JPS5850804A - High-sensitivity fm detection system - Google Patents

High-sensitivity fm detection system

Info

Publication number
JPS5850804A
JPS5850804A JP14882081A JP14882081A JPS5850804A JP S5850804 A JPS5850804 A JP S5850804A JP 14882081 A JP14882081 A JP 14882081A JP 14882081 A JP14882081 A JP 14882081A JP S5850804 A JPS5850804 A JP S5850804A
Authority
JP
Japan
Prior art keywords
frequency
signal
input
circuit
feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14882081A
Other languages
Japanese (ja)
Inventor
Tomozo Oota
智三 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP14882081A priority Critical patent/JPS5850804A/en
Publication of JPS5850804A publication Critical patent/JPS5850804A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/001Details of arrangements applicable to more than one type of frequency demodulator
    • H03D3/003Arrangements for reducing frequency deviation, e.g. by negative frequency feedback
    • H03D3/005Arrangements for reducing frequency deviation, e.g. by negative frequency feedback wherein the demodulated signal is used for controlling a bandpass filter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuits Of Receivers In General (AREA)
  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To reduce the amount of feedback when an FM input signal has a small frequency shift, and to obtain noise-improved demodulated picture quality, by inserting a nonlinear circuit into a feedback circuit for threshold improvement by a narrow band pass filter. CONSTITUTION:An FM signal modulated by a color TV signal is inputted from a terminal 7 and demodulated through a variable narrow band pass filter 9, a limiter 3, and a discriminator 4, but part of the demodulated signal is fed back to the filter 9 through a low-pass filter 6 for the improvement of a threshold level. When the input FM signal has a small frequency shift, an FM noise component is fed back to cause deterioration in picture quality. To prevent that, a nonlinear circuit 10 which varies in input and output amplitude ratio with an input amplitude level is inserted into the feedback circuit and when the input FM signal has a small frequency shift, the amount of the feedback is reduced, thereby improving the SN ratio of the output demodulated signal.

Description

【発明の詳細な説明】 本発明は、簡単な構成にょシ復p+信号の雑音特性を改
善する高感度FM復調方式に関するものである。   
               。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-sensitivity FM demodulation method that has a simple configuration and improves the noise characteristics of a demodulated p+ signal.
.

従来よシ周波数変調された信号を復調する最も簡単な方
法として、50回路又は遅延線を用いたディスクリミネ
ータによる周波数復調方式が古くから雉られよく用いら
れている。この場合のFM変調された入力信号のCJ(
キャリア電力対雑音電力比)に対す゛るFM復調(検波
)された復調信号のS/N (信号対維音比)はS/N
==cA−I (Iは定数)として表わされ、復調信号
のいは入力信号のQ乍に比例する。一方、とのC/Nは
雑音及び信号の帯域幅を制限する帯域通過F波器の通過
帯域幅で決牢され、その復調帯域幅Bは、FM信号の最
高変調周波数をfh1最大周波数偏移をΔfとするとB
り2(fh十Δf)として決められる。又通常この方式
によれば、c/′Nり10 dB程度まで前述のC/N
対SAの関係が保持され、それ以下のC/NにおいてS
Jは急激に劣化する。この点はスレ、シュホールド点と
呼ばれる。
Conventionally, as the simplest method for demodulating a frequency-modulated signal, a frequency demodulation method using a discriminator using a 50 circuit or a delay line has been widely used for a long time. CJ of the FM modulated input signal in this case (
The S/N (signal to fiber ratio) of the FM demodulated (detected) demodulated signal with respect to the carrier power to noise power ratio is
It is expressed as ==cA-I (I is a constant) and is proportional to the Q of the demodulated signal or input signal. On the other hand, the C/N of the FM signal is determined by the noise and the passband width of the bandpass F-wave generator that limits the signal bandwidth, and the demodulation bandwidth B is the maximum frequency deviation of fh1 from the highest modulation frequency of the FM signal. If Δf is B
It is determined as 2 (fh + Δf). Also, according to this method, the above-mentioned C/N can be reduced up to about 10 dB below c/'N.
The relationship with SA is maintained, and at a C/N below that, S
J deteriorates rapidly. This point is called the thread or shhold point.

