JPS5851121B2 - Turbine paragraph structure - Google Patents

Turbine paragraph structure

Info

Publication number
JPS5851121B2
JPS5851121B2 JP14234778A JP14234778A JPS5851121B2 JP S5851121 B2 JPS5851121 B2 JP S5851121B2 JP 14234778 A JP14234778 A JP 14234778A JP 14234778 A JP14234778 A JP 14234778A JP S5851121 B2 JPS5851121 B2 JP S5851121B2
Authority
JP
Japan
Prior art keywords
groove
flow
blade
stator
stator blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14234778A
Other languages
Japanese (ja)
Other versions
JPS5569703A (en
Inventor
哲男 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14234778A priority Critical patent/JPS5851121B2/en
Publication of JPS5569703A publication Critical patent/JPS5569703A/en
Publication of JPS5851121B2 publication Critical patent/JPS5851121B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】 本発明は、蒸気、ガスタービン等の軸流回転機械に係り
、特に静翼、動翼から構成されるタービン段落構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an axial flow rotary machine such as a steam or gas turbine, and particularly to a turbine stage structure composed of stationary blades and rotor blades.

タービン等の軸流機械の出力段落は、静翼列と動翼列と
から構成されている。
The output stage of an axial flow machine such as a turbine is composed of a stationary blade row and a rotor blade row.

第1図にその具体例を示す。A specific example is shown in FIG.

静翼2は、ダイヤフラム外輪1a、内輪1bによって複
数枚が円環状に固定され、静翼列を構成して車室5内に
取付けられている。
A plurality of stator blades 2 are fixed in an annular shape by a diaphragm outer ring 1a and an inner ring 1b, and are installed in the vehicle compartment 5 to form a stator blade row.

一方動翼3は、静翼下流側においてロータディスク4上
に複数枚取付けられ、動翼列を構成している。
On the other hand, a plurality of rotor blades 3 are attached on the rotor disk 4 on the downstream side of the stator blades, forming a row of rotor blades.

作動流体6は、第2図に示すように、静翼入口2aから
流入し、静翼出口2bから静翼下流へ流出する。
As shown in FIG. 2, the working fluid 6 flows in from the stator blade inlet 2a and flows out from the stator blade outlet 2b downstream of the stator blade.

その後、動翼人口3aから動翼3内に流入し、動翼を回
転させながら出口3bより流出する。
Thereafter, it flows into the rotor blade 3 from the rotor blade population 3a, and flows out from the outlet 3b while rotating the rotor blade.

ここでRは回転方向を示す。さて、動翼2の下流では、
静翼2の翼面に発達した境界層の拡散領域 即ち後流が
発生するため、作動流体の分布は一様流とはならず、周
期的に速度欠損部を有する変動速度分布6aとなる。
Here, R indicates the rotation direction. Now, downstream of rotor blade 2,
Since a diffusion region of the boundary layer developed on the blade surface of the stationary blade 2, that is, a wake occurs, the distribution of the working fluid does not become a uniform flow, but becomes a fluctuating speed distribution 6a having periodic speed defects.

この非一様な速度分布は、動翼3の翼形損失、特に非定
常損失の増大を引き起し、タービン性能を低下させる。
This non-uniform speed distribution causes an increase in airfoil loss, particularly unsteady loss, of the rotor blades 3, and reduces turbine performance.

さらには、動翼3に周期的な変動力として作用するため
、動翼の共振疲労破壊の原因となるものである。
Furthermore, since it acts on the rotor blade 3 as a periodic fluctuating force, it becomes a cause of resonance fatigue failure of the rotor blade.

第3a図に非定常損失の発生機構を示す。Figure 3a shows the mechanism by which unsteady loss occurs.

動翼、静翼等の翼形損失は、これに流入する作動流体の
流入角に大きく影響され、翼形状個有の入口角βmと、
作動流体の流入角βSが一致した場合、即ち偏差角i−
βS−βmがOの場合に最も損失が少ない。
Airfoil loss of moving blades, stationary blades, etc. is greatly influenced by the inflow angle of the working fluid flowing into the blade, and the inlet angle βm unique to the blade shape,
When the working fluid inflow angles βS match, that is, the deviation angle i−
When βS−βm is O, the loss is the smallest.

