JPS5851043B2 - Multilayer core sheath fiber spinning method and device - Google Patents

Multilayer core sheath fiber spinning method and device

Info

Publication number
JPS5851043B2
JPS5851043B2 JP51012520A JP1252076A JPS5851043B2 JP S5851043 B2 JPS5851043 B2 JP S5851043B2 JP 51012520 A JP51012520 A JP 51012520A JP 1252076 A JP1252076 A JP 1252076A JP S5851043 B2 JPS5851043 B2 JP S5851043B2
Authority
JP
Japan
Prior art keywords
polymer
plate
groove
concentric
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51012520A
Other languages
Japanese (ja)
Other versions
JPS5296219A (en
Inventor
正博 貝原
昭二 黒崎
正司 浅野
博志 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP51012520A priority Critical patent/JPS5851043B2/en
Publication of JPS5296219A publication Critical patent/JPS5296219A/en
Publication of JPS5851043B2 publication Critical patent/JPS5851043B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【発明の詳細な説明】 本発明は2種以上のポリマーを2層以上の多層に芯さや
状に紡糸し、多層芯さや繊維を製造する方法及び装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for producing multilayer core-sheath fibers by spinning two or more types of polymers into two or more multilayer core-sheath shapes.

合成繊維の各種物性の改質を目的として、2成分以上の
ポリマーを多層芯さや状に紡糸することは、従来からよ
く知られている(例えば、特公昭43−14185)。
It has been well known to spin two or more component polymers into a multilayer core-sheath shape for the purpose of modifying various physical properties of synthetic fibers (for example, Japanese Patent Publication No. 14185/1985).

一般に、多層芯さや繊維は、特殊真珠様の光沢を発揮す
る、または三角断面糸では得られない様な絹様の光沢を
備えた繊維、染色性の高い紡糸成分は物理的性質が劣る
ので、多層中の一層に染色性の高い成分を入れ、染色効
果を与えるとともに、その他の層に繊維物性、ヤング率
、曲げ特性、ねじり特性等のすぐれた成分を入れること
により、染色性の良好な、物理的性質が従来のものと同
じ繊維、また一般に難燃性の紡糸成分は、物理的性質が
劣るが、最外層に難熱性のすぐれた成分を入れ、内部に
物理的性質のすぐれた成分を入れることにより、物理的
性質が従来のものに劣らない難熱性繊維等として使用さ
れる。
In general, multilayer core fibers exhibit a special pearl-like luster, or fibers with a silk-like luster that cannot be obtained with triangular cross-section yarn, and spinning components with high dyeability have poor physical properties. By adding ingredients with high dyeability to one layer of the multilayer to give it a dyeing effect, and adding ingredients with excellent fiber properties, Young's modulus, bending properties, torsion properties, etc. to the other layers, we can create products with good dyeability. Fibers with the same physical properties as conventional fibers, and flame-retardant spinning components in general, have inferior physical properties, but a component with excellent heat retardancy is placed in the outermost layer, and a component with excellent physical properties is placed inside. By adding it, it can be used as a heat-retardant fiber whose physical properties are comparable to those of conventional fibers.

本発明は多層芯さや繊維の新規な製造方法及び多層芯さ
や構造が効率よく得られ、しかもその構造が簡単で、機
械加工が容易な、耐久性のすぐれた、紡糸装置に関する
ものである。
The present invention relates to a novel method for producing multilayer core-sheath fibers and a spinning device that can efficiently obtain a multilayer core-sheath structure, has a simple structure, is easy to machine, and has excellent durability.

