the heat exchanger type regenerator and the amount of low-temperature working fluid are It is not constant every second, but depending on the rotational position of the rotor of the working engine, there are times when a large amount of high-temperature working fluid flows into the regenerator and times when a large amount of low-temperature working fluid flows into the regenerator.

この点について第1図を参照して若干詳しく述べる。第
1図は特願56−105’ 208にかかる新規なスタ
ーリングサイクル機関の例で、図に於いて(1)は大高
温作動機関、(2)は大低温作動機関、(3)は小低温
作動機関、(4)は小高温作動機関であり、いづれの機
関も2室の作動室を持つ単節ベリトロコイドロータリー
ピストン機関を利用する。各機関の2室の作動室の一方
をa、他をb10−ターをCの添字で示す。5は再生器
、6は冷却器、7は加熱器で、これらと各機関の間は流
体通路8.9.10’、11で図の様に結ぶ。冷却器6
には冷熱源12、加熱器7には高熱源13が供給される
This point will be described in some detail with reference to FIG. Figure 1 shows an example of a new Stirling cycle engine according to Japanese Patent Application No. 56-105'208. In the figure, (1) is a large high temperature operating engine, (2) is a large low temperature operating engine, and (3) is a small low temperature operating engine. The operating engine (4) is a small high-temperature operating engine, and both engines utilize a single-section belitrochoid rotary piston engine with two working chambers. One of the two working chambers of each engine is indicated by the suffix a, and the other is indicated by the suffix C. 5 is a regenerator, 6 is a cooler, and 7 is a heater, and these and each engine are connected by fluid passages 8, 9, 10', and 11 as shown in the figure. Cooler 6
A cold heat source 12 is supplied to the heater 7, and a high heat source 13 is supplied to the heater 7.

こ\で再生器の作動について詳しく述べると、先づ機関
(1)、(2)、(3)、(4)の各ローターは連動し
て同期回転している。機関(1ンの作動室la内の高温
の作動流体はローターの回転により排出され再生器5に
流入する。一方機関(3)の作動室3b内の低温の作動
流体も同様に再生器5に流入する。こ\で両件動流体は
熱交換し1機関(1)の作動室1aからの作動流体は、
冷却されて、機関(2)の作動室2bK移動し、機関(
3)の作動室3a内の作動流体は、加熱されて機関(4
)の作動室4bに移動する。ところがこ−で、スターリ
ングサイクル機関の原理から、ローターが死点から死点
に至る間に、再生器を通過する高温側低温側の作動流体
の総モル数は相等しいが、ローターの回転途中に於いて
は、再生器に流入する両件動流体のモル数は、必ずしも
等しくなく、高温側の作動流体が多く移動する現象が見
られる。
To explain the operation of the regenerator in detail, first, the rotors of engines (1), (2), (3), and (4) are interlocked and rotate synchronously. The high-temperature working fluid in the working chamber la of the engine (1) is discharged by the rotation of the rotor and flows into the regenerator 5. On the other hand, the low-temperature working fluid in the working chamber 3b of the engine (3) also flows into the regenerator 5. The two working fluids exchange heat, and the working fluid from the working chamber 1a of engine 1 (1) flows into
It is cooled and moved to the working chamber 2bK of the engine (2), and the engine (
The working fluid in the working chamber 3a of the engine (4) is heated and
) to the working chamber 4b. However, according to the principle of the Stirling cycle engine, while the rotor moves from dead center to dead center, the total number of moles of the working fluid on the high temperature side and the low temperature side passing through the regenerator is equal, but during the rotation of the rotor, In this case, the number of moles of both working fluids flowing into the regenerator is not necessarily equal, and a phenomenon is observed in which the working fluid on the high temperature side moves more.

その理由は、大低温作動室la内の作動流体は、再生器
で冷却され、体積が減少して大低温作動室2bに流入し
、両作動室は共通圧力Fにあるため、作動室1aの容積
の変化の割合より常に多くの作動流体が1aから2bに
移動し、一方小低温作動室3a内の作動流体は、再生器
で加熱され、体積が増加して作動室4bに流入−1〇− するため、作動室3aの容積の変化の割合より、常に少
ない量しか作動流体の移動が起らないからである。
The reason is that the working fluid in the large low-temperature working chamber la is cooled by the regenerator, its volume is reduced, and it flows into the large low-temperature working chamber 2b, and both working chambers are at a common pressure F, so the working fluid in the large low-temperature working chamber 1a is More working fluid always moves from 1a to 2b than the rate of change in volume, while the working fluid in the small low-temperature working chamber 3a is heated by the regenerator, increases in volume, and flows into the working chamber 4b. - Therefore, the movement of the working fluid always occurs by a smaller amount than the rate of change in the volume of the working chamber 3a.