そして第3b図に示すように流入角βSと入口角βmの
差が増大する程、即ち偏差角iが0から離れる程損失が
増大する。
As shown in FIG. 3b, the loss increases as the difference between the inlet angle βS and the inlet angle βm increases, that is, as the deviation angle i departs from 0.

この損失の増加傾向は、特に反動度の低い動翼形におい
て著しい。
This tendency of increase in loss is particularly remarkable in rotor airfoils with low recoil.

従って、タービンの段落は、平均的な流れ方向で偏差角
i=oとなるように翼形、翼装置が選定される。
Therefore, in the turbine stage, the airfoil shape and blade device are selected so that the deviation angle i=o in the average flow direction.

しかしながら、実際のタービン内部の流れにおいては、
前述したように静翼2の下流の流れは非一様な変動流と
なっている。
However, in the actual flow inside the turbine,
As described above, the flow downstream of the stationary blade 2 is a non-uniform fluctuating flow.

動翼3に流入する流れの流入角βSは、第3a図に示す
ように静翼2からの絶対流出速度Uと回転周速Wによっ
て定めるため、静翼後流の速度欠損部Udでは、流入速
度Vdの如くなり偏差角iが増大する。
The inflow angle βS of the flow flowing into the rotor blade 3 is determined by the absolute outflow velocity U from the stator blade 2 and the rotational circumferential speed W as shown in Fig. 3a. The speed becomes Vd, and the deviation angle i increases.

このため、動翼損失が増大するのである。Therefore, the rotor blade loss increases.

さらに流速の変動成分は、動翼の翼面に発達する境界層
と干渉し、翼形損失を増大させるものである。
Furthermore, the fluctuating component of the flow velocity interferes with the boundary layer that develops on the blade surface of the rotor blade, increasing the airfoil loss.

本発明の目的は、以上述べたようなタービン静翼下流の
流れの非一様性を、縮流効果を利用して緩和し、流れの
一様性を高めることによって非定常損失を低減し、高性
能のタービンを得ると共に、変動流体力による動翼の振
動応力を低減しより安定性の高いタービンを得ることに
ある。
The purpose of the present invention is to reduce unsteady loss by reducing the non-uniformity of the flow downstream of the turbine stator blades as described above by using the contraction effect and increasing the uniformity of the flow. The object of the present invention is to obtain a high-performance turbine and to obtain a turbine with higher stability by reducing the vibration stress of the rotor blades due to fluctuating fluid force.

本発明の特徴とするところは、翼列後流の一様化傾向、
即ち後流速度欠損の回復が、流れの加速度が高い程回復
が早いと云う実験的事実に着目し、ダイヤフラム壁面に
、作動流体の流入端から流出端に亘って各静翼毎に該静
翼を内側に収めうるような流路溝を設け、該流路溝は、
静翼入口部までは一定の幅を有する直線溝部に、かつ静
翼入口部から溝終端までは静翼の外郭に沿った曲線溝部
に夫々形成されると共に、前記直線溝部は一定の溝深さ
に、かつ前記曲線溝部は静翼出口部から溝終端までの溝
深さが溝終端に向うに従い漸減するように夫々形成され
て、静翼出口から動翼入口に至る流路面積を、作動流体
の流れ方向に漸減して縮流流路とし、流れを加速するこ
とによって動翼入口における流れの一様性を高め、さら
に後流速度欠損部に向って偏向する流れを矯正して静翼
流出角の一様性を高め、動翼の非定常損失および励振力
を低減し、高性能で安全性の高いタービンを実現するも
のである。
The present invention is characterized by a tendency for the flow behind the blade row to become uniform;
In other words, we focused on the experimental fact that recovery from wake velocity loss is faster when the flow acceleration is higher. A channel groove is provided so that the channel can be accommodated inside, and the channel groove is
A straight groove having a constant width is formed up to the stator blade inlet, and a curved groove along the outer contour of the stator blade is formed from the stator blade inlet to the groove end, and the straight groove has a constant groove depth. and the curved groove portions are formed such that the groove depth from the stator blade outlet to the groove end gradually decreases toward the groove end, so that the flow path area from the stator blade outlet to the rotor blade inlet is It gradually decreases in the flow direction to create a contracted flow path, accelerates the flow, improves the flow uniformity at the rotor blade inlet, and further corrects the flow deflected toward the wake velocity defect to improve the stator blade outflow. This improves angular uniformity, reduces unsteady loss and excitation force in the rotor blades, and realizes a high-performance, highly safe turbine.

