JPS5850963A - Serum separating apparatus - Google Patents

Serum separating apparatus

Info

Publication number
JPS5850963A
JPS5850963A JP56147783A JP14778381A JPS5850963A JP S5850963 A JPS5850963 A JP S5850963A JP 56147783 A JP56147783 A JP 56147783A JP 14778381 A JP14778381 A JP 14778381A JP S5850963 A JPS5850963 A JP S5850963A
Authority
JP
Japan
Prior art keywords
plasma
flow path
blood
membrane
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56147783A
Other languages
Japanese (ja)
Other versions
JPH0323181B2 (en
Inventor
正春 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP56147783A priority Critical patent/JPS5850963A/en
Publication of JPS5850963A publication Critical patent/JPS5850963A/en
Publication of JPH0323181B2 publication Critical patent/JPH0323181B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 1、発明の背景 技術分野 本発明は、血液を濾過膜に通して血漿を分離する血漿分
離装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1. Background of the Invention Technical Field The present invention relates to a plasma separation device that separates plasma by passing blood through a filtration membrane.

先行技術 従来、細孔径0.1・〜1.θミクロン程度を有する微
細多孔膜を用い血液を連続的にP1分離するための濾過
型匝漿分離装置としては、中空糸型と平膜型とがあ−る
。中空糸型は、濾過面板を大きく採ることができ、必要
な部材も少なくてすみ、かつ操作が簡単であるため広く
使用されている。しかしながら、中空糸型では、製膜時
に平膜に比べ管長方向に張力が加わるためと、製膜時に
支持体がないために細孔形状がやや楕円になる。また、
製膜時に張力を均一に保つことが難しいため、細孔径を
均一に揃えることが困難である。このため、得られる中
空糸膜の細孔分布が広範囲となるだけでなく1製膜ロフ
トによりばらつきが平膜に比べかなり大きくなる。この
ような事実から、濾過する際に血漿中への血球の漏洩防
止のために最大孔径を小ぎめに選定せねばならず、高分
子血漿成分の透過能が低くなってしま、う。また、構造
上流路長を短くすると、中空糸膜の両端部をポツティン
グ剤で覆う為に、有効展面権の損失が大きくなるととも
に漏洩の可能性および生産性が悪くなる。
Prior Art Conventionally, the pore diameter is 0.1-1. There are two types of filtration-type slender separators for continuous P1 separation of blood using a microporous membrane having a diameter of about θ microns: a hollow fiber type and a flat membrane type. The hollow fiber type is widely used because it allows for a large filtration face plate, requires fewer members, and is easy to operate. However, in the hollow fiber type, the pore shape becomes slightly oval due to the fact that tension is applied in the longitudinal direction of the tube compared to a flat membrane during membrane formation, and because there is no support during membrane formation. Also,
Since it is difficult to maintain uniform tension during film formation, it is difficult to make the pore diameters uniform. For this reason, not only does the pore distribution of the obtained hollow fiber membrane become wide-ranging, but also the variation in loft of one membrane is considerably larger than that of a flat membrane. Due to this fact, during filtration, the maximum pore diameter must be selected rather small in order to prevent blood cells from leaking into the plasma, resulting in a low permeability for high-molecular plasma components. Further, when the length of the upstream path of the structure is shortened, both ends of the hollow fiber membrane are covered with a potting agent, which increases the loss of effective surface right, and also reduces the possibility of leakage and productivity.

このため、管長(流路長)を長くせざるを得す、圧力損
失が大きくなり、また製膜技術上、管径を細くできない
ため膜単位面権当り濾過効率が低下する。このため、膜
厚を薄くシ、膜単位面積当りの濾過量向上および高分+
V質の透過率向上を目指すのが良好な一つの方法ではあ
るが、強度の低下により漏洩発生の危険が増加する一方
、膜の孔径のばらつきがより大きくなってしまう。
For this reason, the length of the tube (flow path length) must be increased, resulting in a large pressure loss, and because the tube diameter cannot be reduced due to membrane manufacturing technology, the filtration efficiency per membrane unit surface area decreases. For this reason, the membrane thickness can be reduced, the filtration rate per unit area of the membrane can be increased, and the
One good method is to aim at improving the transmittance of V-quality, but this reduces the strength and increases the risk of leakage, while also increasing the variation in pore size of the membrane.

一方、平膜釉層型は、膜の選択がより広範でかつ性能的
に安定しているため、小型で高性能のものが期待される
にもかかわらず、濾過工学的なメカニズムの解析が充分
行なわ・れなかったこと、および計算だけでは解決でき
ない血液学的な問題、極めて微細な薄層を均一に形成す
るための膜形状およびモジュール構造を解決することが
できず、具体化が困難とされていたoしかして、平膜積
層型血漿分離装置としては、従来、例えば第1図に示す
ものがある。この装置は、血液流入口部1および血液流
出口部2を有する側板3と、血漿流出口部4を有する側
板Sとの間に、四角枠状のバッキング部6bの内部を空
wR6aとした流路形成板6と、濾過膜7と、網目状血
漿流1部8aの周囲はバッキング部8bを設けた血漿流
路形成板8とを重合させて、これらを液密に抑圧固定し
たものである。この装置で、血液流入口部1から流入し
た血液は空隙6aを通って濾過膜7より濾過され、血球
成分は血液流出口部2から、また血漿流通部8aを通っ
て血漿流出口部4からそれぞれ排出される。
On the other hand, the flat membrane glaze layer type has a wider selection of membranes and is stable in performance, so although it is expected to be small and high performance, the analysis of the filtration engineering mechanism has not been sufficient. It is said that it is difficult to realize it because it has not been done, and it is difficult to solve hematological problems that cannot be solved by calculation alone, as well as the membrane shape and module structure to uniformly form an extremely fine thin layer. However, as a flat membrane laminated type plasma separator, there is, for example, one shown in FIG. 1 in the past. This device has a rectangular frame-shaped backing part 6b with an empty space wR6a between a side plate 3 having a blood inlet port 1 and a blood outlet part 2 and a side plate S having a plasma outlet part 4. The channel forming plate 6, the filtration membrane 7, and the plasma flow channel forming plate 8 provided with a backing part 8b around the mesh plasma flow part 18a are superposed to hold them liquid-tightly and fixed. . In this device, blood flowing in from the blood inflow port 1 passes through the gap 6a and is filtered by the filtration membrane 7, and blood cell components flow from the blood outflow port 2 and from the plasma flow port 4 through the plasma distribution port 8a. Each is discharged.

しかしながら、この装置は、濾過特性のうえで次のよう
な問題があった。すなわち、この種の血漿分離装置にお
いては、血液の流路厚を薄くすればするほど濾過膜の壁
せん断速度が大きくなり濾過特性が優れていることが知
られており、第1図に示す装置においては流路形成板6
の膜厚を薄くすることにより血液の流通する空隙6aの
流路厚を薄くすることが可能である。しかしながら、濾
過膜7は変形しやすいため、空隙6aで形成された血液
の流路が、流路形成板6の膜厚で設定した流路厚を均一
に確保できず、大きなばらつきを生じる。例えば流路厚
を300ミクロンに設定しても±100ミクロン程度の
誤差を生じる。したがって、この装置で流路形成板6を
極く薄く形成しても所望の濾過量を確保することが難か
しいとともにばらつきが著しい。
However, this device had the following problems in terms of filtration characteristics. In other words, in this type of plasma separation device, it is known that the thinner the blood flow path, the greater the wall shear velocity of the filtration membrane, resulting in better filtration characteristics. In the flow path forming plate 6
By reducing the film thickness, it is possible to reduce the channel thickness of the void 6a through which blood flows. However, since the filtration membrane 7 is easily deformed, the blood flow path formed by the void 6a cannot maintain a uniform flow path thickness set by the thickness of the flow path forming plate 6, resulting in large variations. For example, even if the channel thickness is set to 300 microns, an error of about ±100 microns will occur. Therefore, even if the flow path forming plate 6 is formed extremely thin in this device, it is difficult to secure a desired filtration amount, and the variation is significant.