すなわち、本発明は2種以上の多成分ポリマー流を各成
分ポリマーの溝状の流入口に導入してスリット状に引き
のばし、次に該引きのばされたポリマー流を同心内層状
溝に、異種ポリマーが交互にとりかこまれる状態に分配
し、該同心内層状ポリマー流を一体に集合し紡糸する多
層芯さや繊維の紡糸方法である。
That is, the present invention introduces two or more types of multicomponent polymer streams into groove-like inlets of each component polymer, stretches them into a slit shape, and then flows the stretched polymer streams into concentric inner layered grooves. This is a multilayer core-sheath fiber spinning method in which different types of polymers are distributed in a state in which they are alternately surrounded, and the concentric inner layered polymer streams are collected and spun into a single body.

次に本発明の紡糸装置の1例と、そのポリマーの流れ、
つまり多層芯さや構造の形成機構を図面によって説明す
る。
Next, an example of the spinning device of the present invention, the flow of the polymer,
In other words, the formation mechanism of the multilayer core-sheath structure will be explained with reference to the drawings.

第1図は本発明にいうA板を、ポリマー流入口側から見
た平面図であり、第2図は第1図のAA′線で切断した
ときの断面図である。
FIG. 1 is a plan view of plate A according to the present invention, viewed from the polymer inlet side, and FIG. 2 is a sectional view taken along line AA' in FIG. 1.

1,2はA板上面に互に平行に穿設された溝状ポリマー
流入口であり、al・・・a、、 CI・・・cnl
cl・・・colbl・・・bnl dl・・・dnl
d′1・・・d′oはそれぞれ溝状ポリマー流入口1
,2の底部に設けられたポリマー導液用の連通孔であり
、目的とする多層芯さや繊維の層数、ポリマーの数及び
単位多層形成部の数等により、ポリマー流入口の数、連
通孔の数は適宜かえる必要がある。
1 and 2 are groove-shaped polymer inlets drilled parallel to each other on the upper surface of plate A, al...a, CI...cnl
cl...colbl...bnl dl...dnl
d'1...d'o are groove-shaped polymer inlets 1, respectively.
, 2 is a communication hole for polymer liquid introduction provided at the bottom of 2. The number of polymer inlets and the communication hole may vary depending on the number of layers of the desired multilayer core sheath fiber, the number of polymers, the number of unit multilayer formation parts, etc. It is necessary to change the number accordingly.

本図では、1例として2種類のポリマーを4層繊維に、
単位多層形成部は12コ(n = 12 )の場合を示
している。
In this figure, as an example, two types of polymers are made into a four-layer fiber,
The case where the number of unit multilayer forming parts is 12 (n = 12) is shown.

第3図はB板をポリマー流入側からみた平面図であり、
第4図は第3図のB−B’線で切断したときの断面図で
ある。
Figure 3 is a plan view of plate B seen from the polymer inflow side.
FIG. 4 is a sectional view taken along line BB' in FIG. 3.

A12、・・・、 An; Blt・・・。B −C
・・・、C、D ・・・、Dnは、円環溝状n+
1’ n+ 1’のポリマー流入口
であり、それぞれA板の連通孔AnからB板の同心円形
溝状ポリマーが導液される様加工し、ノックピン3にて
A板、B板を位置決めし、固定する。
A12,..., An; Blt... B-C
..., C, D ..., Dn is an annular groove n+
1' n + 1' polymer inlet, processed so that the concentric circular groove-shaped polymer of plate B is introduced from the communicating hole An of plate A, and plate A and plate B are positioned with dowel pins 3, Fix it.

A板の連通孔とB板の溝状ポリマ・一流入口との関係は
設計により種々変更しうるものである。
The relationship between the communication hole in plate A and the groove-shaped polymer/first-flow inlet in plate B can be changed in various ways depending on the design.

B板にある単位多層形成部とは、第3図に示す小さい同
心円形溝の各集合体を意味し一単位多層形成部にある溝
の数に応じて異種ポリマーの多層芯さや構造が得られる
The unit multilayer forming part on board B means each collection of small concentric circular grooves shown in Figure 3, and a multilayer core-sheath structure of different polymers can be obtained depending on the number of grooves in one unit multilayer forming part. .