このため再生器で熱の回俄か100%行なわれないこと
となりスターリングサイクル機関の効率を低下はせるこ
ととなる。
For this reason, the regenerator does not recover 100% of the heat, which reduces the efficiency of the Stirling cycle engine.

本発明者毎はこの様な現象を防ぎスターリングサイクル
機関の効率を高める方策を種々研究した結果、次の様な
優れた改善方法を見い出した。
The inventors of the present invention have researched various ways to prevent such phenomena and increase the efficiency of Stirling cycle engines, and have found the following excellent improvement method.

先づその第一は、再生器に蓄熱機能を持たせ再生器rC
流入する高温側、低温側の作動流体量のアンバランスか
ら起る伝熱量の時間的変動、を平滑化する方法である。
First of all, the regenerator rC is equipped with a heat storage function.
This is a method for smoothing temporal fluctuations in the amount of heat transfer caused by an imbalance in the amount of working fluid flowing in on the high temperature side and the low temperature side.

この目的にそう蓄熱機能を持った再生器の好適な実施例
として、第2図、または第5図に示すものカ(効果が優
れている。先づ第2図について説明すると、図の20は
再生器のケーシング21は蓄熱壁、22は伝熱壁、23
は蓄熱壁の伝熱効果を増すためのフィン、24け蓄熱壁
内−11− に充填される蓄熱物質、25I′i伝熱壁と蓄熱壁との
シール部、セロ、27は作動流体の流路を示す。構造の
詳細は第2図の拡大部分に示す如く、金属板等を曲げJ
JI工して重ね合せ、シール部は溶接、圧接、またはシ
ール材等をは葛んで締めつけて組立てられる。蓄熱物質
としては熱伝導が良く、比熱の大きい物質が充填され、
金属、非金属元素無機塩類、セラミックス、ガラス等が
使用でき、板状に成型して挿入するか、伝熱の向トを図
ることができる。但し、立型として使用するときは仕切
板等を蓄熱部内に設け、対流を制限する方が効率が良い
。第3図に示す如く、フィン部分にも蓄熱物質を充填す
ると効果は高い。
As a preferred embodiment of a regenerator having a heat storage function for this purpose, the one shown in FIG. 2 or FIG. 5 (the effect is excellent). The regenerator casing 21 is a heat storage wall, 22 is a heat transfer wall, 23
24 indicates a fin for increasing the heat transfer effect of the heat storage wall; 24 indicates a heat storage material filled in the heat storage wall; 25I'i seals between the heat transfer wall and the heat storage wall; 27 indicates the flow of working fluid; Show the path. The details of the structure are as shown in the enlarged part of Figure 2, by bending metal plates etc.
The parts are assembled by JI work and overlapping, and the sealing part is welded, pressure welded, or by twisting and tightening the sealing material. As a heat storage material, it is filled with a material that has good thermal conductivity and a large specific heat,
Metals, inorganic salts of non-metallic elements, ceramics, glass, etc. can be used, and they can be molded into a plate shape and inserted, or they can be designed to improve heat transfer. However, when used as a vertical type, it is more efficient to provide a partition plate or the like inside the heat storage section to limit convection. As shown in FIG. 3, it is highly effective to fill the heat storage material in the fin portions as well.

高温側作動流体、低温側作動流体は、力1かる構造の再
生器内を、相隣れる流路を同種の作動流体が流れること
、例へば低温側作動流体同志が隣り合うことの無い様に
交互に分配し、(以ド錯流と呼ぶこととする)妙・つ互
いに向流方向に流す。即ち第2図に於いて、例へば斜線
の記入しである流路に高温側作動流体を流し、他は低温
側作動流体を流す様分配するのである。なお、作動流体
の出入口の構造としては、−例として第2図に示す再生
器の場合は、第4図に示す如く、山形の伝熱壁22(第
2図で22で示すもの)を、再生器の入口または出口の
両端に於いて、28に示す如く平板となし、蓄熱壁21
との平行壁にしたのち、各作動流体は第4図に示す様に
側方から29.30の如く取り出す方式が採用できる。
The high-temperature side working fluid and the low-temperature side working fluid are arranged alternately so that the same type of working fluids flow in adjacent channels in a regenerator with a structure such that a force of 1 is applied, for example, so that the low-temperature side working fluids do not flow next to each other. (hereinafter referred to as mixed flow), the two flow in countercurrent directions to each other. That is, in FIG. 2, for example, the distribution is such that the high-temperature side working fluid flows through the flow passages marked with diagonal lines, and the low-temperature side working fluid flows through the other passages. As for the structure of the inlet and outlet of the working fluid, for example, in the case of the regenerator shown in FIG. 2, as shown in FIG. 4, a mountain-shaped heat transfer wall 22 (indicated by 22 in FIG. At both ends of the inlet or outlet of the regenerator, there is a heat storage wall 21, which is a flat plate as shown in 28.
After the walls are made parallel to each other, each working fluid can be taken out from the side as shown in FIG.