特に本発明は、衛星通゛信におけるTV(映像)信号で
変調されたFM波の受信、復調に関するものであるが、
この場合、衛星通信回線は衛星の送信電力の制限、回線
伝搬路の安定性、地上受信設備の経済性の点から、衛星
通信に際する復調器の動作点はスレッシュホールド点付
近に設定される場合が多い。この為、時には環境状況の
変動で受信入力が減少し、受信点はスレッシュホールド
点以下の状態とな、9、TVモニタ上の復調画質はTV
信号特有のインノ9ルス雑音によシ著しく乱される。従
って、特に衛星通信においてはスレッシュホールドレベ
ルを改善する方法が非、常に重要な課題とされ、各方面
で広く検討されている。
In particular, the present invention relates to the reception and demodulation of FM waves modulated by TV (video) signals in satellite communications.
In this case, the operating point of the demodulator for satellite communication is set near the threshold point due to limitations on satellite transmission power, stability of the line propagation path, and economics of ground reception equipment. There are many cases. For this reason, sometimes the reception input decreases due to changes in the environmental situation, and the reception point is below the threshold point.9.The demodulated image quality on the TV monitor is
It is significantly disturbed by signal-specific noise. Therefore, particularly in satellite communications, methods of improving the threshold level are considered to be a very, very important issue, and are being widely studied in various fields.

ところで、スレッシュホールドの改善方法として従来か
ら種々の方式があるが、まず第1の実施例として第1図
の方式を示す。
Incidentally, there have been various methods for improving the threshold, and the method shown in FIG. 1 will be described as a first embodiment.

第1図は周波数帰還復調方式のブロック図を示し、1は
周波数変換器、2は狭帯域通過F波器、3はリミッタ、
回路、4は周波数ディスクリミネータ、5は電圧可変周
波数発振器、6は低域通過F波器、7はFM信号の入力
端子、8はFM信号の検波信号出力端子である。FM入
力信号は入力端子7よシ入シ、周波数変換器1、狭帯域
通過F波器2、リミッタ回路3、を通過した後、周波継
ディスクリミネータ4で検波され、その出力は検波信号
出力端子8よシ取シ出される。この時、周波数ディスク
リミネータ4の検波出力は低域通過F波器6にょシ復調
信号周波数成分以外の高域i音を除去された後、電圧可
変周波数発振器5へ入力される。
Figure 1 shows a block diagram of the frequency feedback demodulation system, where 1 is a frequency converter, 2 is a narrow band pass F-wave device, 3 is a limiter,
In the circuit, 4 is a frequency discriminator, 5 is a voltage variable frequency oscillator, 6 is a low-pass F wave generator, 7 is an FM signal input terminal, and 8 is an FM signal detection signal output terminal. The FM input signal enters the input terminal 7, passes through the frequency converter 1, the narrow band pass F wave device 2, and the limiter circuit 3, and then is detected by the frequency relay discriminator 4, and its output is the detected signal output. The terminal 8 is removed. At this time, the detected output of the frequency discriminator 4 is input to the voltage variable frequency oscillator 5 after high-frequency i-sounds other than the demodulated signal frequency components are removed by the low-pass F-wave generator 6 .

この電圧可変周波数発振器5の出力は周波数変換器1の
局部発振波として与えられ、周波数変換器1ではFM入
力信号と前記電圧可変周波数発振器5の出力信号との差
周波数成分を発生させ、狭帯域通過F波器へ送出する。
The output of the voltage variable frequency oscillator 5 is given as a local oscillation wave to the frequency converter 1, and the frequency converter 1 generates a difference frequency component between the FM input signal and the output signal of the voltage variable frequency oscillator 5. Sends to the passing F wave device.

以下、リミッタ回路3、周波数ディスクリミネータ4を
通って検線される。
Thereafter, the line is inspected through a limiter circuit 3 and a frequency discriminator 4.