従って上述したようにA板下面に開口する連通孔は、B
板の各単位多層形成部の各円形溝に異種ポリマーが流入
するように穿設しなければならない。
Therefore, as mentioned above, the communication hole opening on the lower surface of plate A is
Each circular groove in each unit multilayer forming part of the plate must be bored so that different polymers can flow therein.

第3図に示す単位多層形成部は、中心の円孔を含め4つ
の溝状ポリマー流入口A1.B1.C1,Dlを有する
The unit multilayer forming part shown in FIG. 3 has four groove-shaped polymer inlets A1, including a central circular hole. B1. It has C1 and Dl.

第3図では該単位多層形成部が計12ケ穿設されている
In FIG. 3, a total of 12 unit multilayer forming portions are drilled.

B板には上面と下面に対応してほぼ同構造の溝があり、
上面の溝A1. B1. C1,Dlはポリマー流入口
、下面ノ溝A′1.B′1.C1,v1ハホリマー流出
口となる。
Plate B has grooves with almost the same structure on the top and bottom surfaces,
Groove A1 on the top surface. B1. C1, Dl are polymer inflow ports, bottom groove A'1. B'1. C1, v1 serves as the holimer outlet.

これら上面と下面の対応する溝は、第4図に示すように
その底部にある多数の細孔α、β、γ、δにより連結さ
れ、上面の溝から下面の、溝へ流下する間に、各ポリマ
ー流は円形状に引きのばされ、多層芯さや構造を形成す
る。
These corresponding grooves on the upper and lower surfaces are connected by a number of pores α, β, γ, and δ at the bottom, as shown in FIG. Each polymer stream is stretched into a circular shape, forming a multilayer core-sheath structure.

多層繊維の層の厚さは、A板へのポリマーの流入口1,
2へポリマーを導入する際、ギヤーポンプで流量比を規
制すること、及びB板の連通孔、α、β、γ、δの大き
さ、数、流出口A’、B’、C’。
The thickness of the layer of multilayer fiber is the inlet of polymer to A plate 1,
When introducing the polymer into 2, regulate the flow rate ratio with a gear pump, and the size and number of communication holes α, β, γ, and δ in plate B, and the outlet ports A', B', and C'.

びの溝深さ、溝巾を適宜選定することにより決定する。This is determined by appropriately selecting the groove depth and groove width.

第5図は、C板をポリマー流入側から見た平面図であり
、第6図は、第5図のC−C線で切断したときの断面図
である。
FIG. 5 is a plan view of the C plate viewed from the polymer inflow side, and FIG. 6 is a sectional view taken along the line CC in FIG. 5.

C板の上面にはB板の単位多層形成部に対応するポリマ
ー流入口P1.P2゜・・・P1□が穿設される。
The upper surface of the C plate has a polymer inlet port P1 corresponding to the unit multilayer forming part of the B plate. P2°...P1□ are drilled.

該ポリマー流入口はB板の単位多層形成部のポリマー流
出口と同程度以上の大きさで、B板より流出する多層芯
さや構造のポリマー流を受は入れ、ポリマー流入口P7
. P2・・・PI3の各底部にあるポリマー吐出口N
1. N2 、・・・N1□より押出される。
The polymer inlet is of the same size or larger than the polymer outlet of the unit multilayer formation part of the B plate, receives the polymer flow of the multilayer core-sheath structure flowing out from the B plate, and is connected to the polymer inlet P7.
.. Polymer discharge port N at the bottom of each P2...PI3
1. N2, . . . are extruded from N1□.

C板の1つのポリマー流入口はB板の単位多層形成部1
個より流出するポリマー流を受は入れるだけでなく、複
数個の単位多層形成部からのポリマー流を集合させて受
は入れ紡糸することにより、多層複合繊維の結合したも
のも製造可能である。
One polymer inlet of the C plate is connected to the unit multilayer forming part 1 of the B plate.
In addition to receiving the polymer flow flowing out from each unit, it is also possible to produce combined multilayer composite fibers by collecting the polymer flows from a plurality of unit multilayer forming parts and spinning them into the receiver.