このような分離、装置の欠点を解消する−ために、一端
に血液流入口および他端に血液流出口を形成させた細長
いマニホルド板の両側にそれぞれ平行な3チヤンネルを
有するゴムガスケットを介して濾過膜を当接し、これら
の濾過膜を血漿p液口を備えた集合板を押圧してなるp
過装麹が提案されている(Trans、 Am、 So
c、 Ar11if、 Intern、 Organs
+ XXIL21−26 (1978)丁。しかし゛な
がら、このような装置は、流路幅に対して流路が長いの
で圧力損失が大きく実用上問題がある。
In order to overcome the drawbacks of such a separation device, filtration is carried out through a rubber gasket having three parallel channels on each side of an elongated manifold plate forming a blood inlet at one end and a blood outlet at the other end. The membranes are brought into contact with each other, and these filtration membranes are pressed against a collecting plate equipped with a plasma p liquid port.
Over-loaded koji has been proposed (Trans, Am, So
c, Ar11if, Intern, Organs
+ XXIL21-26 (1978) Ding. However, such a device has a problem in practical use because the flow path is long compared to the width of the flow path, resulting in a large pressure loss.

また、少なくとも片側が濾過材と境を接しその下方にろ
液排出部材が配設され、また濾過される媒質用の入口お
よび濾過によって濃縮された媒質用出口を有する少なく
とも一つの吻隙状ヂ過室からなる特に血液濾過に適した
限外デ適用装置であって、2.5■以下の内径の一口お
よび0.1〜0.5■の厚さを有する繊維メツシュの布
の基材層が室壁の間に配設されてなる限外濾過装置が知
られている(英国特許第1,555,389号)。しか
しながら、このような装置は、限外濾過に使用するため
大きな負圧を受け、また流路厚を薄くすることは構造上
に限界があるため、濾過膜の壁せん断速度が小さく、蛋
白や血球等が膜面に付着することにより目づまりを生じ
や□すいという欠点があった。この目づまりにより血液
が滞留し、溶血、凝固等の血液損傷の問題があった。
At least one stomach-like filter is provided, which is bordered on at least one side by the filtration medium, below which a filtrate discharge member is arranged, and which has an inlet for the medium to be filtered and an outlet for the medium concentrated by the filtration. Ultrade application device particularly suitable for hemofiltration, consisting of a chamber with an inner diameter of not more than 2.5 cm and a base layer of fabric of fiber mesh with a thickness of 0.1 to 0.5 cm. An ultrafiltration device arranged between chamber walls is known (UK Patent No. 1,555,389). However, since such devices are used for ultrafiltration, they are subject to large negative pressures, and there is a structural limit to reducing the channel thickness, so the wall shear rate of the filtration membrane is low, and proteins and blood cells There was a drawback that it was easy to cause clogging due to adhesion of the like to the membrane surface. This clogging causes blood to stagnate, causing problems of blood damage such as hemolysis and coagulation.

M、発明の目的 したがって、本発明の目的は新規な血漿分離装置を提供
することにある。本発明の他の目的は、血液の損傷なら
びに経時的な分離能の低下を少なくシ、充分な濾過量を
確保し、かつ満足すべき経済的な膜形状および積層数を
有する血漿分離装置を提供すること傾あ乙。
M. OBJECTS OF THE INVENTION It is therefore an object of the present invention to provide a novel plasma separation device. Another object of the present invention is to provide a plasma separation device that minimizes damage to blood and decreases in separation performance over time, ensures sufficient filtration rate, and has a satisfactory economical membrane shape and number of laminated layers. I'm inclined to do that.

しかして、これらの細目的は、(a)中央に直径が2〜
8cmの円形開口部を有し、外径が10〜20mの同心
的で、該開口部直径と該外径との比が1=2〜1:5で
あり、かっ孔径が0.1〜0.8ミクロンの微細多孔を
有する円形濾過膜と、(b)該濾過膜のいずれかの片面
に50〜150ミクロンの間隙で形成された血液流路と
、(C)該濾過膜の層面に設けられて血漿流路を形成し
、かつ中央開口部を有°する円形血漿流路形成部材と、
(d)血液と血漿との混合を回避するためのシール材を
介して2〜60枚の前記濾過膜を一体的に重ね合わせて
1ooo〜8000−の総済過膜面積とし、(e)この
ようにして形成され゛る積層体を、血液流入口と濾過残
液流出℃と血漿流出口とを有する本体内に収納し、(f
)血液流入口から注入される血液が゛前記血液流路を通
って前記濾過膜により血漿を分離したのち濾過残液流出
口に至る液経路と、濾過膜で濾過分離された血漿が血漿
流路形成部材により形成される血漿流路を通って血漿流
出口に至る液経路とをそれぞれ形成するようにしたこと
を特徴とする血漿分離装&により達成される。
However, these sub-objectives are (a) with a diameter of 2 to 2 in the center.
It has a circular opening of 8 cm and is concentric with an outer diameter of 10 to 20 m, the ratio of the opening diameter to the outer diameter is 1 = 2 to 1:5, and the hole diameter is 0.1 to 0. .A circular filtration membrane having micropores of 8 microns, (b) a blood flow path formed on one side of the filtration membrane with a gap of 50 to 150 microns, and (C) provided on the layer surface of the filtration membrane. a circular plasma flow path forming member that forms a plasma flow path and has a central opening;
(d) 2 to 60 of the filtration membranes are integrally stacked together via a sealing material to avoid mixing of blood and plasma, resulting in a total filtration membrane area of 100 to 8000; The laminate thus formed is housed in a main body having a blood inlet, a filtration residue outlet, and a plasma outlet.
) Blood injected from the blood inlet passes through the blood flow path, plasma is separated by the filtration membrane, and then reaches the filtration residual liquid outflow port, and plasma filtered and separated by the filtration membrane passes through the plasma flow path. This is achieved by a plasma separator & which is characterized in that a liquid path is formed through a plasma flow path formed by a forming member to a plasma outflow port.

璽0発明の詳細な説明 以下、本発明を図面を参照しながら説明する。Detailed description of the Seal 0 invention Hereinafter, the present invention will be explained with reference to the drawings.

すなわち、第2〜3図に示すように、底部中央部に血液
流入口11および側壁KF”61残液流出ロ12を備え
た円筒状ケース13と、血漿流出口14゜14および周
縁に液密手段として0リング15を取付けた蓋体16と
よりなる本体17よりなり、この中に濾過膜、血液流路
規制板および血漿流路形成部材を収納するものである。
That is, as shown in FIGS. 2 and 3, there is a cylindrical case 13 equipped with a blood inlet 11 and a side wall KF"61 residual liquid outlet 12 in the center of the bottom, a plasma outlet 14, and a liquid-tight periphery. It consists of a main body 17 consisting of a lid body 16 to which an O-ring 15 is attached as a means, and a filtration membrane, a blood flow path regulating plate, and a plasma flow path forming member are housed within the main body 17.