即ち、以上説明した周波数帰還復調方式によれば、入力
端子7よシのFM入力信号の瞬時周波数変化(偏、移)
に対応して電圧可変周波数発振器5の出力である局部発
振波の周波数が同方向に変動して周波数変換器1に加え
られる為、周波数変換器1の出力信号はFM入力信号の
周波数偏移に比べて十分小さな周波数偏移をもつ信号と
なる。従って、狭帯域通過F波器2の狭い帯域でも信号
成分は通過することができる。又低域通過F波器−6で
除去された雑音周波数成分に対して電圧可変周波数発振
器5は応答することができず、−発振周波数は固定値を
呈することとなる。即ち周波数変換器1において、y入
力信号のうち上記低域通過済波器6・で除去された成分
と同じ周波数を変調周波数とするFM雑音成分に対して
は、電圧可変周波数発振器5の出力である局部発振波の
周波数が固定の値を呈する為、周波数変換器1の出力の
FM雑音変調成分はFM入力信号の躍雑音変調成分と同
じ大きさの周波数偏移を持つこととなる。従って、FM
入力信号の雑、音帯域幅はそのまま周波数変換器1で周
波数変換され送出されるが、狭帯域通過F波器2によシ
多くの雑音成分は除去される。以上の結果、FM入力信
号のC/Nは狭命域通過沖波器2で改善されて周波数デ
ィスクリミネータ4で復調される為、復調におけるスレ
ッシュホー4.rレベルを改11fることかできる。
That is, according to the frequency feedback demodulation method explained above, the instantaneous frequency change (deviation, shift) of the FM input signal from the input terminal 7
Correspondingly, the frequency of the local oscillation wave that is the output of the voltage variable frequency oscillator 5 changes in the same direction and is applied to the frequency converter 1. Therefore, the output signal of the frequency converter 1 changes depending on the frequency deviation of the FM input signal. The result is a signal with a sufficiently small frequency deviation. Therefore, the signal component can pass even in the narrow band of the narrow band pass F-wave device 2. Further, the voltage variable frequency oscillator 5 cannot respond to the noise frequency component removed by the low-pass F wave generator 6, and the oscillation frequency takes on a fixed value. That is, in the frequency converter 1, the output of the voltage variable frequency oscillator 5 is used for the FM noise component whose modulation frequency is the same frequency as the component removed by the low-pass wave generator 6 of the y input signal. Since the frequency of a certain local oscillation wave has a fixed value, the FM noise modulation component of the output of the frequency converter 1 has a frequency deviation of the same magnitude as the dynamic noise modulation component of the FM input signal. Therefore, F.M.
Although the noise and sound bandwidth of the input signal are frequency-converted by the frequency converter 1 and sent out as they are, many noise components are removed by the narrow band pass F-wave converter 2. As a result of the above, since the C/N of the FM input signal is improved by the narrow-pass transducer 2 and demodulated by the frequency discriminator 4, the threshold 4. You can change the r level to 11f.