B板とC板は第4.5.6図に示すノックピン5個で位
置決めできる。
Board B and board C can be positioned using the five dowel pins shown in Figure 4.5.6.

上記C板はそのままポリマーを押出す紡糸口金として使
用してもよいし、C板の下に、さらに別の紡糸口金板を
設けてもよい。
The above C plate may be used as it is as a spinneret for extruding the polymer, or another spinneret plate may be provided below the C plate.

以上、円形の構造について説明したが、本発明の装置は
矩形の構造でも同様に使用可能である。
Although a circular structure has been described above, the device of the present invention can be used with a rectangular structure as well.

第7図は矩形A板のポリマー流入口よりみた平面図、第
8図はD−D’線で切断したときの断面図である。
FIG. 7 is a plan view of the rectangular plate A seen from the polymer inlet, and FIG. 8 is a sectional view taken along line DD'.

以下、矩形B板、矩形C板、も原理的には前述のB板、
C板と同様で直線的に配置すればよく説明は省略する。
Hereinafter, the rectangular B plate and rectangular C plate are also basically the above-mentioned B plate,
It is similar to the C plate, and the explanation will be omitted as long as it is arranged linearly.

次に本発明の多層芯さや繊維の紡糸装置中のポリマーの
流れをX、Y二成分のポリマーを4層繊維に形成する場
合について説明する。
Next, the flow of the polymer in the multilayer core-sheath fiber spinning apparatus of the present invention will be described with respect to the case where a four-layer fiber is formed from two-component polymers of X and Y.

各々ギヤポンプで計量されたX成分Y成分の2つのポリ
マー流は、A板の溝状流入口へ夫々の成分が別々に導入
され、スリット状に引きのばされ溝状流入口の底面にあ
る複数の連通孔を通ってA板下面より流出する。
The two polymer streams, the X component and the Y component, each metered by a gear pump, are introduced separately into the groove-shaped inlet of the A plate, and are stretched out into a slit to form a plurality of polymer flows at the bottom of the groove-shaped inlet. It flows out from the bottom surface of plate A through the communicating hole.

A板下面の連通孔を流出したポリマー流は、B板にある
単位多層形成部の同心円状溝の夫々に別種のポリマーが
交互に流下するように分配される。
The polymer flow flowing out of the communication holes on the lower surface of plate A is distributed so that different types of polymers alternately flow down to each of the concentric grooves of the unit multilayer forming portion on plate B.

かかる分配は上記した装置におけるA板の連通孔とB板
の単位多層形成部の同心円状溝の位置を決めて穿設する
ことにより実施できる。
Such distribution can be carried out by determining the positions of the communicating holes in plate A and the concentric grooves in the unit multilayer forming part of plate B in the above-described apparatus and drilling them.

B板の単位多層形成部の同心円状溝に導入されたポリマ
ー流は、円環スリット状にひきのばされ、多数の細孔を
通って下面の溝に流下し、異種ポリマーが交互にとりか
こまれた多層芯さや構造のポリマー流を形成する。
The polymer flow introduced into the concentric grooves of the unit multilayer forming part of plate B is stretched out in the shape of an annular slit, passes through many pores, and flows into the grooves on the lower surface, where different types of polymers are alternately surrounded. forming a polymer flow with a multilayer core-sheath structure.

該多層芯さや構造ポリマー流は単位多層形成部の数だけ
形成され、本発明ではA板の大きなスリット状ポリマー
流から複数の多層芯さや構造のポリマー流が容易に得ら
れるという特徴を有する。
The multilayer core-sheath structure polymer flow is formed in the same number as the unit multilayer formation parts, and the present invention has a feature that a plurality of multilayer core-sheath structure polymer flows can be easily obtained from the large slit-shaped polymer flow of the A plate.