以下、本発明タービン段落構造の一実施例を第4図ない
し第8図により説明する。
Hereinafter, one embodiment of the turbine stage structure of the present invention will be described with reference to FIGS. 4 to 8.

第4図において、静翼12(エダイヤフラム11の外輪
11a、内輪11bによって複数枚が円環状に固定され
、静翼列を構成して、車室15に取付けられる。
In FIG. 4, a plurality of stator blades 12 (e.g., a plurality of stator blades are fixed in an annular shape by an outer ring 11a and an inner ring 11b of the diaphragm 11 to form a stator blade row and are attached to a vehicle compartment 15.

一方動翼13は、静翼下流側においてロータディスク1
4上に複数枚取付けられ、動翼列を構成している。
On the other hand, the moving blade 13 has a rotor disk 1 on the downstream side of the stationary blade.
A plurality of rotor blades are attached to the rotor blade row.

作動流体6は第2図に示すように静翼入口12aから流
入し、静翼出口12bがら下流側へ流出する。
As shown in FIG. 2, the working fluid 6 flows in from the stator blade inlet 12a and flows out downstream from the stator blade outlet 12b.

その後、動翼人口13aから動翼13内に流入し、動翼
13を回転させて出口13bより流出する。
Thereafter, it flows into the rotor blade 13 from the rotor blade population 13a, rotates the rotor blade 13, and flows out from the outlet 13b.

第4図ないし第8図において、ダイヤフラム外輪11a
および内輪11bの流路壁には、作動流体の流入端から
流出端に亘って各静翼毎に該静翼を内側に収める流路溝
17が設げられている。
In FIGS. 4 to 8, the diaphragm outer ring 11a
A channel wall of the inner ring 11b is provided with a channel groove 17 extending from the inflow end to the outflow end of the working fluid for each stator vane to house the stator vane therein.

該流路溝17は、静翼12人口部までは一定の幅1を有
する直線溝部1γaに、かつ静翼入口部から溝終端まで
は静翼12の外郭に沿った曲線溝部17bに夫々形成さ
れている(第5図)。
The flow path groove 17 is formed as a straight groove portion 1γa having a constant width 1 up to the stator blade 12 population portion, and as a curved groove portion 17b along the outer contour of the stator blade 12 from the stator blade inlet portion to the groove end. (Figure 5).

そして前記直線溝部17aは一定の溝深さhに、かつ前
記曲線溝部17bは静翼出口部から溝終端までの溝深さ
が溝終端に向うに従い漸減するように夫々形成されて(
第6図ないし第8図)、静翼出口12bから動翼人力1
3aに至る流路の断面積を漸減して縮流流路を形成して
いる。
The straight groove portion 17a is formed to have a constant groove depth h, and the curved groove portion 17b is formed such that the groove depth from the stationary blade outlet to the groove end gradually decreases toward the groove end (
6 to 8), from the stator blade outlet 12b to the rotor blade human power 1
The cross-sectional area of the flow path reaching 3a is gradually reduced to form a contraction flow path.

静翼列の流路面積は、第9図に示すように静翼入口12
a(図中I)から出口12b(図中■)まで減少する。
The flow path area of the stator blade row is as shown in FIG.
a (I in the figure) to the exit 12b (■ in the figure).

また従来例では、静翼出口(図中■)からダイヤフラム
後端(図中■)までの流路面積が図中一点鎖線で示す如
く一定であるのに対し、本発明では溝深さが漸減する曲
線溝部によって、流路面積は静翼出口12b(図中■)
よりダイヤフラム後端、即ち溝終端(図中■)まで実線
で示すようにさらに減少する。
In addition, in the conventional example, the flow path area from the stationary blade outlet (■ in the figure) to the rear end of the diaphragm (■ in the figure) is constant as shown by the dashed line in the figure, whereas in the present invention, the groove depth gradually decreases. Due to the curved groove portion, the flow path area is reduced to the stationary blade outlet 12b (■ in the figure).
It further decreases as shown by the solid line up to the rear end of the diaphragm, that is, the end of the groove (■ in the figure).

このため、静翼出口12b(図中■)以後の作動流体6
の速度は、従来例では一点鎖線で示すような一定流速、
即ち平衡流となるのに対し、本発明では実線で示すよう
に、ダイヤフラム後端(図中■)までさらに速度が増大
する加速流となる。
For this reason, the working fluid 6 after the stationary blade outlet 12b (■ in the figure)
In the conventional example, the velocity is a constant flow velocity as shown by the dashed line,
In other words, it becomes an equilibrium flow, whereas in the present invention, as shown by the solid line, it becomes an accelerated flow whose velocity further increases up to the rear end of the diaphragm (■ in the figure).