第2図はスレッシュホールド改善のための第2の実施例
であるダイナミックトラッキングフィルタ方式のブロッ
ク図を示し、9は通過手心周波数が外部信号で変化し得
る狭帯域可変沖波器であシ、その他の記号は第1図と同
じものである。FM入力信号は入力端子7よシ入り、狭
帯域可変v波器9を通り、更にリミッタ回路3を通過後
、周波数ディスクリミネータ4によシFM検波され、検
波信号出力端子8よシ検波信号は取り出される。この時
、周波数ディスクリミネータ4の出力である検波信号は
低域通過p波器6によシ帯域制限されて狭帯域可変p波
器9に加えられ、該狭帯域可変ν波器90通過中心周波
数を変化させる。低域通過沖波器6は周波数ディスクリ
ミネータ4の出力である雑音を伴った検波信号のうち、
信号周波数成分を通過させ、他の高域雑音成分を除去す
る。この構成−において、入力端子2から入力されるF
M信号の瞬時周波数変化に追従して狭帯域可変ろ波器9
の通過中心周波数が変化するように制御される為、広帯
域な雑音を伴った信号のうち、低域通過F波器6を通過
する周波数と同じ範囲の変調周波数成分の信号は、狭帯
域可変F波器9で有効に取シ出され、−他の雑音成分は
狭帯域可変ろ波器9の特性によシ除却される。これらの
結果、FM入力信号のC/Nは改善され、リミッタ回路
3を通って周波数ディスクリミネー、夕4により検波さ
れるため、スレッシュホールドレベルが改善さレルOと
ころで、上述の従来方式において問題となるのは、カラ
ーTV信号FM復調特有の性質により、FM変調信号の
周波数偏移が小さいとき復調画質は雑音で乱され、特に
色雑音によシ画質の劣化を招くことである。周知のよう
に、カラーTV信号は輝度信号とカラーサブキャリア信
号とから成シ、そのぺ=゛スパント帯域幅は4.2 M
I(zまでに及ぶ広帯域な信号である。又TV信号は伝
達する被写体の種類によυペースパ′ンド信号の周波数
スペクトルは著しく変化し、特に画像の色の濃さく飽和
度)によりカラー、サラキャリア信号成分の振幅は大幅
に変化する。通常TV信号のFM 伝B Kはエンファ
シスが適用されるが、この場合、TV信号の低域部分即
ち主に輝度信号成分に対してはその振幅を減衰し、広域
部分即ち主にカラーサブキャリア成分に対してはそ゛の
振幅を増大してFM波の、変調信号としている。従って
、FM変調信号の最も大きな周波数偏移を与えるのは主
にカラーサブキャリア成分であシ、特にその内の代表的
、な信号であるカラーパー信号を伝達する場合その偏移
は最大となる。
Fig. 2 shows a block diagram of a dynamic tracking filter method which is a second embodiment for improving the threshold. The symbols are the same as in Figure 1. The FM input signal enters through the input terminal 7, passes through the narrow band variable V wave generator 9, further passes through the limiter circuit 3, is subjected to FM detection by the frequency discriminator 4, and outputs the detected signal from the detected signal output terminal 8. is taken out. At this time, the detected signal, which is the output of the frequency discriminator 4, is band-limited by the low-pass p-wave device 6 and applied to the narrow-band variable p-wave device 9, and the narrow-band variable p-wave device 90 passes through the center. Change the frequency. The low-pass wave transducer 6 detects the noise-containing detection signal output from the frequency discriminator 4.
Passes signal frequency components and removes other high-frequency noise components. In this configuration, F input from input terminal 2
A narrowband variable filter 9 follows the instantaneous frequency change of the M signal.
Since the passing center frequency of the filter is controlled to change, among signals with broadband noise, signals with modulation frequency components in the same range as the frequency passing through the low-pass F wave generator 6 are controlled to change by the narrow band variable F. The noise components are effectively extracted by the filter 9, and other noise components are eliminated by the characteristics of the narrow band variable filter 9. As a result, the C/N of the FM input signal is improved, and the frequency discriminator passes through the limiter circuit 3 and is detected by the filter 4, so the threshold level is improved. This is because due to the characteristics specific to FM demodulation of color TV signals, when the frequency deviation of the FM modulation signal is small, the demodulated image quality is disturbed by noise, and in particular color noise causes deterioration of the image quality. As is well known, a color TV signal consists of a luminance signal and a color subcarrier signal, and its spread bandwidth is 4.2 M.
It is a wideband signal that extends up to I (Z). Also, the frequency spectrum of the υ paced signal for TV signals changes significantly depending on the type of subject being transmitted, and in particular, the color and The amplitude of the carrier signal component varies significantly. Normally, emphasis is applied to the FM transmission BK of a TV signal, but in this case, the amplitude of the low frequency part of the TV signal, that is, mainly the luminance signal component, is attenuated, and the amplitude of the wide range part, that is, mainly the color subcarrier component, is attenuated. For this purpose, the amplitude is increased to produce an FM wave modulation signal. Therefore, it is mainly the color subcarrier component that gives the largest frequency shift of the FM modulation signal, and especially when transmitting the color par signal, which is a representative signal among them, the shift is maximum. .

しかし、通常の画像においては、カラーサブキャリア成
分は非常に小さく(はとんど白黒TV信号に近い)、周
波数偏移の小さ一場合もしばしば生じそ・ ここで、第2図に示す前記第2の従来実施例の方式(ダ
イナミックトラッキングフィルタ方式)を例にとってカ
ラーTV信号の復調について説明すると次のようになる
。第2図において、周波数ディスクリミネータ4で復調
されたTV信号を忠実に狭帯域可変ろ波器9に帰還させ
る為には、低域通過p波器6の帯域は少なくとも4.2
−までの通過特性を持たせなければならない。この時、
FM入力信号の内4.2 MHz内の変調周波数成分に
おける周波数偏移に従って前記帰還TV信号が狭帯域可
変ろ波器9の通過中心周波数を変化させ、狭帯域可変F
波器9−はFM入力信号のうちの上記周波数偏移信号成
分を有効に通過させ、リミッタ回路3、周波数ディスク
リミネータ4に至らしめる。しかし、この信号成分と同
一周波数の雑音成分も同時に有効に狭帯域可変E波器9
を通過し復調される。
However, in a normal image, the color subcarrier component is very small (almost like a black and white TV signal), and a small frequency shift often occurs. The demodulation of a color TV signal will be explained using the method of the second conventional embodiment (dynamic tracking filter method) as an example. In FIG. 2, in order to faithfully feed back the TV signal demodulated by the frequency discriminator 4 to the narrowband variable filter 9, the band of the low-pass p-wave filter 6 must be at least 4.2.
It must have a passage characteristic up to -. At this time,
The feedback TV signal changes the pass center frequency of the narrowband variable filter 9 according to the frequency shift in the modulation frequency component within 4.2 MHz of the FM input signal,
The frequency shifter 9- effectively passes the frequency-shifted signal component of the FM input signal to the limiter circuit 3 and frequency discriminator 4. However, this signal component and the noise component of the same frequency can also be effectively processed by the narrowband variable E-wavelength converter 9.
is passed through and demodulated.