B板で形成された多層芯さや構造のポリマー流はC板の
ポリマー流入口へ流下し、さらに該ポリマー流入口の中
心部に穿設されるポリマー吐出口より押出され、多層芯
さや繊維として紡糸される。
The polymer flow with the multilayer core-sheath structure formed by the B plate flows down to the polymer inlet of the C plate, and is further extruded from the polymer discharge port drilled in the center of the polymer inlet, and is spun into a multilayer core-sheath fiber. be done.

以上の説明より明らかな様に、本発明方法及び装置を用
いれば、完全な多層芯さや繊維を容易に製造でき、しか
も本装置は構造が簡単で加工が容易であり、強度的に強
く、すぐれた装置である。
As is clear from the above description, by using the method and apparatus of the present invention, complete multilayer cores and fibers can be easily produced, and the apparatus has a simple structure, is easy to process, is strong, and has excellent properties. It is a device that has

本発明の装置は2成分のポリマー系に限ったものではな
く、3成分以上の場合においても2成分の場合と同様に
実施できるものである。
The apparatus of the present invention is not limited to a two-component polymer system, and can be implemented in the case of three or more components in the same way as in the case of two components.

また、本発明の装置において紡糸に供されるポリマーの
組み合わせとしては、公知なあらゆる紡糸可能なポリマ
ーが用いられるが、中間にはさまれる成分は、必ずしも
繊維形成能をもっていなくてもよい。
Further, as a combination of polymers to be subjected to spinning in the apparatus of the present invention, any known spinnable polymers can be used, but the component sandwiched in between does not necessarily have to have fiber-forming ability.

金属、油剤、着色剤、蛍光剤、薬剤、香料又はそれらの
物質を含む組成物で、流動性があればよい。
The composition may be a metal, an oil, a coloring agent, a fluorescent agent, a drug, a fragrance, or a composition containing these substances, as long as it has fluidity.

次に本発明の実施例を示してより具体的に説明するが、
本発明はこれら記載例に限定されるものではない。
Next, the present invention will be explained in more detail by showing examples.
The present invention is not limited to these described examples.

とくに紡糸方法は、溶融紡糸に限らず、乾式紡糸、湿式
紡糸にも本発明の方法及び装置は十分に適用できるもの
である。
In particular, the spinning method is not limited to melt spinning, but the method and apparatus of the present invention are fully applicable to dry spinning and wet spinning.

実施例 1 固有粘度〔η) (g/dl) = 0.6 gのポリ
エチレンテレフタレートと相対粘度2.7の6ナイロン
との二成分ポリマーで本発明の図1から図6に示すよう
な多層芯さや繊維紡糸装置を用いて紡糸を行なった。
Example 1 A multilayer core of the present invention as shown in FIGS. 1 to 6 with a two-component polymer of polyethylene terephthalate with an intrinsic viscosity [η) (g/dl) = 0.6 g and nylon 6 with a relative viscosity of 2.7. Spinning was performed using a sheath fiber spinning device.

ポリマーは各々ギアポンプで等量づ\計量して、A板の
同心円形溝状ポリマー流入口1へ6ナイロンを、2ヘポ
リエチレンテレフタレートをそれぞれ供給した。
Equal amounts of each polymer were measured using a gear pump, and 6 nylon and 2 polyethylene terephthalate were respectively supplied to the concentric circular groove polymer inlet 1 of the A plate.

紡糸は口金温度2800C,吐出量24 g/M口金孔
数12、口金口径0.4 mL捲取速度720m 7M
で行った。
For spinning, the spindle temperature is 2800C, the discharge rate is 24 g/M, the number of spindle holes is 12, the spindle diameter is 0.4 mL, the winding speed is 720 m, 7M.
I went there.

冷却はノズル下2〜30cIrLの間を風速0.3〜0
.8m/Mで紡出糸条にクロスカレントでふきつけるよ
うにした。
Cooling is done with a wind speed of 0.3 to 0 between 2 and 30 cIrL below the nozzle.
.. A cross current was applied to the spun yarn at 8 m/M.