すなわち、中心に開口部18および周辺付近に血漿通過
孔19を備えたスクリーンメツシュよりなる円形血漿流
路彪成部材20を上下2枚の円形濾過膜21a 、 2
1bを挟装し、その周縁部および中心開口部の周縁部を
熱融着、接着等によりシールするとともに、血漿通過孔
19の外周にシー2ル材26を貼着して濾過膜ユニット
22を形成させる。ここで円形血漿Ni:路形成部材2
oは血漿の流路をS惺できるもθあれば前記のメッシュ
に限られるものではない。
That is, a circular plasma flow path diagonal member 20 made of a screen mesh having an opening 18 in the center and plasma passage holes 19 near the periphery is placed above and below two circular filtration membranes 21a, 2.
1b, and seal the periphery thereof and the periphery of the central opening by heat fusion, adhesive, etc., and attach a sealing material 26 to the outer periphery of the plasma passage hole 19 to complete the filtration membrane unit 22. Let it form. Here, circular plasma Ni: tract forming member 2
The mesh o can be used to define the plasma flow path, but the mesh is not limited to the above-mentioned mesh as long as the mesh is θ.

m1枚のシ過膜ユニット22の開には、該ユニット22
に対応した中央開口部18および血漿通過f(、] 9
を備え、かつ両面に多数の凸部を備えた(たたし、該通
過孔19の外周部は平坦である。)円k 1ltl液流
路規制板23が配設される。また、前記濾過膜ユニット
22の最上部の上および最下部の下には、前記円形血液
流路規制板23または該ユニット22に対応した中央−
口部18および血漿通過孔19を備、え、かつ片面に多
数の゛凸部を備えた(ただし、該通過孔19の外周部は
平坦である。)円形血液流路規制板24を凸部側が接す
るように当接させる。これらの濾過膜ユニット22およ
び血液流路規制板23.24を1〜30枚(濾過膜とし
ては2〜60枚)重ね合わせて前記ケース13内に挿入
し、これに蓋体16を被せて押圧して該ケース13内に
嵌合させて0.リング1密にシールすることにより第3
図に示すような血れる0また1このような押圧に よりシール材26により濾過膜ユニット22と血液流路
規制板23.24とが、前記血漿通過孔19の外周部で
一体的に結合されて該通過孔19が連通して形成される
m1 sheet of sieving membrane unit 22 is opened, the unit 22
Central opening 18 corresponding to and plasma passage f(,] 9
A circular liquid flow path regulating plate 23 is provided, which is provided with a large number of convex portions on both sides (the outer periphery of the passage hole 19 is flat, however). Further, above the top and below the bottom of the filtration membrane unit 22, the circular blood flow path regulating plate 23 or a center plate corresponding to the unit 22 is provided.
The circular blood flow path regulating plate 24 is provided with a mouth portion 18 and a plasma passage hole 19, and has a large number of convex portions on one side (however, the outer periphery of the passage hole 19 is flat). Place them so that their sides are touching. 1 to 30 of these filtration membrane units 22 and blood flow path regulating plates 23, 24 (2 to 60 filtration membranes) are stacked and inserted into the case 13, and the lid 16 is placed on it and pressed. and fit it into the case 13. ring 1 by tightly sealing the 3rd
As shown in the figure, blood oozes 0 or 1. Due to such pressure, the filtration membrane unit 22 and the blood flow path regulating plates 23 and 24 are integrally connected at the outer periphery of the plasma passage hole 19 by the sealing material 26. The passage holes 19 are formed in communication.

なお、上記は血漿流出孔14を蓋体16に設けた例につ
いて説明したが、該血漿流出孔14は必ずしも蓋体16
に設ける必要はなく、蓋体16にはなんら流出孔を設け
ること?<(、ケース13の底部に血漿流出孔14.1
’4を設けてもよいことはもちろんである。
In addition, although the example in which the plasma outflow hole 14 is provided in the lid body 16 has been described above, the plasma outflow hole 14 is not necessarily provided in the lid body 16.
Is it not necessary to provide any outflow hole in the lid body 16? <(, plasma outflow hole 14.1 at the bottom of the case 13
Of course, '4' may also be provided.

しかして、上記P*$21a、21bは、Mlセルロー
ス、酢酸セルロース等の有機酸エステル等1のセルロー
スエステル、ポリカーボネート等の合成樹脂薄膜(膜厚
50〜200ミクロン、好ましくは130〜170ミク
ロン)を相分離法、抽出法、延伸法、荷電粒子照射法等
により製膜したもので1その孔径は0.1〜0.8ミク
ロン、好ましくは0.2〜0.6ミクロンで開孔率は4
0〜90%、好ましくは60〜90%であり、中央に円
形開口部18を有する円形状のものである。その中央開
口部直径IDは2〜8aR1外径ODは10〜2ocr
IIであり、その比率ID:0D=1:2〜1:5であ
り、楡層数は全体として2〜60枚(前記濾過膜ユニッ
ト22としては1〜30枚)のものが便所される。
Therefore, the above P*$21a and 21b are made of cellulose esters such as organic acid esters such as Ml cellulose and cellulose acetate, and synthetic resin thin films such as polycarbonate (thickness: 50 to 200 microns, preferably 130 to 170 microns). A membrane formed by a phase separation method, an extraction method, a stretching method, a charged particle irradiation method, etc. 1 The pore size is 0.1 to 0.8 microns, preferably 0.2 to 0.6 microns, and the porosity is 4.
0 to 90%, preferably 60 to 90%, and is circular in shape with a circular opening 18 in the center. Its central opening diameter ID is 2~8aR1 outer diameter OD is 10~2ocr
II, the ratio ID:0D=1:2 to 1:5, and the total number of elm layers is 2 to 60 (1 to 30 for the filtration membrane unit 22).

前記濾過膜21ae21bの孔径は、(a)水銀圧入法
、(b)電子顕微鏡法、−(C)粒径既知の微粒子(標
準粒子、微生物等)の透過法、(d)バブルポイント法
(ASTM−F316−70 )等を併用して測定され
るが、表面状態により見掛けの孔径と実効孔径が異なる
場合があること、および相分勉にょ6製膜法では最大孔
径を示せば最小孔径、細孔分布等がはぼ推定される゛こ
と、さらには測定が容易なこと等より、バブルポイント
による最大孔径表示により前記孔径を示した。通常1.
親水膜の場合、膜表面に親水化剤が塗布されているかま
たは膜を構成する樹脂内に添加されているため、バブル
ポイントを測定するための液体は、こ°れら親水化剤を
抽出もしくは晒材質を溶解しない表面張力既知の鉱油(
軽油、白灯油等)を用いて測定するか、あるいは蒸留水
により親水化剤を充分洗浄抽出して水によって行なわれ
る。最大孔径は、0.005〜1.2 ミクロン程度の
ものまで血漿分離に供し?b i5が、下限付近では高
分子物質の透過が不充分となり、一方上限付近では血球
成分が漏洩するので、実用上は前記範囲がよい。
The pore size of the filter membranes 21ae21b can be determined by (a) mercury intrusion method, (b) electron microscopy method, (C) permeation method using fine particles of known particle size (standard particles, microorganisms, etc.), and (d) bubble point method (ASTM). -F316-70), etc., but the apparent pore diameter and effective pore diameter may differ depending on the surface condition, and in the Soubun Benyo 6 film forming method, if the maximum pore diameter is indicated, the minimum pore diameter and fine pore diameter are measured. Since the pore distribution etc. can be easily estimated and furthermore, it is easy to measure, the pore diameter is indicated by the maximum pore diameter using bubble points. Usually 1.
In the case of a hydrophilic membrane, a hydrophilic agent is applied to the surface of the membrane or added to the resin that makes up the membrane, so the liquid used to measure the bubble point is extracted from or added to the membrane. Mineral oil with known surface tension that does not dissolve bleached materials (
The measurement can be carried out using water (light oil, white kerosene, etc.), or by thoroughly washing and extracting the hydrophilizing agent with distilled water. Is it possible to use plasma separation with a maximum pore size of 0.005 to 1.2 microns? When b i5 is near the lower limit, the permeation of the polymer substance becomes insufficient, while when it is near the upper limit, blood cell components leak, so the above range is practically preferable.