今、伝送されるTV信号の輝度及びカラーサブキャリア
成分が低い場合を考えると、FM変調信号の周波数偏移
は小さく、周波数スペクトルとしてもその広がり小さい
ものとなる。この様な状態の場合、必要な伝送帯域幅は
本来狭くてもよい。ところがこの時FMi調信号の周波
数偏移が小さいことから周波数ディスクリミネータ4の
出力において信号成分は小さくなるが、雑音成分は何ら
減少しない。即ちこの時点での復調信号のいは低下して
いることになる。この場合、信号成分とベースバンド帯
域4.2 MHzに含まれる雑音成分は低域通過沖波器
6を通して狭帯域可変沖波器9に作用する為、FM入力
信号のうちとれらと同じ変調周波数成分をもつ信号及び
雑音成分は有効に周波数ディスクリミネータ4で復調さ
れる。これらの結果、復調されたTVモニ!上の画質に
對いて信号成分に比べて雑音成分が強調さん、特にカラ
ーサブキャーリアの振幅が小さく色の濃さが低い場合、
これ、らの雑音効果によシ色が発生して色雑音として作
用し、画質は著しく劣化する。
Now, considering the case where the brightness and color subcarrier components of the transmitted TV signal are low, the frequency shift of the FM modulation signal is small, and the frequency spectrum is also small. In such a situation, the required transmission bandwidth may be inherently narrow. However, since the frequency shift of the FMi tone signal is small at this time, the signal component becomes small in the output of the frequency discriminator 4, but the noise component does not decrease at all. In other words, the demodulated signal at this point has decreased. In this case, since the signal component and the noise component included in the baseband band of 4.2 MHz act on the narrowband variable frequency transducer 9 through the low-pass transducer 6, the same modulation frequency component as these in the FM input signal is transmitted. The signal and noise components contained in the signal are effectively demodulated by the frequency discriminator 4. As a result of these, the demodulated TV monitor! Regarding the image quality above, the noise component is emphasized compared to the signal component, especially when the amplitude of the color subcarrier is small and the color density is low.
Due to these noise effects, dark colors are generated and act as color noise, resulting in a significant deterioration of image quality.

上述のことは第1図に示す前記第1の従来実施例の場合
においても同じである。すなわちFM入力信号の周波数
偏移が小さい場合、周波数ディスクリミネータ4の出力
において信号成分は小さくなるが雑音成分は何ら減少せ
ず、復調信号のいは低下する。そして低域通過ろ波器6
を介して信号成分とベースバンド帯域4.2 MHzま
でに含まれ。る雑音成分は電圧可変周波数発振器5に作
用して局部発振を行い、周波数置−器1ではFM入力信
号と前記局部発振信号との差周波数成分を狭帯域通過F
波器2へ送シ、後段の周波数ディスクリミネータ4にて
復調を行う。従って、4.2 MHzまでの雑音周波数
成分が電圧可変周波数発振器5に作用するとともに、4
.2 MHz iでのFM入力信号に伴った変調雑音成
分は有効に周波数ディスクリミネータ4で復調、される
為、上記同様画質が著るしく劣化する。
The above is the same in the case of the first conventional embodiment shown in FIG. That is, when the frequency deviation of the FM input signal is small, the signal component at the output of the frequency discriminator 4 becomes small, but the noise component does not decrease at all, and the demodulated signal decreases. and low pass filter 6
Includes signal components through and baseband up to 4.2 MHz. The noise component acts on the voltage variable frequency oscillator 5 to perform local oscillation, and the frequency positioner 1 converts the difference frequency component between the FM input signal and the local oscillation signal into a narrow band pass F.
The signal is sent to the frequency discriminator 2 and demodulated by the frequency discriminator 4 at the subsequent stage. Therefore, noise frequency components up to 4.2 MHz act on the voltage variable frequency oscillator 5, and
.. Since the modulation noise component accompanying the FM input signal at 2 MHz i is effectively demodulated by the frequency discriminator 4, the image quality deteriorates significantly as described above.

本発明は上述の欠点を除去するため、従来の狭帯域ろ波
器によるスレッシュホールド改善方式の帰還回路に、入
出力振幅比が入力振幅レベルによ1シ変わる非直線回路
を挿入し、FM入力信号の周波数偏移の小さい時は帰還
量を減らして復調画質の雑音改善を計ったものであり以
下詳細に説明する。
In order to eliminate the above-mentioned drawbacks, the present invention inserts a non-linear circuit whose input/output amplitude ratio changes depending on the input amplitude level into the feedback circuit of the conventional threshold improvement method using a narrowband filter. When the frequency shift of the signal is small, the amount of feedback is reduced to improve noise in the demodulated image quality, and will be explained in detail below.