延伸はローラープレート方式でローラ一温度75℃、プ
レート温度=135℃、延伸倍率=4.0、延伸速度=
1000m/Mで行った。
Stretching was carried out using a roller plate method: roller temperature 75°C, plate temperature = 135°C, stretching ratio = 4.0, stretching speed =
The speed was 1000m/M.

紡糸は4日間連続して実施した。Spinning was carried out continuously for 4 days.

その間吐出ポリマーは口金表面でニーリングすることも
なく、断糸も全く発生せず極めて良好であった。
During this time, the discharged polymer did not kneel on the surface of the nozzle, and no yarn breakage occurred at all, resulting in extremely good results.

えられた繊維は75 dr/ 12 filの繊度を有
しており、繊維断面を光学顕微鏡観察したところそれは
外層よりポリエチレンテレフタレート、6ナイロン、ポ
リエチレンテレフタレート、6ナイロンの4層からなり
、その層の厚さは非常に均一な多層芯さや構造となって
いた。
The obtained fiber has a fineness of 75 dr/12 fil, and when the cross section of the fiber was observed under an optical microscope, it was found that the outer layer consists of four layers: polyethylene terephthalate, nylon 6, polyethylene terephthalate, and nylon 6. It had a very uniform multilayer core-sheath structure.

紡糸開始から紡糸の終了する第4日日まで6時間毎に巻
取った試料について光学顕微鏡観察によりその断面状態
の観察を行なったがその間はとんど変化がなく、全く安
定した同心円状多層芯さや構造であった。
The cross-sectional state of the sample, which was wound every 6 hours from the start of spinning until the end of spinning on the fourth day, was observed using an optical microscope, and there was almost no change during that time, indicating that the concentric multilayer core was completely stable. It had a sheath structure.

又延伸糸についてもその断面状態を光学顕微鏡観察した
がその断面形状及び多層芯さや構造は紡糸と全く変ると
ころがなかった。
The cross-sectional state of the drawn yarn was also observed under an optical microscope, and the cross-sectional shape and multilayer core-sheath structure were completely the same as those of the spun yarn.

延伸糸の均斉度はウースターのイーブンネステスターの
ノーマルテストにより測定したが、0.5〜0.6 %
範囲になって通常のポリエステル単一成分からなるフィ
ラメントと何らそん色ない程度に良好であった。
The uniformity of the drawn yarn was measured by a normal test using a Worcester evenness tester, and was 0.5 to 0.6%.
Within this range, the properties were comparable to those of ordinary filaments made of a single polyester component.

実施例 2 実施例1で用いたと同一の二成分ポリマーと本発明の第
1図〜第6図のような多層芯さや繊維紡糸装置を用いて
紡糸を行なった。
Example 2 Spinning was carried out using the same two-component polymer used in Example 1 and a multilayer core-sheath fiber spinning apparatus as shown in FIGS. 1 to 6 of the present invention.

ポリーマは各々ギアポンプで等量づ\計量して、A板の
同心円形溝状ポリマー流入口1ヘポリエチレンテレフタ
レートを、又2へ6ナイロンを供給した。
Polyethylene terephthalate was supplied to the concentric circular groove polymer inlet 1 of the A plate, and 6-nylon was supplied to the concentric circular groove polymer inlet 2 of the A plate, each of which was weighed in equal amounts using a gear pump.

紡糸、冷却、延伸は実施例1と同一条件で行なった。Spinning, cooling, and stretching were performed under the same conditions as in Example 1.

この場合も紡糸調子は実施例1のときと同様良好であっ
た。
In this case as well, the spinning condition was good as in Example 1.