開孔率は、膜単位面積の重量をW(7〕、膜厚を1(f
fi) 、Nの比重S(f/i)とすると、見掛けの比
重がw/ t (f/d )となるので、つぎのように
なる。
The porosity is determined by the weight of the membrane unit area being W (7) and the membrane thickness being 1 (f
fi), and the specific gravity of N is S(f/i), the apparent specific gravity is w/t(f/d), so it is as follows.

開孔率=−先二二!ム’!−X 1(!O<%)しかし
て、相分離によ6製i′では開孔率40〜90%が技術
的に可能であるが、90%を越えると胴の機械的強度が
不充分と6なり、一方、40%末淘では、通常濾過には
膜抵抗、目詰まり等の点で不適当である。血漿分離の実
用上でもより高い方δf有利であるが、コストの点から
60〜90%が好ましい(濾過量のばらつき±12.5
%)。
Open area rate = -22 ahead! Mu'! -X 1 (!O<%) However, although it is technically possible to achieve a porosity of 40 to 90% in 6-product i' due to phase separation, if it exceeds 90%, the mechanical strength of the shell is insufficient. On the other hand, 40% reduction is unsuitable for normal filtration due to membrane resistance, clogging, etc. A higher δf is advantageous in practical terms for plasma separation, but from a cost perspective, 60 to 90% is preferable (variation in filtration rate ±12.5%).
%).

膜厚は、技術的には50〜200ミクロンで製膜可能で
あり、50ミクロン未満では機械的強度が不充分であり
、200ミクロンを越えると細孔分布が広くなり最大孔
径をより小ざ〈耐折せざるを得なくなるので、物質透過
効率が低下し、また製品の性能ばらつきも大きくなる。
Technically, it is possible to form a film with a thickness of 50 to 200 microns; if it is less than 50 microns, the mechanical strength is insufficient, and if it exceeds 200 microns, the pore distribution will become wider and the maximum pore diameter will become smaller. Since it is forced to endure bending, the material permeation efficiency decreases and product performance variations also increase.

また、濾過膜のID : OD比を1=2〜1:5とし
、かつ総@面積を1000〜5ooo 、、yとするの
は、前記比がこの値を越えるか、あるいは膜面積がこの
値未満では血液損傷が大きく、また血液W1固も起りや
すくなる。
In addition, the ID:OD ratio of the filtration membrane is set to 1 = 2 to 1:5, and the total @ area is set to 1000 to 5ooo,,y because the ratio exceeds this value or the membrane area exceeds this value. If it is less than that, blood damage will be large and blood W1 clots will likely occur.

一方、ID n OD比が前記値未満では膜の中央に一
口部を設けることによる経済的損失が大きくなり、また
膜面積が前記値を越えるとせん断速度が低下するため、
分1離゛□能が低下するとともに多量の膜を使用するた
め経済的にも好ましくな、い。
On the other hand, if the ID n OD ratio is less than the above value, the economic loss due to providing the opening in the center of the membrane will be large, and if the membrane area exceeds the above value, the shear rate will decrease.
This method is economically undesirable because the separation performance is lowered and a large amount of membranes are used.

血漿流路形成部材20は2、中央開口部を有する円形の
ポリエステル、ポリプロピレン、ポリアミド等の合成樹
脂製オープンスクリーンメツシュ′等で形成されている
The plasma flow path forming member 20 is formed of a circular open screen mesh made of synthetic resin such as polyester, polypropylene, polyamide, etc. and having a central opening.

上記血液流路規制板23,24は、濾過膜21a、21
bとの間で血液の流路を形成するもので、第4〜5図に
示すように中央開口部をする円形状で多数の凸部25を
有す乙ものである。この血液流路規制板23は、硬質の
ものでもあるいは柔軟性でかつ弾性を有するものでもよ
い。柔軟性でかつ弾性を有するものは、そのヤング率が
1.0XI06〜2.OX 10’ 0dyne / 
(111%好ましくは1.OX 10’〜1.OX 1
0  dyne / c!Ilの材質のものである。そ
の理由は、分離装りを押圧し血液流路を狭めやすくかつ
弛緩させたとき、流路が可逆的に自己復元し、所望の濾
過量を得やすくするためである。この範囲のヤング率を
有する材質としては、例えば低密一度ポリエチレン、シ
リコーンゴム、インプレンゴム、ブチルゴム、スチレン
−ブタジェンゴム(SBR)、エチレン−酢酸ビニル共
重合樹脂(EVA)等が挙げられる。また、前記凸部2
5を備えた体液流路規制板の表面硬度は10〜100の
ショアA硬度で有′するものが好ましい。血液流通規制
板23.24の凸部25は、ここで沖過膜21 a、、
 2 l bを支えて変形を防止し、凸部25間の間隙
において血液の流通路を確保するものである。凸部25
と膜面間に形成され乙流路厚は50〜150ミクロンの
ものが好ましい。、その理由は、50ミクロン未満では
流路厚の調節が難がしく、また1 50ミクロンを超え
ると変形が大きく誤差を生じゃすく、かつ壁せん断速度
を大きくすることができないからである。また、これら
の凸部2′5の′間隔は100〜2000ミク四ンが好
ましく、特に400〜SOOミクロンが好ましい。また
、凸部の底部の半径、対角線ないし一辺の長さと凸部・
間の距離の比は1:1〜1:3が望ましい。
The blood flow path regulating plates 23 and 24 include the filtration membranes 21a and 21
It forms a blood flow path between the tube and the tube, and as shown in FIGS. 4 and 5, it has a circular shape with a central opening and a large number of convex portions 25. This blood flow path regulating plate 23 may be hard or flexible and elastic. Those that are flexible and elastic have a Young's modulus of 1.0XI06 to 2. OX 10'0dyne/
(111% preferably 1.OX 10' to 1.OX 1
0 dyne/c! It is made of Il material. The reason for this is that when the separation device is pressed to easily narrow and relax the blood flow path, the flow path reversibly restores itself, making it easier to obtain the desired filtration amount. Examples of materials having a Young's modulus in this range include low-density polyethylene, silicone rubber, in-prene rubber, butyl rubber, styrene-butadiene rubber (SBR), and ethylene-vinyl acetate copolymer resin (EVA). Further, the convex portion 2
It is preferable that the surface hardness of the body fluid flow path regulating plate having a Shore A hardness of 10 to 100 is 10 to 100. The convex portions 25 of the blood circulation regulating plates 23 and 24 are connected to the outer membrane 21a, .
2 lb to prevent deformation and ensure a blood flow path in the gap between the protrusions 25. Convex portion 25
It is preferable that the thickness of the channel formed between the two membrane surfaces is 50 to 150 microns. The reason for this is that if the thickness is less than 50 microns, it is difficult to adjust the channel thickness, and if it exceeds 150 microns, the deformation is large and errors are likely to occur, and the wall shear rate cannot be increased. Further, the spacing between these convex portions 2'5 is preferably 100 to 2000 microns, particularly preferably 400 to SOO microns. In addition, the radius of the bottom of the convex part, the length of the diagonal or one side, and the convex part.
The distance ratio between them is preferably 1:1 to 1:3.

本体は、前記のように、筒吠ケース13および蓋体16
よりなるもので、ポリカーボネート、ポリアミド、ポリ
アセタール、^B8樹脂、硬質ポリ塩化ビニル等の硬質
プラスチックス材で作られており、蓋体16はケース1
3に液密に挿入される。
As mentioned above, the main body includes the tube case 13 and the lid body 16.
It is made of hard plastic materials such as polycarbonate, polyamide, polyacetal, ^B8 resin, and hard polyvinyl chloride.
3 in a fluid-tight manner.