第3図は本発明の第1の実施例を示すブロック図を示し
、6は低域通過F波器、10は入出力振幅比が入力振幅
レベルに対して変化する非直線画   ゛を低域通過F
波器6を介して狭帯域可変ろ波器9に帰還し、“C/’
Nを改善することによるスレッシュホールドレベルの改
善の効果について説明した。
FIG. 3 shows a block diagram showing the first embodiment of the present invention, in which 6 is a low-pass F-wave device, and 10 is a non-linear image whose input/output amplitude ratio changes with respect to the input amplitude level. Passing F
It is fed back to the narrowband variable filter 9 via the wave filter 6, and the “C/′
The effect of improving the threshold level by improving N has been explained.

そこで問題となった点はFM入力信号の周波数偏移が非
常に小さい場合、帰還回路を通って耐入力信号の雑音成
分が狭帯域町変済波器9に帰還され、FM入力信号のこ
れらFM雑音成分全有効に狭帯域可変p波器9を通過さ
せ復調される結果画質が著しく劣化するということであ
った。そこでFM入力信号の偏移が十分小さい場合、自
動的に帰還回路を開放状態にす些ば、いの低下した憚調
信号が狭帯域可変ろ波器9に帰還することはなくなり、
上記問題点を解決することができる。第3図では周波数
ディスクリミネータ4の出力端から低域通過F波器6を
介して狭帯域可変ν波器9に入る帰還路に非直線回路1
0を挿入して、低域通過が波器6と非直線回路10にて
帰還5回路を構成している。尚、低域通過炉、波器6と
非直線回路1.0の接続の順序は第3図にて示す場合と
順序を入れ換えることもできる。そしてFM入力信号の
偏移が小さい場合は非直線回路10によって周波数ディ
スクリ!ネータ4の出力端から狭帯域可変F波器9に至
る帰還路を開放状態に近づけ、FM入力信号の偏移が大
きい場合は非直線回路10によって前記帰還路を閉成状
態にし、復調信号の帰還を行わせるものである。
The problem here is that when the frequency deviation of the FM input signal is very small, the noise components of the input-resistant signal are fed back to the narrowband converter 9 through the feedback circuit, and these FM input signal All of the noise components are effectively passed through the narrowband variable p-wave device 9 and demodulated, resulting in a significant deterioration in image quality. Therefore, if the deviation of the FM input signal is sufficiently small, by automatically opening the feedback circuit, the reduced harmonic signal will not be fed back to the narrowband variable filter 9.
The above problems can be solved. In FIG. 3, a nonlinear circuit 1 is connected to the feedback path from the output end of the frequency discriminator 4 to the narrowband variable ν wave generator 9 via the low-pass F wave generator 6.
0 is inserted, and the low-pass waveform generator 6 and the nonlinear circuit 10 constitute a feedback 5 circuit. Incidentally, the order of connection of the low-pass furnace, the wave device 6, and the nonlinear circuit 1.0 can be changed from that shown in FIG. 3. When the deviation of the FM input signal is small, the frequency discretization is performed by the nonlinear circuit 10! The feedback path from the output end of the converter 4 to the narrowband variable F wave generator 9 is brought close to an open state, and when the deviation of the FM input signal is large, the feedback path is closed by the nonlinear circuit 10, and the demodulated signal is This is to make them return home.

第4図は非直線回路10の入力信号の振幅S、に対する
出力信号の振幅S。の特性を示す。非直線回路10は入
力信号の振幅S、の小さい領域では出力信号S。は゛得
られず、入力信号の振幅町のレベルがある程度大なる領
域で出力信号S0が得られる特性を有するものである。
FIG. 4 shows the amplitude S of the output signal relative to the amplitude S of the input signal of the nonlinear circuit 10. shows the characteristics of The nonlinear circuit 10 outputs an output signal S in a region where the amplitude S of the input signal is small. It has a characteristic that an output signal S0 is obtained in a region where the amplitude level of the input signal is large to some extent.

この非直線回路10の特性曲線の湾曲の度合は、所望の
雑音改善の度合と、復調信号の歪み許容度との関係によ
り決められる。
The degree of curvature of the characteristic curve of the nonlinear circuit 10 is determined by the relationship between the desired degree of noise improvement and the distortion tolerance of the demodulated signal.