えられた繊維は75 dl/ 12 filの繊度を有
しており繊維断面を光学顕微鏡観察したところ、外層か
ら6ナイロン、ポリエチレンテレフタレート、6ナイロ
ン、ポリエチレンテレフタレートの4層からなる同心円
状多層芯さや構造でしかもその層の厚さの非常に均一な
ものであった。
The obtained fiber has a fineness of 75 dl/12 fil, and when the fiber cross section was observed under an optical microscope, it had a concentric multilayer core-sheath structure consisting of four layers from the outer layer: nylon 6, polyethylene terephthalate, nylon 6, and polyethylene terephthalate. Moreover, the thickness of the layer was very uniform.

紡糸期間中、断面構造はほとんど変化することなく安定
していた。
During the spinning period, the cross-sectional structure remained stable with almost no change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いるA板の1例の平面図であり、第
2図はそのA−A’線での断面図である。 第3図はB板の1例の平面図であり第4図はそのB−B
’線での断面図である。 第5図はC板の1例の平面図であり、第6図はそのc−
c’線での断面図である。 第7図は他のA板の平面図で矩形型の構造であり、第8
図はそのD−D’線での断面図である。 1.2;溝状ポリマー流入口、al y b、v C1
pC’1 ””” :連通孔、A1 t Bl t C
1t Dl ””” を同心円状溝、A’l + B’
l t C’l p D’1・・・・・・;同心円状溝
、α、β、γ、δ;細孔、Pl、P2・・・・・・;ポ
リマー流入口、N1. N2・・・・・・;ポリマー吐
出口。
FIG. 1 is a plan view of an example of plate A used in the present invention, and FIG. 2 is a sectional view taken along line AA'. Figure 3 is a plan view of an example of the B board, and Figure 4 is the B-B
It is a sectional view taken along the line '. FIG. 5 is a plan view of an example of a C plate, and FIG. 6 is a plan view of an example of a C plate.
It is a cross-sectional view taken along c' line. Figure 7 is a plan view of another plate A, which has a rectangular structure.
The figure is a sectional view taken along line DD'. 1.2; Grooved polymer inlet, al y b, v C1
pC'1 """: Communication hole, A1 t Bl t C
1t Dl """ is a concentric groove, A'l + B'
l t C'l p D'1...; Concentric grooves, α, β, γ, δ; Pores, Pl, P2...; Polymer inlet, N1. N2...;Polymer discharge port.

Claims (1)

【特許請求の範囲】 12種以上の多成分ポリマー流を各成分ポリマーの溝状
流入口に導入してスリット状に引きのばし、次に該引き
のばされたポリマー流を、同心内層状溝に異種ポリマー
が交互にとりかこまれる状態に分配し、該同心内層状ポ
リマー流を一体に集合し、紡糸することを特徴とする同
心円状多層芯さや繊維の紡糸方法。 2(1)上面に2以上の溝状ポリマー流入口が相互に平
行に穿設され、かつ該溝状ポリマー流入口を下面に連通
ずる複数の連通孔を有するA板、(2)上面と下面に対
応する同心円状溝を有し、該上面と下面の溝は多数の細
孔により連結されており、かつ該上面の同心円状溝のそ
れぞれはA板下面の異種ポリマーを流出する連通孔と連
絡してなり、前記多数の細孔によって導かれたポリマー
流は、細孔と連結する下面の同心円状溝の溝方向に円形
状に引きのばされて溝全体がポリマー流によって満たさ
れる構造の単位多層形成部を2以上有するB板、及び(
3)上面に該B板の単位多層形成部に対応するポリマー
流入口の中心部に下面に連通ずるポリマー吐出口を有す
るC板より形成されることを特徴とする同心円状多層芯
さや繊維の製造装置。
[Claims] A multi-component polymer stream of 12 or more types is introduced into a groove-like inlet of each component polymer and stretched into a slit shape, and then the stretched polymer stream is introduced into a concentric inner layered groove. A method for spinning concentric multilayer core-sheath fibers, which comprises distributing different types of polymers so that they are alternately surrounded, and collecting the concentric inner layered polymer streams together and spinning them. 2 (1) A plate having two or more groove-shaped polymer inlets bored in parallel to each other on the upper surface and a plurality of communication holes communicating the groove-shaped polymer inlets to the lower surface; (2) upper and lower surfaces; The grooves on the upper surface and the lower surface are connected by a number of pores, and each of the concentric grooves on the upper surface communicates with a communicating hole through which a different type of polymer flows out on the lower surface of plate A. The polymer flow guided by the large number of pores is stretched circularly in the direction of the concentric grooves on the lower surface connected to the pores, so that the entire groove is filled with the polymer flow. B board having two or more multilayer forming parts, and (
3) Production of a concentric multilayer core-sheath fiber characterized by being formed from a C plate having a polymer discharge port communicating with the lower surface at the center of the polymer inlet corresponding to the unit multilayer forming portion of the B plate on the upper surface. Device.
JP51012520A 1976-02-05 1976-02-05 Multilayer core sheath fiber spinning method and device Expired JPS5851043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51012520A JPS5851043B2 (en) 1976-02-05 1976-02-05 Multilayer core sheath fiber spinning method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51012520A JPS5851043B2 (en) 1976-02-05 1976-02-05 Multilayer core sheath fiber spinning method and device