第10a、b図は、翼列後流の拡散状態、即ち後流゛の
速度欠損Udが回復して一様化する状態を示す。
Figures 10a and 10b show a diffusion state of the trailing stream of the blade row, that is, a state in which the velocity deficit Ud of the trailing stream is recovered and equalized.

第10b図の横軸Xは静翼出口12bから下流側への距
離であり、縦軸は第10a図に示す翼列後流の最大欠損
速度Udo と主流の速度Umとの比、即ち速度回復率
を示す。
The horizontal axis X in FIG. 10b is the distance from the stationary blade outlet 12b to the downstream side, and the vertical axis is the ratio of the maximum deficit speed Udo of the blade row wake shown in FIG. 10a to the main stream speed Um, that is, speed recovery. Show rate.

第10b図に示すように、後流の速度欠損は翼出口12
bより下流側へ離れる程回復し、一様化する。
As shown in Figure 10b, the wake velocity loss is caused by the blade exit 12.
The farther downstream from b, the more it recovers and becomes more uniform.

この速度欠損の回復状態は、流れの状態が加速流か、平
衡流かによって異なり、加速流中の回復率が他に比べて
良い。
The recovery state of this velocity deficit differs depending on whether the flow condition is accelerated flow or equilibrium flow, and the recovery rate in accelerated flow is better than in other conditions.

従って、動翼人口13aにおける速度分布は、第11a
図に示すように、本発明の場合はダイヤフラム内壁の縮
流作用によって加速されるため、18a(図中実線)の
ような速度分布となり、18bに示した(図示一点鎖線
)従来例の場合の平衡流中の速度分布に比べ、後流中心
速度Ud。
Therefore, the speed distribution in the rotor blade population 13a is
As shown in the figure, since the present invention is accelerated by the contraction action of the inner wall of the diaphragm, the velocity distribution is as shown in 18a (solid line in the figure), and the velocity distribution is as shown in 18b (dotted chain line in the figure) in the case of the conventional example. The wake center velocity Ud compared to the velocity distribution in equilibrium flow.

も高く、一様性の高い流れとなる。The flow is also high and highly uniform.

これにより動翼130入口13aにおける相対流入速度
は、第11b図に示すように本発明の場合は後流中心速
度Udo と動翼回転周速WからVdの流速と偏差角i
をもって動翼13に流れ込む。
As a result, in the case of the present invention, the relative inflow velocity at the inlet 13a of the rotor blade 130 is determined by the wake center velocity Udo, the flow velocity from the rotor blade rotation peripheral speed W to Vd, and the deviation angle i, as shown in FIG. 11b.
It flows into the rotor blades 13 with the force.

これに対し、従来例の場合は、後流中心速度Udo’が
Udoより低いため、動翼13へは流速Vd’と偏差角
j′をもって流れ込み、i’>iとなる。
On the other hand, in the case of the conventional example, since the wake center velocity Udo' is lower than Udo, the fluid flows into the rotor blade 13 with a flow velocity Vd' and a deviation angle j', so that i'>i.

このため、動翼における非定常損失ξは第11c図に示
すように、従来例の損失ξ′よりも低減される。
Therefore, the unsteady loss ξ in the rotor blade is reduced compared to the loss ξ' of the conventional example, as shown in FIG. 11c.

また本発明においては、ダイヤフラム壁面に設けた流路
溝17が、直線溝部17aと静翼の外郭に沿った曲線溝
部17bとで形成され、かつ静翼出口から動翼入口に至
る流路は縮流流路に形成されているから、第12a図の
如く静翼12出口後の流れは、第12b図に示すように
、後流速度欠損の中心Udo に向って偏向する。
Further, in the present invention, the flow path groove 17 provided on the diaphragm wall surface is formed by a straight groove portion 17a and a curved groove portion 17b along the outer contour of the stator blade, and the flow path from the stator blade outlet to the rotor blade inlet is contracted. Since it is formed in the flow channel, the flow after the exit of the stator vane 12 as shown in FIG. 12a is deflected toward the center Udo of the wake velocity defect, as shown in FIG. 12b.