第5図は本発明の再生器の別の実施例で、同様の効果を
発揮できるものである。図に於いて、31け再生器のケ
ーシング、32は蓄熱壁、33け伝熱壁、34はフィン
、35は蓄熱物質、36はシール材1.37.38は作
動流体の流路である。図から明らかな如く、本実施例も
伝熱壁および、フィンを備えた蓄熱壁により流体流路を
構成し、作動流体を錯流、かつ向流に流す13− ものであって、ふかる構造ならびに機能を持つ再生器が
本発明の主要な一つの特徴である。
FIG. 5 shows another embodiment of the regenerator of the present invention, which can exhibit similar effects. In the figure, 31 is a regenerator casing, 32 is a heat storage wall, 33 is a heat transfer wall, 34 is a fin, 35 is a heat storage material, 36 is a sealing material 1, 37, 38 is a working fluid flow path. As is clear from the figure, this embodiment also has a fluid flow path configured by a heat transfer wall and a heat storage wall equipped with fins, and allows the working fluid to flow in parallel and countercurrent flow. A regenerator with this function is one of the main features of the present invention.

なお、本発明の再生器は既に述べた様に、曲げ加工した
金属成型板を組合せて、安価に製作できるものであるが
、材料は必ずしも金属でなくても、セラミックその他の
材料を使用して、第2図、第5図に示す断面形状のもの
を作成し組立てることにより、全く同等の効果を発挿す
せることができるものである。
As already mentioned, the regenerator of the present invention can be manufactured at low cost by combining bent metal molded plates, but the material does not necessarily have to be metal; it can also be made of ceramic or other materials. , 2 and 5, and by assembling them, exactly the same effect can be obtained.

ざらに本発明の再生器に於ける、伝熱壁と蓄熱壁とによ
り流路を構成させる構造は、再生器ばかりでなく冷却器
、JJO熱器にも利用し得るものであって、かかる構造
の採用により伝熱効率を上げ安定した熱交換性能を発揮
させることができる。
In general, the structure of the regenerator of the present invention in which a flow path is formed by a heat transfer wall and a heat storage wall can be used not only for a regenerator but also for a cooler and a JJO heater, and such a structure By adopting this, it is possible to increase heat transfer efficiency and demonstrate stable heat exchange performance.

なおざらに本発明の再生器の材質は、従来のスターリン
グサイクル機関の再生器の如く高温、低温の流体が交互
に出入りしないので、熱疲労が少なく、通常の各種耐熱
性材料を使用することができ、長時間の使用に耐える。
In addition, the material of the regenerator of the present invention does not cause high and low temperature fluids to enter and exit alternately, unlike the regenerator of conventional Stirling cycle engines, so there is little thermal fatigue, and various ordinary heat-resistant materials can be used. and can withstand long-term use.

=14− 次に、本発明の特徴とするところの第2の方策は、小作
動機関と大作動機関の各ローターの回転の位相をずらせ
て再生器の熱再生効率を高める方法である。
=14- Next, the second measure, which is a feature of the present invention, is a method of increasing the heat regeneration efficiency of the regenerator by shifting the rotational phase of each rotor of the small working engine and the large working engine.

第6図は力1かる方策の1実施例である。FIG. 6 is an example of a strategy in which the force is 1.