即ち第4図に示す特性をもった非直線回路10において
は、FM入力信号の偏移が小さい場合、復調信号である
入力信号の振幅Siは小さく出力信号Sは得られず、狭
帯域可変F波器9には復調信号の帰還は行われないが、
復調信号である入力信号の振幅S、が大きくなると出力
信号S0が発生し、狭帯域可変ろ波器9に対する復調信
号の帰還が行われる。
That is, in the nonlinear circuit 10 having the characteristics shown in FIG. 4, when the deviation of the FM input signal is small, the amplitude Si of the input signal, which is the demodulated signal, is small and the output signal S cannot be obtained, and the narrow band variable F Although the demodulated signal is not fed back to the wave generator 9,
When the amplitude S of the input signal, which is the demodulated signal, becomes large, an output signal S0 is generated, and the demodulated signal is fed back to the narrowband variable filter 9.

第4図に示す特性をも、た非直線回路1θを実方向に並
列接続されており、この非直線回路10が信号の入出力
端子Ae Bによって第、3図に示す!還路5に直列に
挿入される。第5図に示す回路構成においては、入力信
号の振幅Siが小さい場合、ダイオードD1.D2は高
抵抗を示し、負荷Rには電流が流れず出力信号S0は得
られないが、人力信号の振幅S、がある程度大きくなる
と、ダイオードD、又はD2のいずれかの抵抗値が低く
なシミ流が流れる。その結果負荷Rには出力信号の振幅
(電圧)Soが、発生する。従って第4図に示す特性を
もつ非直線回路10を得ることができる。又この場合、
第5図には示されていないが、ダイオードD1.D2に
それぞれバイアス電圧を印加することによシ、該2つの
ダイオードD、 、 D2の動作点を任意に調整して第
4図に示す特性曲線の形状を変える。ことができる。
Non-linear circuits 1θ having the characteristics shown in FIG. 4 are connected in parallel in the real direction, and this non-linear circuit 10 has the characteristics shown in FIG. 3 through signal input and output terminals Ae and B. It is inserted in series in the return path 5. In the circuit configuration shown in FIG. 5, when the amplitude Si of the input signal is small, the diodes D1. D2 exhibits high resistance, and no current flows through the load R, making it impossible to obtain the output signal S0. However, when the amplitude S of the human input signal increases to a certain extent, the resistance value of either diode D or D2 becomes low. The flow flows. As a result, the amplitude (voltage) So of the output signal is generated in the load R. Therefore, a nonlinear circuit 10 having the characteristics shown in FIG. 4 can be obtained. Also in this case,
Although not shown in FIG. 5, the diode D1. By applying bias voltages to D2, the operating points of the two diodes D, , D2 are arbitrarily adjusted, and the shape of the characteristic curve shown in FIG. 4 is changed. be able to.

従って、第3図に示す本発明の第1の実施例においては
、FM入力信号の偏移が大きい場合、周波数ディスクリ
ミネータ4の出力である復調信号は低域通過ろ波器6に
よって高域雑音成分は除去されて狭帯域可変ろ波器9へ
帰還され、該狭帯域可変沖波器9の通過中心周波数を変
化させる。そして入力端子7から入力されるFM信号の
瞬時周波数変化に追従して狭帯域可i1P波器9の通過
中心周波数が変化するように制御される為、広帯域な雑
音を伴った信号のうち、低域通過p波器6を通過する周
波数と同じ範囲の変調周波数成分の信号は狭帯域可変沖
波器9で有効に取シ出され、他の雑音成分は狭帯域可変
ろ波器9の特性により除却される。その結果、FM入力
信号のいは改善され、リミッタ回路3を通って周波数デ
ィスクリミネータ4によシ検波される為、スレッシュホ
ールドレベルは改・善される。更に、FM入力信号の偏
移が小さい場合には、非直線回路10が開放状態となり
、いの低下した復調信号が帰還されることなく、上述し
たように信号成分に比べて雑音成分が強調されるという
、ことはなくなる。
Therefore, in the first embodiment of the present invention shown in FIG. The noise component is removed and fed back to the narrowband variable filter 9, and the passing center frequency of the narrowband variable filter 9 is changed. Since the passing center frequency of the narrowband i1P wave generator 9 is controlled to change in accordance with the instantaneous frequency change of the FM signal input from the input terminal 7, it is possible to A signal with a modulation frequency component in the same range as the frequency passing through the bandpass p-wave filter 6 is effectively extracted by the narrowband variable frequency filter 9, and other noise components are eliminated by the characteristics of the narrowband variable filter 9. be done. As a result, the FM input signal is improved and passed through the limiter circuit 3 and detected by the frequency discriminator 4, so that the threshold level is improved. Furthermore, when the deviation of the FM input signal is small, the nonlinear circuit 10 is in an open state, and the demodulated signal with a reduced level is not fed back, and the noise component is emphasized compared to the signal component as described above. This will no longer be the case.