液密手段としては蓋体1.6の周縁部にOリングを外嵌
する方法、以外に公知の密封手段も使用できるO 第6図は、本発明の他の実゛施例を示すもので、第2〜
3図に示す実施例と同様な血漿分離装置において、濾過
残液流出口112を備えた同筒状ケース113と、血液
流入口111および血漿流出口114を備えた蓋体11
6を、その周縁部に液密手段として外嵌した0 1Jン
グ115を介して嵌挿してなる本体117に、中心に開
口部118および周辺付近に血漿通過孔119を備えた
円形血漿流路形成部材120の両面が濾過膜121に当
接するようにしてなるユニットの複数枚(濾過膜として
2〜60枚)を前記−口部119周辺においてシール材
126を介して積層して収納してなるものである。この
場合、血漿流路形成部材120は、第2〜3図の装置に
おける血液流路規制板と同様であり、血液流路規制板は
用いられないが前記血漿流路形成部材120により形成
される凹凸により膜面にも凹凸が生じるため、膜面間に
血液流路が形成され、その間隙は50〜150ミクロン
、好ましくは70〜100ミクロンである。なお、この
場合、血漿流路形成部材として表面に凹凸のない平板を
各濾過膜ユニット間に設けても良い0 第7図は、本発明のさらに他の実施例を示すもので、第
2〜3図に示す実施例と同様な血漿分離装置において、
濾過残液流出口212、血液流入口211および血漿流
出口214を備えた円筒状ケース213と、周縁部に液
密手段として外嵌した0リング215を介して嵌挿して
なる本体217に、中心に開口部218および周辺付近
に血漿通過孔219を備えた比較的粗い目のオープンス
クリーンメツシュよりなる円形血漿流路形成部材220
を上下2枚の円形濾過膜221a + 221bを挟装
し、その周縁部および中心開口部の周縁部を熱融着、接
養等によりシールするとともに血漿通過孔219の外周
にシール材2゛26を貼着して濾過膜ユニット222を
形成させる。この濾過膜ユニット222を1〜30枚(
濾過膜として2〜60枚)前記本体217内に収納する
ことにより血漿分離装置が得られる。この場合、血液流
路規制板は用いられないが、血漿流路形成板として粗い
目のオープンスクリーンメツシュを用いる゛ことによ−
り膜面に該メツシュの凹凸に対応した門凸が生じ、対向
する濾過膜面部に50〜150ミクロンの間隙の血液流
路が形成される。
As the liquid-tight means, other than the method of fitting an O-ring around the peripheral edge of the lid body 1.6, other known sealing means can also be used. FIG. 6 shows another embodiment of the present invention. , 2nd~
In a plasma separation device similar to the embodiment shown in FIG.
6 is fitted into the main body 117 through a 01J ring 115 fitted around the peripheral edge thereof as a liquid-tight means, forming a circular plasma flow path having an opening 118 in the center and a plasma passage hole 119 near the periphery. A unit made by stacking and storing a plurality of units (2 to 60 filter membranes) in which both sides of the member 120 are in contact with the filtration membrane 121 with a sealing material 126 interposed in the vicinity of the opening 119. It is. In this case, the plasma flow path forming member 120 is similar to the blood flow path regulating plate in the apparatus shown in FIGS. Since the unevenness causes unevenness on the membrane surface, a blood flow path is formed between the membrane surfaces, and the gap therebetween is 50 to 150 microns, preferably 70 to 100 microns. In this case, a flat plate with a smooth surface may be provided between each filtration membrane unit as a plasma flow path forming member. FIG. 7 shows still another embodiment of the present invention. In a plasma separation device similar to the embodiment shown in Figure 3,
A cylindrical case 213 equipped with a filtration residual liquid outlet 212, a blood inlet 211, and a plasma outlet 214, and a main body 217 fitted through an O-ring 215 externally fitted on the periphery as a liquid-tight means. A circular plasma flow path forming member 220 made of a relatively coarse open screen mesh with an opening 218 at the periphery and a plasma passage hole 219 near the periphery.
Two upper and lower circular filtration membranes 221a + 221b are sandwiched between the membranes, and the periphery of the membrane and the periphery of the center opening are sealed by heat fusion, adhesion, etc., and a sealing material 2-26 is placed around the outer periphery of the plasma passage hole 219. is adhered to form the filtration membrane unit 222. 1 to 30 pieces of this filtration membrane unit 222 (
By storing 2 to 60 filtration membranes in the main body 217, a plasma separation device can be obtained. In this case, a blood flow path regulating plate is not used, but a coarse open screen mesh is used as a plasma flow path forming plate.
Gate protrusions corresponding to the irregularities of the mesh are formed on the membrane surface, and a blood flow path with a gap of 50 to 150 microns is formed on the opposing membrane surface.

つぎに、本発明による血漿分離装置の作用について述べ
る。すなわち、第ε図に示すように、人体または血液容
器(図示せず)から脱血された血液は、回路人口31よ
り送血ポンプ32により導入され、チャンバー33を通
り、血漿分離装置17の血液流入口11内に導入される
。該装置17内に導入された血液は、第3図Kmすよう
に開口18より血液流路規制板23.24と濾過膜21
a+21b間に形成された血液流路を流通する間に濾過
膜により濾過され、血漿は血漿流路形成部材20間を流
通して血漿通過孔19を通り血漿流出口14より流出し
て血漿秤取容器34に集められる。一方、血球は、濾過
残液とともK濾過残液流出口12より排出され、チャン
バー35を経て人体または血液容器へ回路出口36より
戻される。なお、図中、37および38は圧力計である
Next, the operation of the plasma separator according to the present invention will be described. That is, as shown in FIG. It is introduced into the inlet 11 . The blood introduced into the device 17 passes through the opening 18 through the blood flow path regulating plates 23, 24 and the filter membrane 21, as shown in FIG.
While flowing through the blood flow path formed between a+21b, the plasma is filtered by a filtration membrane, and the plasma flows between the plasma flow path forming members 20, passes through the plasma passage hole 19, flows out from the plasma outlet 14, and is then weighed. It is collected in a container 34. On the other hand, the blood cells are discharged together with the filtered residual liquid from the K filtered residual liquid outlet 12, and are returned to the human body or the blood container through the circuit outlet 36 through the chamber 35. In addition, in the figure, 37 and 38 are pressure gauges.

実施例1〜12および比較例1〜17 第2〜3図に示すような装置を用い、第1表に示す実験
条件下で血液を流通させ、そのr過量を測定した。その
結果を、第1表に示す。なお、膜材質としては平均孔径
0.3〜0.5ミクロンの酢酸セルロースを用いた。
Examples 1 to 12 and Comparative Examples 1 to 17 Using the apparatus shown in FIGS. 2 and 3, blood was passed under the experimental conditions shown in Table 1, and the r excess was measured. The results are shown in Table 1. Note that cellulose acetate having an average pore diameter of 0.3 to 0.5 microns was used as the membrane material.