第6図に於いて0υは大低温作動機関、haは小低温作
動機関、04は小高温作動機関、0弔は大高温作動機関
、45は冷却器、46は再生器、47は加熱器で、各機
関並びに各熱交換器は図に示す様に流体流路48.49
.50.51で結ぶ。各機関に於いて添字aは一方の作
動室、bは残りの他の作動室を示し、Cはローターであ
る。各機関のローターは同期回転させるが、2基の大作
動機関のローターは同位相であり、これに対し2基の小
作動機関のローターは若f進んだ位相で回転させる。大
低温作動機関と小作動機関との間には、作動流体の逆流
を防ぐための逆止弁52を設け、小高温作動室と大高温
作動室の間には、作動流体が一時的に大流量が流れるの
を防ぐための絞りないしはりミント弁−15一 様について説明すると、先づ第7図の横軸はローターの
回転角の00フら180°を示し、これは各機関の作動
室のローターが死点から死点迄回転する−・衡程である
。縦軸は各機関の作動室容積の変化並びに、再生器に流
入する高温側、低温側の作動流体の流量変化を示してお
り、図の61は大高温作動機関@膏の作動室44aの容
積率 変化、62は大低温作動機関りvの作動室4 w bの
容積変化を示し、双方の容積の和は常に一定である。6
3は小低温作動機関04のローター420が、大作動機
(4υ、@少と同位相のときの作動室42aの容積変化
、64は小高温作動機関1東が同じく同位相のときの作
動室43bの容積変化を示し、両作動室42a、43b
の容積の和が、一定であることも同じである。65は大
高温作動室から大低温作動室に流れ込む、即ち再生器を
通過する、作動流体のモル流量変化(以丁移動率と呼ぶ
)を示し、66は同しく小低温作動室から小高温作動室
への作動流体の移動率を示す。但し、この第7図の状態
は一つのモデル化された例を示すもので、大作動室と小
作動室の容積比は機関の設計により変るものであり、移
動率も再生器の伝熱特性、機関圧力、回転数等多くの要
因により変るものであり第7図の例に固定されるもので
は無い。
In Figure 6, 0υ is a large low-temperature operating engine, ha is a small low-temperature operating engine, 04 is a small high-temperature operating engine, 0 is a large high-temperature operating engine, 45 is a cooler, 46 is a regenerator, and 47 is a heater. , each engine and each heat exchanger have fluid flow paths 48 and 49 as shown in the figure.
.. Tie at 50.51. In each engine, the subscript a indicates one working chamber, b indicates the remaining working chamber, and C indicates the rotor. The rotors of each engine are rotated synchronously, but the rotors of the two large working engines are in the same phase, whereas the rotors of the two small working engines are rotated with a phase slightly ahead. A check valve 52 is provided between the large low-temperature working engine and the small working engine to prevent backflow of the working fluid, and between the small high-temperature working chamber and the large high-temperature working chamber, the working fluid is temporarily Throttle or beam mint valve for preventing flow of flow - 15 To explain uniformity, first of all, the horizontal axis in Fig. 7 indicates the rotation angle of the rotor from 00 degrees to 180 degrees, which corresponds to the working chamber of each engine. The rotor rotates from dead center to dead center. The vertical axis shows the change in the working chamber volume of each engine and the change in the flow rate of the working fluid on the high temperature side and low temperature side flowing into the regenerator, and 61 in the figure is the volume of the working chamber 44a of the large high temperature working engine @ The rate change 62 indicates the volume change of the working chamber 4 w b of the large low temperature operating engine v, and the sum of both volumes is always constant. 6
3 is the volume change of the working chamber 42a when the rotor 420 of the small low-temperature working engine 04 is in the same phase as the large working engine (4υ, @small), and 64 is the working chamber 43b when the small high-temperature working engine 1 East is also in the same phase. shows a change in volume of both working chambers 42a, 43b.
It is also true that the sum of the volumes of is constant. 65 indicates the change in molar flow rate of the working fluid flowing from the large high-temperature working chamber to the large low-temperature working chamber, that is, passing through the regenerator, and 66 indicates the change in the molar flow rate of the working fluid flowing from the small low-temperature working chamber to the small high-temperature working chamber. Indicates the rate of movement of working fluid into the chamber. However, the situation shown in Figure 7 shows one modeled example, and the volume ratio of the large working chamber and small working chamber changes depending on the design of the engine, and the transfer rate also depends on the heat transfer characteristics of the regenerator. , engine pressure, rotation speed, etc., and is not fixed to the example shown in FIG. 7.

さて、この第7図から、大作動機関と小作動機関のロー
ターの回転の位相が等しいときは、高温側作動流体の移
動率と、低温側作動流体の移動率には、大きなアンバラ
ンスがあり、従って交換される熱量も大きな過不足を生
じ、ローターが死点から死点迄回転する間の前半部に於
いては、高温側の作動流体が充分冷却されず、後半部で
は低温側の作動流体力f充分加熱されないことが明らか
である。
Now, from Fig. 7, when the rotational phases of the rotors of the large working engine and the small working engine are equal, there is a large imbalance between the movement rate of the working fluid on the high temperature side and the movement rate of the working fluid on the low temperature side. Therefore, there is a large surplus or deficiency in the amount of heat exchanged, and in the first half of the rotation of the rotor from dead center to dead center, the working fluid on the high temperature side is not cooled sufficiently, and in the second half, the working fluid on the low temperature side is not cooled enough. It is clear that the fluid force f does not heat up enough.