このため、流れの流出角βは第12c図の曲線9aで示
すように一様とならないが、静翼出口端12bから流れ
方向に沿った一部分が縮流流路となっており、かつ該縮
流流路が後流の中心と略一致しているため、後流の速度
欠損部へ流れを送り込む作用を果す。
Therefore, the outflow angle β of the flow is not uniform as shown by the curve 9a in FIG. Since the flow channel substantially coincides with the center of the wake, it serves to send the flow to the velocity deficit part of the wake.

その結果、後流中心へ向う流れの偏向が矯正され、第1
2d図の線9bで示すように流出角βの一様性が高めら
れる。
As a result, the deflection of the flow toward the wake center is corrected, and the first
The uniformity of the outflow angle β is increased as shown by line 9b in Figure 2d.

従って、第11b図にて説明した動翼13へ流入する流
れの動翼適正人口角からの偏差角iが減少し、非定常損
失および振動応力を低減できる。
Therefore, the deviation angle i of the flow flowing into the rotor blade 13 from the rotor blade proper population angle described in FIG. 11b is reduced, and unsteady loss and vibration stress can be reduced.

以上説明したように、本発明タービン段落構造によれば
、2つの整流作用によって動翼入口における流れの一様
性か高められて、非定常損失および振動応力が低減し、
高効率なタービンを提供できる。
As explained above, according to the turbine stage structure of the present invention, the uniformity of the flow at the rotor blade inlet is improved by the two rectifying effects, and unsteady loss and vibration stress are reduced.
We can provide highly efficient turbines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のタービン段落構造を示す断面図、第2図
は第1図のA −A断面並びに流れの状態図、第3a図
および第3b図は非定常損失の発生状態を示す説明図、
第4図は本発明タービン段落構造の一実施例を示す断面
図、第5図は第4図のBB断面図、第6a図は第5図の
C−C断面図、第6b図は同じ<D−D断面図、第7図
は第4図のE−E矢視図、第8図は同じ<F−F矢視図
、第9図ば本発明の作動機構を示す説明図、第10a図
および第10b図は本発明の原理となる翼列後流の挙動
特性を示す説明図、第11a図ないし第11c図と第1
2a図ないし第12d図は本発明による非定常損失の低
減理由を示す説明図である。 11・・・・・・ダイヤフラム、11a・・・・・・外
輪、11b・・・・・・内輪、12・・・・・・静翼、
12a・・・・・・静翼入口、12b・・・・・・静翼
出口、13・・・・・・動翼、13a・・・・・・動翼
入口、13b・・・・・・動翼出口、14・・・・・・
ロータディスク、15・・・・−・車室、17・・・・
・・流路溝、17a・・・・・・直線溝部、17b・・
・・・・曲線溝部。
Fig. 1 is a sectional view showing a conventional turbine stage structure, Fig. 2 is an A-A cross section in Fig. 1 and a flow state diagram, and Figs. 3a and 3b are explanatory diagrams showing the state of occurrence of unsteady loss. ,
FIG. 4 is a sectional view showing one embodiment of the turbine stage structure of the present invention, FIG. 5 is a BB sectional view of FIG. 4, FIG. 6a is a CC sectional view of FIG. 5, and FIG. 6b is the same < DD sectional view, FIG. 7 is a view taken along the line E-E in FIG. 4, FIG. 8 is a view taken along the same <F-F arrow, and FIG. Figures 11a to 11c and 10b are explanatory diagrams showing the behavior characteristics of the trailing flow of the blade row, which is the principle of the present invention, and Figures 11a to 11c and 1
2a to 12d are explanatory diagrams showing the reason for the reduction of unsteady loss according to the present invention. 11...Diaphragm, 11a...Outer ring, 11b...Inner ring, 12...Stator blade,
12a... Stator blade inlet, 12b... Stator blade outlet, 13... Moving blade, 13a... Moving blade inlet, 13b... Moving blade outlet, 14...
Rotor disk, 15...- Vehicle interior, 17...
...Flow path groove, 17a...Straight groove part, 17b...
...Curved groove.