Q −u’+ to t−oo■旨=讐冨==五=第1
′表において9、濾過装置における血液流路幅をa 血液流路厚をb 血液流路長をt とし、濾過条件として 血液流量をQB 血液粘度をμ 重力単位換算係数をga とし、濾過装置の圧力損失をPDとすると、剪断速度を
Jとすると、 濾過流量をQFとすると、 QF =α・!j)′・S        (1)とな
る(ただし、αおよびβは膜の係数であり、またSは膜
面hta−Lである。なお、流路幅aは平均流路幅を示
し、円形の膜の場合には次式により求められる。
Q -u'+ to t-oo■effect=enemy==5=first
In Table 9, the width of the blood flow path in the filtration device is a, the thickness of the blood flow path is b, the length of the blood flow path is t, the blood flow rate is QB, the blood viscosity is μ, the gravity unit conversion coefficient is ga, and the filtration device is If the pressure drop is PD, the shear rate is J, and the filtration flow rate is QF, then QF = α・! j)'・S (1) (However, α and β are membrane coefficients, and S is the membrane surface hta−L. Note that the channel width a indicates the average channel width, and the circular In the case of a membrane, it is determined by the following formula.

a=アゴπ7;璽XN a、:膜の円形開口部の周の長さ N:膜の積層数 また、本発明におけ乙流路厚すとは圧力損失等の測定値
から得られた計算値であり、(1)式を変形することに
より求められる。血液流路長tとは血液の流れ方向に沿
う長さであり、この場合膜の外径から円形開口部直径を
減じたものを2で除した値であり、膜の半径方向に沿っ
て測った内周から外周までの長きをいう。血流量Qnと
は血液流路中を単位時間当りに流れる血液の量を表わす
a = jaw π7; mark It is a value and is obtained by transforming equation (1). The blood flow path length t is the length along the blood flow direction, and in this case, it is the value obtained by subtracting the diameter of the circular opening from the outer diameter of the membrane, divided by 2, and is the length measured along the radial direction of the membrane. The length from the inner circumference to the outer circumference. The blood flow rate Qn represents the amount of blood flowing through the blood flow path per unit time.

同一膜面積、同一血流量の場合、血液流路形状は理論的
には可能な限り流路幅aを大きく、流路長tおよび流路
厚すを流路幅aとの兼ね合いで小ざくするほどよい。つ
まり、溶血の原因となる圧力損失をより小キ<、かつ濾
過量QFを大きくするために剪断速度」を大きくするこ
とが望ましい。
In the case of the same membrane area and the same blood flow rate, the blood flow path shape should theoretically be as large as possible, with the flow path width a being as large as possible, and the flow path length t and the flow path thickness being small in balance with the flow path width a. Moderate. In other words, it is desirable to reduce the pressure loss that causes hemolysis and to increase the shear rate in order to increase the filtration rate QF.

し、たがって、流路厚すは極力小さくシ、理論上0〈b
≦150ミクロ゛ンとする方が理想であるが、実際的に
は膜および支持体の寸法誤差または変形、歪を考慮し、
一方、流路Sbは広くなるほど血液の偏流(チャンネリ
ング)が多くなるので、実用限界として50ミクロン以
上が好ましい。
Therefore, the channel thickness should be as small as possible, and theoretically 0〈b
Ideally, it should be ≦150 microns, but in practice, taking into account dimensional errors, deformation, and distortion of the membrane and support,
On the other hand, the wider the flow path Sb, the more uneven blood flow (channeling) occurs, so the practical limit is preferably 50 microns or more.

濾過効率E(至)とは、供給゛される血液中に含まれる
血漿量がどの程度濾過分離゛されたかを示すものであり
、次式で示される。なお、式中、Ptは単位血液量中に
含まれる血漿の量である。
The filtration efficiency E (total) indicates how much of the plasma contained in the supplied blood has been filtered and separated, and is expressed by the following equation. In the formula, Pt is the amount of plasma contained in a unit blood volume.

QF E  = −X  100 溶血を引き起す圧バカ損失は、剪断速度との関係より第
1表および第9図に曲11Aで示したヘモグロビン濃度
501mg/dtの臨界圧力損失曲線のとおりである。
QF E = -X 100 The pressure loss that causes hemolysis is as shown in the critical pressure loss curve at a hemoglobin concentration of 501 mg/dt shown by track 11A in Table 1 and FIG. 9 in relation to the shear rate.

溶血による血中遊離ヘモグロビン濃度の許容限界は医学
的見地から100111/di以下であるが、実用上の
安全範囲として50岬/ di以下にすることが望まし
く、 O≦PD≦0.2Kg/a/I TMP≦o、1Kg/all  (TMP:隔膜圧)と
することKより溶血を引き起こす臨界TMP値を越えな
いため、血中遊離ヘモグロビン7漉度は50’1st/
dtにほぼおさえることが可能である。また、第9図に
おける曲lIAの下方にあっては、血中遊離ヘモグロビ
ン濃度は50■/d7!におさえることが可能であり、
圧力損失をこの範囲とすることが好ましい。
The permissible limit for blood free hemoglobin concentration due to hemolysis is 100111/di or less from a medical perspective, but as a practical safety range it is desirable to keep it below 50 capes/di, O≦PD≦0.2Kg/a/ I TMP≦o, 1Kg/all (TMP: diaphragm pressure) In order not to exceed the critical TMP value that causes hemolysis, the free hemoglobin 7 concentration in the blood is 50'1st/all.
It is possible to keep it to approximately dt. Further, below the track IIA in Fig. 9, the blood free hemoglobin concentration is 50 /d7! It is possible to suppress
It is preferable that the pressure loss is within this range.

なお、圧力損失は圧力ゲージで測定し、濾過量Get 
メスシリンダーとストップウォッチにて測定し、剪断速
度はj = 6Qs/ ab”として計算し、ヘモグロ
ビン濃度は2 、2’ 、 414’−テトラメチルベ
ン 。
In addition, the pressure loss is measured with a pressure gauge, and the filtration amount Get
It was measured using a graduated cylinder and a stopwatch, and the shear rate was calculated as j = 6Qs/ab'', and the hemoglobin concentration was 2,2',414'-tetramethylben.

ジジンを用いた常法により測定した。また、圧損f化Δ
PDは水銀マノメータにて測定した。血漿分離効率Eお
よび膜効率Q―は、それぞれつぎの計算式による。
It was measured by a conventional method using didine. In addition, pressure loss f Δ
PD was measured using a mercury manometer. Plasma separation efficiency E and membrane efficiency Q- are each based on the following calculation formulas.