しかし、こくで第6図に示す如く、2基の小作動機関の
ローターを、2基の大作動機関のローターに対し回転の
位相を進ませることにより、この交換熱量の大きな過不
足を大巾に減少させ、17− いわゆる熱再生効率を大きく向トさせることができる。
However, as shown in Figure 6, by advancing the rotational phase of the rotors of the two small-operating engines relative to the rotors of the two large-operating engines, this large excess or deficiency in the amount of heat exchanged can be greatly reduced. 17- The so-called heat regeneration efficiency can be greatly improved.

これを第7図で説明すると、いま大作動機関のローター
の回転の位相を、図に示す如くS度程度遅らせると、(
即ち小作動機関のローターの回転の位相を逆に8度はと
進ませると)大高温作動室、大低温作動室の容積変化は
67.68の点線で示され、また作動流体の移動率は6
9の点線で示される値となる。かくすると大作動機関、
小作動機関のローターの回転に位相差が無いときの、高
温側と低温側の作動流体の移動率の差は、第7図のAの
領域に示される様な大きなものであったものが、図の6
9の点線で示される場合には、わづかにHの領域で示さ
れる小さい差に迄縮少され、大巾な熱再生効率の向上と
なっている。これが本発明の2番目の大きな特徴である
が、さらに既に述べた第1の特徴である蓄熱型の再生器
を46として使用することにより、はに100%近い熱
再生効率を1−げることかできる。
To explain this using Fig. 7, if the phase of rotation of the rotor of the large working engine is delayed by about S degrees as shown in the figure, (
In other words, if the rotation phase of the rotor of a small working engine is reversed and advanced by 8 degrees, the volume change of the large high temperature working chamber and large low temperature working chamber is shown by the dotted line at 67.68, and the movement rate of the working fluid is 6
The value is shown by the dotted line at 9. Thus a great working engine,
When there is no phase difference in the rotation of the rotor of a small working engine, the difference in the movement rate of the working fluid on the high temperature side and the low temperature side is large as shown in the area A in Fig. 7, but Figure 6
In the case shown by the dotted line No. 9, the difference is slightly reduced to a small difference shown in the H region, and the heat regeneration efficiency is greatly improved. This is the second major feature of the present invention, and by using a heat storage type regenerator as the first feature already mentioned, it is possible to achieve a heat regeneration efficiency of nearly 100%. I can do it.

18− こ\で大作動機関並びに小作動機関のローターの回転の
位相の佃み角(または遅れ角)は、スターリングサイク
ルの設計条件や、再生器の伝熱動特性によって変るもの
であるが、また高温側流体と低温側流体の温度差の影響
も大きく、この温度差が大きいときは進み角も大きくす
る必要があり、その他の要因も勘案して最良点を求める
ことができる。通常の場合は、この進み角はO〜90°
の間特に殆んどの場合20°〜60゜の間であり、2〜
3回の試行により容易r(最良点を求めることか可能な
ものである。
18- Here, the angle of inclination (or lag angle) of the rotational phase of the rotor of the large-operating engine and the small-operating engine varies depending on the design conditions of the Stirling cycle and the heat transfer dynamic characteristics of the regenerator. Furthermore, the influence of the temperature difference between the high-temperature side fluid and the low-temperature side fluid is also large, and when this temperature difference is large, it is necessary to increase the advance angle, and other factors can also be taken into account to determine the best point. In normal cases, this lead angle is 0~90°
in particular between 20° and 60° in most cases, and between 2 and 60°.
It is possible to easily find the best score after three trials.

次に、大作動機関と小作動機関のローターの回転に位相
差かある場合は、作動流体が大低温作動機関から小低温
作動機関に移動する際に、大低温作動機関のローターか
死点に達し、次の大低温作動室から新しく低温の作動流
体が排出されようとしたときに、小低温作動機関のロー
ターは未だ死点に達していないため、高圧になっている
小低温作動室内の作動流体が逆流してしまう。これを防
ぐためには既に第6図の概要−19− の説明で述べた如く、大低温作動機関の作動流体用[]
に逆fに弁52を設ける。
Next, if there is a phase difference between the rotations of the rotors of the large and small operating engines, when the working fluid moves from the large, low-temperature operating engine to the small, low-temperature operating engine, the rotor of the large, low-temperature operating engine will reach the dead center. When the new low-temperature working fluid is about to be discharged from the next large low-temperature working chamber, the rotor of the small low-temperature working engine has not yet reached its dead center, so the operating fluid in the small low-temperature working chamber is under high pressure. Fluid flows backwards. In order to prevent this, as already mentioned in the explanation of the outline-19- of Fig. 6, it is necessary to
A valve 52 is provided in reverse f.