Claims (1)

【特許請求の範囲】[Claims] 1 軸流回転機械の静翼および動翼から構成されるター
ビン段落構造において、ダイヤフラム壁面に、作動流体
の流入端から流出端に亘って各静翼毎に該静翼を内側に
収めうるような流路溝を設け、該流路溝は、静翼入口部
までは一定の幅を有する直線溝部に、かつ静翼入口部か
ら溝終端までは静翼の外郭に沿った曲線溝部に夫々形成
されると共に、前記直線溝部は一定の溝深さに、かつ前
記曲線溝部は静翼出口部から溝終端までの溝深さが溝終
端に向うに従い漸減するように夫々形成されて、静翼出
口から動翼入口に至る流路面積を、作動流体の流れ方向
に漸減するようにしたことを特徴とするタービン段落構
造。
1. In a turbine stage structure consisting of stator blades and rotor blades of an axial flow rotating machine, a diaphragm wall is provided with a structure that allows each stator blade to be housed inside the diaphragm wall from the inflow end to the outflow end of the working fluid. A flow path groove is provided, and the flow path groove is formed as a straight groove portion having a constant width up to the stator blade inlet portion, and as a curved groove portion along the outer contour of the stator blade from the stator blade inlet portion to the groove end. At the same time, the straight groove portion is formed to have a constant groove depth, and the curved groove portion is formed such that the groove depth from the stator blade outlet to the groove end gradually decreases as it goes toward the groove end. A turbine stage structure characterized in that the flow path area leading to the rotor blade inlet gradually decreases in the flow direction of the working fluid.
JP14234778A 1978-11-20 1978-11-20 Turbine paragraph structure Expired JPS5851121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14234778A JPS5851121B2 (en) 1978-11-20 1978-11-20 Turbine paragraph structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14234778A JPS5851121B2 (en) 1978-11-20 1978-11-20 Turbine paragraph structure

Publications (2)

Publication Number Publication Date
JPS5569703A JPS5569703A (en) 1980-05-26
JPS5851121B2 true JPS5851121B2 (en) 1983-11-15

Family

ID=15313244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14234778A Expired JPS5851121B2 (en) 1978-11-20 1978-11-20 Turbine paragraph structure

Country Status (1)

Country Link
JP (1) JPS5851121B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322668Y2 (en) * 1985-11-01 1991-05-17

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4913326B2 (en) * 2004-01-05 2012-04-11 株式会社Ihi Seal structure and turbine nozzle
JP5842382B2 (en) * 2011-05-13 2016-01-13 株式会社Ihi Gas turbine engine
CN105804802A (en) * 2016-05-18 2016-07-27 哈尔滨汽轮机厂有限责任公司 350 MW supercritical double-cylinder and double-exhaust steam turbine
FR3085055B1 (en) 2018-08-20 2020-12-04 Safran Aircraft Engines CANALIZATION FACE UPSTREAM OF DAWN
JP7130575B2 (en) * 2019-02-28 2022-09-05 三菱重工業株式会社 axial turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322668Y2 (en) * 1985-11-01 1991-05-17

Also Published As

Publication number Publication date
JPS5569703A (en) 1980-05-26

Similar Documents

Publication Publication Date Title
CA2405810C (en) Gas turbine engine
US2920864A (en) Secondary flow reducer
US4643645A (en) Stage for a steam turbine
US20100146988A1 (en) Gas turbine system
RU2670650C9 (en) Turbine blade
JP6518526B2 (en) Axial flow turbine
JPS5851121B2 (en) Turbine paragraph structure
US10655471B2 (en) Turbine and gas turbine
JPH03189304A (en) Stationary blade for axial-flow fluid machinery
JP2837207B2 (en) Guide vanes for axial fans
JP2007056824A (en) Stationary blade and moving blade for axial flow turbine, and axial flow turbine provided with same
JPS62170707A (en) Static blade for axial flow fluid machine
WO2002036965A1 (en) Axial flow turbo compressor
JPH07332007A (en) Turbine stationary blade
JP3927887B2 (en) Stator blade of axial compressor
JP3402176B2 (en) Blades for turbomachinery
JPH01318790A (en) Flashing vane of multistage pump
JPS62174507A (en) Exhaust diffuser for axial flow turbo machine
JP2004263602A (en) Nozzle blade, moving blade, and turbine stage of axial-flow turbine
JPH11173104A (en) Turbine rotor blade
CN110778532A (en) Air gap fin for turbine engine compressor
JP2004084539A (en) Turbine
JPH06146922A (en) Casing of air compressor
JP2000179303A (en) Axial-flow turbine nozzle and axial-flow turbine
JPS6350607A (en) Device for labyrinth sealing