QF ヘモグロビン濃度変化は50.0■/di以上、血漿分
離効率は50%以下、膜効率は1o、o mt/rrl
以下、また圧損変化は100■Hf以下を実用上の好ま
しく@;::、::二f−#tprv@Gstplx!
5K、4発明の構成を外れるものについ・では特に溶血
および血液凝固等の血液損傷が8著であり、また血液損
傷が少ないものについても十分な濾過量が得られなかっ
たり、血漿分離効率の点で劣るなど臨床における実用上
好ましくない。、 L発明の具体的効果 本発明による血漿分離装置は以上のごとき構成を有する
ものであるから、(a)膜が矩形である場合に比べて偏
流が起り難い、(b)血液損、傷とそれに伴なう溶血お
よび血□液凝岬が起らない範、8で経済的な膜面′#I
l/cより血漿分離ができる、(C)経済的な性能変化
が少なく、充分な一過量を得ることができる、(d)良
好な分離能・を有するなどの利点がある〇さらに、装置
の本体を円筒状゛ケースと該ケースに液密に嵌押される
蓋体とし、Oリングをその液密手段とすることにより円
筒状ナースと蓋体の液密保持が容易になるとともに1円
筒状ケースと蓋体とを押圧することにより互psに摺動
可能とし、血液流路厚を所定の値に調節することができ
る。
QF Hemoglobin concentration change is 50.0■/di or more, plasma separation efficiency is 50% or less, membrane efficiency is 1o, o mt/rrl
Below, the pressure drop change is practically preferably 100■Hf or less@;::,::2f-#tprv@Gstplx!
5K, 4 cases of blood damage such as hemolysis and blood coagulation were found in 8 cases that deviate from the structure of the invention, and even in cases where blood damage was small, sufficient filtration volume could not be obtained or plasma separation efficiency was affected. It is unfavorable in clinical practice, such as poor performance. , LSpecific Effects of the Invention Since the plasma separator according to the present invention has the above configuration, (a) drifting is less likely to occur than when the membrane is rectangular, and (b) blood damage and scratches are less likely to occur. Economical membrane surface '#I in the range where hemolysis and blood coagulation do not occur due to it.
It has the following advantages: (C) It is possible to obtain a sufficient one-time amount with little change in economical performance; (d) It has good separation ability; The main body is a cylindrical case and a lid that is fitted into the case in a liquid-tight manner, and by using an O-ring as a liquid-tight means, it is easy to maintain the cylindrical nurse and the lid in a liquid-tight manner. By pressing the lid and the lid, they can be slid against each other, and the thickness of the blood flow path can be adjusted to a predetermined value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の血漿分離装置の分解斜視図、第2図は
本発明による血漿分離装置の一実施例を示す分解斜視図
、第3図は第2図の装置の組立状態を示す断面図”、第
4図および第5図は流路規制板の断面図、−第6図は本
発明装置の他の実施飼を委す断面図、第7図は本発明装
置のさらに他の実施例を示す断面図、第8図は装置の使
用例を示すシステム回路図であり、また第9図は剪断速
度と溶血の臨界圧力損失との関係を示すグラフである。 11.111,211・・・血液流入口、12,112
゜212・・・濾過残液流出口、13 + 113 *
 213・・・円筒状ケース、14,114,214川
皿漿流出口、15,115,215・・・Oリング、1
6゜116.2161−蓋体−17,117,217・
・・本体、18,118.218・・・中央開口部、1
9、119 、219−・・血漿通過孔、20,120
゜220 ・・・血漿流路形成部材、21s t 21
b + 121 e221a * 221b ”・円W
I濾過膜、22,222−p過膜ユニツ)、23.24
・・・血液流路規制板、25・・・凸部、26,126
,226・・・シール材。 第2WA 6 第311 第4図 5 第5、図 6 W!h6図 2I5 1( 第8図
FIG. 1 is an exploded perspective view of a conventional plasma separation device, FIG. 2 is an exploded perspective view of an embodiment of the plasma separation device according to the present invention, and FIG. 3 is a cross-sectional view of the device shown in FIG. 2 in an assembled state. Figures 4 and 5 are cross-sectional views of the flow path regulating plate, - Figure 6 is a cross-sectional view showing another implementation of the apparatus of the present invention, and Figure 7 is a cross-sectional view of a further implementation of the apparatus of the present invention. FIG. 8 is a system circuit diagram showing an example of how the device is used, and FIG. 9 is a graph showing the relationship between shear rate and critical pressure drop for hemolysis. 11.111,211・...Blood inlet, 12,112
゜212...Filtration residual liquid outlet, 13 + 113 *
213...Cylindrical case, 14,114,214 River plate serum outlet, 15,115,215...O ring, 1
6゜116.2161-Lid body-17,117,217・
...Body, 18,118.218...Central opening, 1
9, 119, 219--Plasma passage hole, 20, 120
゜220...Plasma flow path forming member, 21s t 21
b + 121 e221a * 221b ”・Yen W
I filtration membrane, 22,222-p filtration membrane unit), 23.24
...Blood flow path regulating plate, 25...Convex portion, 26,126
, 226...Sealing material. 2nd WA 6 311 Figure 4 5 5th, Figure 6 W! h6Figure 2I5 1 (Figure 8

Claims (1)