また、小高温作動機関と大高温作動機関の間では、小高
温作動機関のローターが死点に達したときは、大高温作
動機関のローターは未だ死点に達していないために、高
圧の作動流体が充満した小高温作動室と、大高温作動室
とか加熱器を介して連結きれ、一時的に多量の作動流体
が加熱器内を通過し、加熱器の容量か小さい場合には仏
門効率を低ドさせてしま、う。これを防ぐために第6図
の53に示す如く流量を制限するリミツト弁ないしは絞
りを設ける。
In addition, between the small high-temperature operating engine and the large high-temperature operating engine, when the rotor of the small high-temperature operating engine reaches the dead center, the rotor of the large high-temperature operating engine has not yet reached the dead center, so the high-pressure operating A small high-temperature working chamber filled with fluid is connected to a large high-temperature working chamber through a heater, and a large amount of working fluid temporarily passes through the heater, reducing Buddhist efficiency if the capacity of the heater is small. I let it go low. To prevent this, a limit valve or throttle is provided to limit the flow rate, as shown at 53 in FIG.

なお、第6図に於いて、冷却器45、加熱器47も熱交
換器であり、これに流入する作動流体は正弦波状に周期
的に変化し、一方熱源55、冷熱源54もまたその種類
によっては変動するものであるから、この両者に1も蓄
熱型熱交換器を使用することにより、熱交換器の効率を
トげることができ、従って小型化ができる。
In FIG. 6, the cooler 45 and the heater 47 are also heat exchangers, and the working fluid flowing into them changes periodically in a sinusoidal manner, while the heat source 55 and the cold source 54 also change in type. Therefore, by using a regenerative heat exchanger for both of them, the efficiency of the heat exchanger can be increased and the size can be reduced.

以l・で明らかな様に本発明は新規な蓄熱型熱交換器の
使用と、大作動機関に対し、小作動機関のローターの回
転の位相を進ませると云う着想により、従来の欠点を全
く解決する新規なスターリングサイクル機関を可能とし
たものである。
As is clear from the following, the present invention completely eliminates the drawbacks of the conventional technology by using a new regenerative heat exchanger and by advancing the phase of rotation of the rotor of a small working engine relative to a large working engine. This enabled a new Stirling cycle engine to solve the problem.

スターリングサイクル機関の概念図である。It is a conceptual diagram of a Stirling cycle engine.

第2図は本発明の一実施例である蓄熱型熱交換器の構造
を示すものである。
FIG. 2 shows the structure of a regenerative heat exchanger which is an embodiment of the present invention.

第3図は第2図の蓄熱型熱交換器の伝熱フィンの構造例
である。
FIG. 3 shows an example of the structure of the heat transfer fins of the regenerative heat exchanger shown in FIG. 2.

第4図は第2図の蓄熱型熱交換器の作動流体の送入、取
出し方法を示したものである。
FIG. 4 shows a method for supplying and extracting working fluid from the regenerative heat exchanger shown in FIG. 2.

第5図は蓄熱型熱交換器の他の実施例についてその構造
を示すものである。
FIG. 5 shows the structure of another embodiment of the regenerative heat exchanger.

第6図は本発明の大作動機関に対し小作動機関のロータ
ーの回転の位相を進ませたスターリングサイクル機関の
説明図である。
FIG. 6 is an explanatory diagram of a Stirling cycle engine in which the phase of rotation of the rotor of a small working engine is advanced compared to the large working engine of the present invention.

第7図は本発明の再生器の作動の態様を説明21− するものである。FIG. 7 illustrates the mode of operation of the regenerator of the present invention21- It is something to do.

手続補正書 (自発) 昭和s7年ノり月/3日 特許庁長官  島田春樹殿   r。Procedural amendment (voluntary) Showa s7 year month/3rd Commissioner of the Patent Office Haruki Shimada r.

\ 1 事件の表示 昭和56年特許願第149031号2
 発明の名称 スターリングサイクル機関3 補正をす
る者 事件との関係 特許出願人 5 補正の対象 (3)   図面(追加) 6 補正の内容 別紙のとおり  1− 補正の内容 1 明細書の発明の詳細な説明の欄を次の通り補正する
\ 1 Display of the case 1982 Patent Application No. 149031 2
Title of the invention Stirling cycle engine 3 Relationship with the case of the person making the amendment Patent applicant 5 Subject of the amendment (3) Drawing (addition) 6 Contents of the amendment As shown in the attached sheet 1- Contents of the amendment 1 Detailed explanation of the invention in the specification Correct the column as follows.

(1) 第19頁第19行「従って小型化ができる」の
次に[また、本発明の構成はすでに本発明者が考案し出
願している内燃式のスターリングサイクル装置(例へば
特許願昭56−129119)にも適用できる。第8図
はその実施例を示したものである。
(1) Page 19, line 19, ``Therefore, miniaturization is possible.'' -129119). FIG. 8 shows an embodiment thereof.