Publications (2)

Publication Number Publication Date
JPS5296219A JPS5296219A (en) 1977-08-12
JPS5851043B2 true JPS5851043B2 (en) 1983-11-14

Family

ID=11807609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51012520A Expired JPS5851043B2 (en) 1976-02-05 1976-02-05 Multilayer core sheath fiber spinning method and device

Country Status (1)

Country Link
JP (1) JPS5851043B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044461B2 (en) * 1983-09-12 1992-01-28

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853018A (en) * 1971-11-05 1973-07-25
JPS5071909A (en) * 1973-11-02 1975-06-14

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5227924Y2 (en) * 1972-09-11 1977-06-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4853018A (en) * 1971-11-05 1973-07-25
JPS5071909A (en) * 1973-11-02 1975-06-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044461B2 (en) * 1983-09-12 1992-01-28

Also Published As

Publication number Publication date
JPS5296219A (en) 1977-08-12

Similar Documents

Publication Publication Date Title
US3531368A (en) Synthetic filaments and the like
US2936482A (en) Spinneret assembly
US3760052A (en) Manufacture of conjugated sheath-core type composite fibers
US3963406A (en) Spinneret assembly for multifilament yarns
JPS5838524B2 (en) Seizouhouhou
US3387327A (en) Filament spinning apparatus
JPS6115163B2 (en)
US3546328A (en) Methods for the production of heterofilaments
JPH0633310A (en) Equipment and method for spinning multi-colored filament from single spinneret and blended filament spun thereby
KR100412246B1 (en) Non-crimping polyester monofilament and process for producing same
JPS6197417A (en) Production of aromatic polyamide
US4019844A (en) Apparatus for producing multiple layers conjugate fibers
EP0104081B1 (en) Spinneret assembly for multi-ingredient composite fibers
US3289249A (en) Spinnerets
JPS5851043B2 (en) Multilayer core sheath fiber spinning method and device
JP3970440B2 (en) Sea-island structure fiber and manufacturing method thereof
US3781399A (en) Method for producing a composite fiber
KR101429701B1 (en) Method and Apparatus for Manufacturing Conjugated Fiber, and Conjugated Fiber Manufactured thereby
US3413683A (en) Annular bi-component spinerette assembly
JPS6115164B2 (en)
KR940002374B1 (en) Spinning pack for double sheath-core type composite fiber made of three components
US3350741A (en) Spinneret device for spinning side-by-side type of composite fibers
DE10252414B4 (en) Non-round spin plate hole
CN115247282B (en) DIO spinning device
JPS6042283B2 (en) Mixed spinning equipment