【特許請求の範囲】 1 、(a)中央に直径が2〜8crnの円形−口部を
有し、外径がlθ〜206y+の同心円で、該開口部直
径と該外径との比が1:2〜1:5であり、かつ孔径が
0.1〜0.8ミクロンの微細多孔を有する円形濾過膜
と、(b)該濾過膜のいずれかの片面に50〜150ミ
クロンの間隙で形成された血液流路と、(C)該濾過膜
の、他面に設けられて血漿流路を形成し、かつ中央−口
部を有する円形血漿流路形成部材と、(d)血液と血漿
との混合を回避するためのシール材を介して2#〜60
枚の前記濾過膜を一体的に重ね合わせて1000〜80
00efIIの総濾過膜面秘セし、(e)このようKし
て形成される板層体を、血液流入口と濾過残液流出口と
血漿流−出口とを有する本体内に収納し、(f)血液流
入口から注入される血液が前記血液流路を通って前記濾
過膜により血漿を分離したのち濾過残液流出口に至る液
経路と、濾過膜でF&分離された血漿が血漿流路形成部
材により形成される血漿流路を通って血漿流出口に至る
液経路とをそれぞれ形成するようにしたことを特徴とす
る血漿分離装置。 2、本体は円筒状ケースと、該ケースに液密に取り付け
た蓋体を含むものである特許請求の範囲第1項に記載の
装置。 3、蓋体が液密手段を有するものである特許請求の範囲
第2項に記載の装置。 4、液密手段は蓋体の周縁部に外嵌された0リングであ
る特許請求の範囲第3項に記載の装置。 5、血漿流路形成部材は2枚の内周縁および外周縁を密
封されたヂ過膜内に内包されてなる特許請求の範囲第1
項ないし第4項のいずれか一つに記載の装置。 6、(a)中央に直径が2〜8crnの円形開口部を有
し、外径が10〜203の同心円で、該開口部直径と該
外径との比が1=2〜1:5であり、かつ孔径が0.1
〜0.8ミクロンの微細多孔を有する円形濾過膜と、(
b)該濾過膜のいずれかの片面に近接して設けられ、該
濾過膜との間に50〜150ミクロンの間隙の血液流路
を形成し、表面に一定の間隔で多数の8部を有し、かつ
中央開口部を有する円形血液流路規制板と、(C)該炉
、過膜の他面側に設けられて血漿流路を形成し、かつ中
央開口部を有する円ル血漿流路形成部材とを、(d)血
液と血漿との混合を回避するためのシール材を介して2
〜60枚の前記濾過膜を一体的に重ね合わせて1000
〜8000ciの総濾過膜面積とし、(e)このように
して形成され6指゛層体を、血液流入口と濾過残液流出
口と血漿流出口とを有する本体内に収納し、(f)I1
11液流入口から注入される血液が前記血液流路を通っ
て前記濾過膜により血漿を分離したのち濾過残液流出口
に至る液経路と、濾過膜で濾過分離された血漿が血漿流
路形成部材により形成された血漿流路を通って血漿流出
口に至る液経路とをそれぞれ形成するようにしたことを
、特徴とする血漿分離装置0 7、血液流路規制板は硬質のものである特許請求の範囲
第6項に記載の装置。 8、血液流路規制板は柔軟性でかつ弾性を有するもので
ある特許請求の範囲第6mに記載の装置09、血液流路
規制板は1.OX 10’〜2.OX 1G” dyn
e/cIlのヤング率を有してなる特許請求の範囲第8
項に記載の装置。 10、凸部は血液流路規制板の片面に設けられてなる特
許請求の範囲第6項ないし第9項のいずれか一つに記載
の装置。 】1.凸部は血液流路規制板の両口1tに設けられてな
る特許請求の範囲第6項ないし第9項のいずれか一つに
記載の装置。 12、血液流路規制板の凸部間の間隔は100〜200
0ミクロンである特許請求の範囲第6項ないし第11墳
のいずれか一つに記載の装置。 13、本体は円筒状ケースと、該ナースに液密に取り付
けられた蓋体を含むものである特許請求の範囲第6項な
いし第12項のいずれか一つに記載の装置。 14、蓋体が液密手段を有するものである特許請求の範
囲第13項に記載の装置。 15、液密手段は蓋体の周縁部に外嵌された0リングで
ある特許請求の範囲第14項に記載の装置。 16、l111漿流路形成部材は2枚の内周縁および外
周縁を密封された沖過膜内に内包されてなる特許請求の
範囲第6項ないし第15項のいずれか一つに記載の装置
[Scope of Claims] 1. (a) It has a circular opening in the center with a diameter of 2 to 8 crn, and is a concentric circle with an outer diameter of lθ to 206y+, and the ratio of the opening diameter to the outer diameter is 1. :2 to 1:5 and a circular filtration membrane having micropores with a pore size of 0.1 to 0.8 microns, and (b) a gap of 50 to 150 microns formed on one side of the filtration membrane. (C) a circular plasma flow path forming member provided on the other surface of the filtration membrane to form a plasma flow path and having a central opening; (d) blood and plasma flowing through the membrane; 2#~60 through sealing material to avoid mixing of
1000 to 800
(e) The plate body thus formed is housed in a main body having a blood inlet, a filtrate residual liquid outlet, and a plasma outlet; f) A liquid path in which the blood injected from the blood inlet passes through the blood flow path, plasma is separated by the filtration membrane, and then reaches the filtration residual liquid outflow port, and the plasma F&separated by the filtration membrane passes through the plasma flow path. A plasma separation device characterized in that a liquid path is formed through a plasma flow path formed by a forming member to a plasma outflow port. 2. The device according to claim 1, wherein the main body includes a cylindrical case and a lid attached to the case in a liquid-tight manner. 3. The device according to claim 2, wherein the lid has liquid-tight means. 4. The device according to claim 3, wherein the liquid-tight means is an O-ring fitted around the peripheral edge of the lid. 5. Claim 1, wherein the plasma flow path forming member is enclosed within two membranes whose inner and outer edges are sealed.
Apparatus according to any one of clauses 4 to 4. 6. (a) It has a circular opening in the center with a diameter of 2 to 8 crn, and is a concentric circle with an outer diameter of 10 to 203, and the ratio of the opening diameter to the outer diameter is 1 = 2 to 1:5. Yes, and the pore diameter is 0.1
A circular filtration membrane with micro pores of ~0.8 microns, (
b) Provided close to one side of the filtration membrane, forming a blood flow path with a gap of 50 to 150 microns between the filtration membrane and having a large number of 8 parts at regular intervals on the surface. and (C) a circular blood flow path regulating plate provided on the other side of the furnace and membrane to form a plasma flow path and having a central opening. (d) through a sealing material to avoid mixing of blood and plasma.
~60 of the above filtration membranes are integrally stacked to make 1000
The total filtration membrane area is ~8000 ci, (e) the six-fingered body thus formed is housed in a main body having a blood inlet, a filtrate residue outlet, and a plasma outlet; (f) I1
11 A liquid path in which blood injected from the liquid inlet passes through the blood flow path, plasma is separated by the filtration membrane, and then reaches the filtration residual liquid outflow port, and plasma filtered and separated by the filtration membrane forms a plasma flow path. Plasma separation device 07, characterized in that a plasma flow path formed by a member forms a liquid path leading to a plasma outflow port, and the blood flow path regulating plate is rigid. Apparatus according to claim 6. 8. The blood flow path regulating plate is flexible and elastic. The device 09 according to claim 6m, the blood flow channel regulating plate is 1. OX 10'~2. OX 1G” dyn
Claim 8 has a Young's modulus of e/cIl.
The equipment described in section. 10. The device according to any one of claims 6 to 9, wherein the convex portion is provided on one side of the blood flow path regulating plate. ]1. The device according to any one of claims 6 to 9, wherein the convex portions are provided at both openings 1t of the blood flow path regulating plate. 12. The distance between the protrusions of the blood flow path regulating plate is 100 to 200
The device according to any one of claims 6 to 11, which has a particle size of 0 micron. 13. The device according to any one of claims 6 to 12, wherein the main body includes a cylindrical case and a lid attached to the nurse in a liquid-tight manner. 14. The device according to claim 13, wherein the lid has liquid-tight means. 15. The device according to claim 14, wherein the liquid-tight means is an O-ring fitted around the peripheral edge of the lid. 16, l111 The device according to any one of claims 6 to 15, wherein the serous flow path forming member is enclosed within a membrane whose inner and outer edges are sealed. .
JP56147783A 1981-09-21 1981-09-21 Serum separating apparatus Granted JPS5850963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56147783A JPS5850963A (en) 1981-09-21 1981-09-21 Serum separating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56147783A JPS5850963A (en) 1981-09-21 1981-09-21 Serum separating apparatus

Publications (2)

Publication Number Publication Date
JPS5850963A true JPS5850963A (en) 1983-03-25
JPH0323181B2 JPH0323181B2 (en) 1991-03-28

Family

ID=15438088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56147783A Granted JPS5850963A (en) 1981-09-21 1981-09-21 Serum separating apparatus

Country Status (1)

Country Link
JP (1) JPS5850963A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166157A (en) * 1983-03-14 1984-09-19 理化学研究所 Anti-thrombotic material comprising high-molecular electrolet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931081B1 (en) * 2008-05-14 2010-06-25 Direction Et Pirorites DEVICE FOR FILTRATION OF A COMPLEX LIQUID SUCH AS BLOOD, IN PARTICULAR APPLICABLE TO AN AUTOSFUSER

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367683A (en) * 1976-11-26 1978-06-16 Sartorius Membranfilter Gmbh Ultraafiltration apparatus
JPS5668458A (en) * 1979-11-08 1981-06-09 Terumo Corp Filter for body fluid
JPS5675169A (en) * 1979-11-22 1981-06-22 Terumo Corp Body fluid filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367683A (en) * 1976-11-26 1978-06-16 Sartorius Membranfilter Gmbh Ultraafiltration apparatus
JPS5668458A (en) * 1979-11-08 1981-06-09 Terumo Corp Filter for body fluid
JPS5675169A (en) * 1979-11-22 1981-06-22 Terumo Corp Body fluid filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166157A (en) * 1983-03-14 1984-09-19 理化学研究所 Anti-thrombotic material comprising high-molecular electrolet
JPH0558752B2 (en) * 1983-03-14 1993-08-27 Rikagaku Kenkyusho

Also Published As

Publication number Publication date
JPH0323181B2 (en) 1991-03-28

Similar Documents

Publication Publication Date Title
US4310416A (en) Plate type fluid treatment apparatus
EP0508645B1 (en) Filters and filter units
US4631130A (en) Plasma separator
EP0980285B1 (en) Filtration cassette article and filter comprising same
JP6136269B2 (en) Separation membrane element for water treatment
JPH11501866A (en) Filtration cassette and filter with this laminated
WO1988009200A1 (en) Flat film permeative membrane having protrusions, its production , and bodily fluid filter
JPS5935631B2 (en) Body fluid “filtration” device
WO2023134443A1 (en) Filtering device and method for filtering and removing viruses from protein-containing feed liquid
CN105536544A (en) Hollow-fiber membrane module
JPH0214721A (en) Waste liquor disc for film assembly
US4239625A (en) Potting pleated membrane
JPS5850963A (en) Serum separating apparatus
JP2015071159A (en) Separation membrane element
JP4986285B2 (en) Filtration method and apparatus for blood or blood components using leukocyte removal filter
JPS5962326A (en) Gas separation module
JP2800122B2 (en) Body fluid filtration device
JPS5928966A (en) Serum separating apparatus
JPH04144569A (en) Blood plasma separator
JPS63296804A (en) Flat membrane with protrusion and manufacture thereof
RU2029610C1 (en) Membrane apparatus for mass exchange and separation of liquid media
EP3998115A1 (en) Blood treatment filter
JPS6316146B2 (en)
JPS5827608A (en) Body liquid filter
JP4439634B2 (en) Disc filter cartridge that deforms in the same direction