第8図に於いて、71は大低謁作動ta間、72は小低
温作動機関、73は小高温作動機関、74は大高温作動
機関、75は定容積作動機関、82は冷却器、83は燃
焼器、84は再生器、87は空気または支燃性ガスの吸
入部、89はガス排出部でありこれらの間は流体通路7
6.78.79.80.81.77で結ぶ。この流路上
の、機関71の下流には逆止弁90が、機関73の下流
には流量制限弁91が設けられる。また冷却器、再生器
は既に述べた如く 2− 蓄熱型の熱交換器を利用する。本機関の作動の態様を概
説すると、まず機関の回転により図の88より空気およ
び必要に応じ燃料ガスを吸入し87で混合され、機関7
1から冷却器82を通り機関72に入り等温圧縮され、
次に再生器84を通り機関73に入り等容加熱され、機
関73の回転により燃焼器83に送入される。ここで空
気または可燃混合ガスは86からの燃料送入をうけて着
火され燃焼し機関74に流入する。次に機関74から再
生器84を通り機関75に入り等容冷却されたのち排出
される。」を加入する。
In FIG. 8, 71 is a large and low operating engine, 72 is a small low temperature operating engine, 73 is a small high temperature operating engine, 74 is a large high temperature operating engine, 75 is a constant volume operating engine, 82 is a cooler, 83 84 is a combustor, 84 is a regenerator, 87 is an intake section for air or combustion-supporting gas, 89 is a gas discharge section, and there is a fluid passage 7 between them.
Connect with 6.78.79.80.81.77. On this flow path, a check valve 90 is provided downstream of the engine 71, and a flow rate restriction valve 91 is provided downstream of the engine 73. As mentioned above, the cooler and regenerator use a 2-regenerative heat exchanger. To outline the mode of operation of this engine, first, as the engine rotates, air and fuel gas are sucked in from 88 in the figure and mixed at 87.
1, passes through the cooler 82, enters the engine 72, isothermally compressed,
Next, it passes through the regenerator 84, enters the engine 73, is heated isovolumically, and is sent to the combustor 83 as the engine 73 rotates. Here, the air or combustible mixed gas is ignited and combusted upon receiving fuel from 86 and flows into the engine 74 . Next, it passes through the regenerator 84 from the engine 74 and enters the engine 75 where it is cooled equal volumes and then discharged. ” to join.

2 明細書の図面の簡単な説明の欄を次の通り補正する
2. The column of the brief description of the drawings in the specification shall be amended as follows.

(1) 第21頁第2行以下に「第8図は本発明を内燃
式スターリングサイクル機関に適用した例の説明図であ
る。」氷を加入する。
(1) From the second line on page 21, add the following text: ``Figure 8 is an explanatory diagram of an example in which the present invention is applied to an internal combustion Stirling cycle engine.''

3 図面の追加  第8図を追加する。3. Addition of drawings: Add Figure 8.

以上that's all

Claims (1)

【特許請求の範囲】[Claims] 内面周囲輪郭が単節ぺIJ )ロコイド曲線または、該
曲線を法線方向に等寸法拡大せる曲線により形成せられ
たローターハウジング内に、外周形状かゝ該ぺIJ )
ロコイドの内包絡線ないしは該内包絡線に近似せる円弧
により形成された断面かレンズ状のローターを収納し、
かつ該ローター側面に設けた内歯々車と、該ローターハ
ウジング側面に設けた固定外歯々車を組合せてその歯数
比が2:1の位相両車を構成きせたる構造の、作動室が
2室のロータリーピストン機関を用い、該ロータリ7ピ
ストン機関の作動室内容積が異なる大および小の機関を
組合せて一対となし、その一対または二対を組合せ、同
期回転させ、該各ロータリーピストン機関の各作動室を
大低温作動室、小低温作動室、小高温作動室、大高温作
動室に分け、該各作動室間を前記の順に流体通路で接続
し、循環路を形成させ、作動室及び循環路に作動流体を
充填し、該循環路Fの大低温作動室と小高温作動室間に
は冷却器を設は小高温作動室と大高温作動室間には加熱
器を設け、小低温作動室と小高温作動室間には再生器を
設け、大高温作動室から大低温作動室への循環路は該再
生器を経由せしめ、かつ該各循環路トには必要に応じて
切替弁ないしは逆止弁または絞りを設け、該各ロータリ
ーピストン機関のローターの同期回転により、作動流体
を該各作動室に順次送給し、前記該各機関の作動室間の
容積差および、冷却器、加熱器、再生器に於ける熱の授
受により、等瀉圧縮、等容積加熱、等温膨張、等容積冷
却からなるスターリングサイクルを行わせる機関に於い
て、冷却器加熱器、再生器の一種ないしは全部を蓄熱型
熱交換器とし、また、小低温作動機関ならびに小高温作
動機関のローターに対し、大高温作動機関ならびに大高
温作動機関のローターを、その同期回転の位相をθ°か
ら90°遅らせることを特徴とするスターリングサイク
ル!。
In the rotor housing, the inner peripheral contour is formed by a single-section lochoid curve or a curve that can expand the same dimension in the normal direction, and the outer peripheral shape is
A rotor with a cross section or a lens shape formed by the internal envelope of the locoid or an arc approximating the internal envelope is housed,
The working chamber has a structure in which an internal gear wheel provided on the side surface of the rotor and a fixed external gear wheel provided on the side surface of the rotor housing are combined to form a phase wheel with a tooth ratio of 2:1. A two-chamber rotary piston engine is used, and a pair of large and small rotary seven-piston engines with different working chamber internal volumes are combined to form a pair, and the pair or two pairs are combined and rotated synchronously. Each working chamber is divided into a large low-temperature working chamber, a small low-temperature working chamber, a small high-temperature working chamber, and a large high-temperature working chamber, and the working chambers are connected in the above order by fluid passages to form a circulation path, and the working chamber and The circulation path is filled with working fluid, and a cooler is installed between the large low-temperature working chamber and the small high-temperature working chamber of the circulation path F, and a heater is installed between the small high-temperature working chamber and the large high-temperature working chamber. A regenerator is provided between the working chamber and the small high-temperature working chamber, and the circulation path from the large high-temperature working chamber to the large low-temperature working chamber is routed through the regenerator, and each circulation path is provided with a switching valve as necessary. Alternatively, a check valve or a throttle is provided, and the working fluid is sequentially supplied to each of the working chambers by synchronized rotation of the rotors of each of the rotary piston engines, and the volume difference between the working chambers of each of the engines is reduced. In an engine that performs the Stirling cycle consisting of isostatic compression, isovolume heating, isothermal expansion, and isovolume cooling by giving and receiving heat in the heater or regenerator, one or all of the cooler, heater, and regenerator are used. is a regenerative heat exchanger, and the phase of the synchronous rotation of the rotor of the large high temperature operating engine and the large high temperature operating engine is delayed by 90 degrees from θ° with respect to the rotor of the small low temperature operating engine and the small high temperature operating engine. Stirling cycle featuring! .
JP14903181A 1981-09-20 1981-09-20 Stirling cycle engine Pending JPS5851251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14903181A JPS5851251A (en) 1981-09-20 1981-09-20 Stirling cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14903181A JPS5851251A (en) 1981-09-20 1981-09-20 Stirling cycle engine

Publications (1)

Publication Number Publication Date
JPS5851251A true JPS5851251A (en) 1983-03-25

Family

ID=15466149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14903181A Pending JPS5851251A (en) 1981-09-20 1981-09-20 Stirling cycle engine

Country Status (1)

Country Link
JP (1) JPS5851251A (en)

Similar Documents

Publication Publication Date Title
US6568169B2 (en) Fluidic-piston engine
US10077944B2 (en) Combined chamber wall and heat exchanger
US3426525A (en) Rotary piston external combustion engine
US3893295A (en) External combustion swash plate engine employing alternate compression and expansion in each working cylinder
US5335497A (en) Rotary Stirling cycle engine
US20100287936A1 (en) Thermodynamic machine, particular of the carnot and/or stirling type
US7549289B2 (en) Hybrid engine
JP5525371B2 (en) External combustion type closed cycle heat engine
EP0162868B1 (en) Stirling cycle engine and heat pump
US10253724B2 (en) Variable volume transfer shuttle capsule and valve mechanism
JP2008163931A (en) Scroll type external combustion engine
JPS5851251A (en) Stirling cycle engine
US5644917A (en) Kinematic stirling engine
KR100849506B1 (en) Scroll-type stirling cycle engine
JP2589521B2 (en) Thermal energy utilization equipment
US2990681A (en) High compression externally fired laminal displacer engine
JPH03117658A (en) External combustion type rotary piston engine
EP4286675A1 (en) External combustion engine
JPH01244151A (en) High temperature heat exchanger for stirling engine
RU1795237C (en) Heat-utilizing cryogenic rotary gas machine
WO1993007374A1 (en) Rotary stirling cycle engine
JPH09287518A (en) Stirling engine having thermal expansion chamber on high temperature side
JPH03222850A (en) Stirling engine
WO2021259401A1 (en) Stirling engine
JP4917686B1 (en) Rotary Stirling engine