又、前記低域通過F波@6D代シに、特定の周波数を通
過させる帯域通過p波器を使用し、例えばカラーサブキ
ャリア周波数などの特定の周波数を通過させることもで
きるO 以上説明したように、第1の実施例Sは狭帯域可変p波
器9、リミッタ回路8、周波数ディスクでは復調信号の
帰還を大きくして、Q乍の改善によるスレッシュホール
ドの改善を行う。従って、と同様のものであり、他の記
号は第1図に示すも域雑音成分を除去された復調個毎に
よって電圧可変周波数発振器5を動作させて局部発振さ
せ、周波数変換器1にて該局部発振信号、j1′M入力
信号との差周波数成分を発生させて、狭帯域F波器2、
リミッタ回路3を通って周波数ディスクリミネータ4で
復調するものである。
Furthermore, it is also possible to use a band-pass P-wave device that passes a specific frequency in the low-pass F-wave @6D frequency, and for example, it is possible to pass a specific frequency such as a color subcarrier frequency. In addition, in the first embodiment S, feedback of the demodulated signal is increased in the narrowband variable p-wave device 9, the limiter circuit 8, and the frequency disk, and the threshold is improved by improving the Q factor. Therefore, the other symbols are the same as those shown in FIG. Generates a difference frequency component between the local oscillation signal and the j1'M input signal, and generates a narrowband F wave generator 2,
The signal passes through a limiter circuit 3 and is demodulated by a frequency discriminator 4.

本第2の実施例についても第1の実施例で述べたことと
同様の原理により復調雑音持切が改善される。即ち、F
M信号め周波数偏移が小さい場合、第1図の従来方式で
低域通過F波器6を通して帰還される雑音成分によh電
圧可変周波数発振器5は制御され、その雑音による発振
周波数の変化はFM入力信号に伴った雑音による周波数
変化と同方向に作用する。その為、それらの雑音成分は
狭帯域通過F波器2を有効に通過し復調される。一方、
信号による周波数偏移はこの場合小さい為、電圧可変周
波数発振器5への検波信号成分の帰還は小さく、むしろ
電圧可変“□発′−振器5の発振周波数は固定の状態で
よい。それらの結果、入力信号のいが低い場合、上記雑
音検波成分は大きく、復6図に示す非直線回路1oは、
信号の周波数偏移が小さくしたがって周波数、ディスク
リミネータ4の検波信号が小さい時、電圧可変周波数発
振器5への帰還量は小さくなル、問題となる上記の検波
雑音による帰還は小さくなる結果、周波数ディスクリミ
ネータ4からの検波雑音成分は改善され、復調画質の改
善が計られる。
The second embodiment also improves demodulation noise retention based on the same principle as described in the first embodiment. That is, F
When the frequency deviation of the M signal is small, the voltage variable frequency oscillator 5 is controlled by the noise component fed back through the low-pass F wave generator 6 in the conventional method shown in FIG. 1, and the change in the oscillation frequency due to the noise is It acts in the same direction as the frequency change due to noise accompanying the FM input signal. Therefore, those noise components effectively pass through the narrow band pass F-wave unit 2 and are demodulated. on the other hand,
Since the frequency deviation due to the signal is small in this case, the feedback of the detected signal component to the voltage variable frequency oscillator 5 is small, and rather the oscillation frequency of the voltage variable oscillator 5 may be kept in a fixed state.These results , when the intensity of the input signal is low, the above-mentioned noise detection component is large, and the nonlinear circuit 1o shown in FIG.
When the frequency deviation of the signal is small and the detection signal of the discriminator 4 is small, the amount of feedback to the voltage variable frequency oscillator 5 is small.As a result, the feedback due to the above-mentioned detection noise, which is a problem, becomes small. The detection noise component from the discriminator 4 is improved, and the demodulated image quality is improved.

ここで第6図に示す非直線回路1oは前記第1の実施例
において第4図、第5図について説明したものと同じで
あるので省略する。
Here, the non-linear circuit 1o shown in FIG. 6 is the same as that explained with reference to FIGS. 4 and 5 in the first embodiment, so a description thereof will be omitted.

本発明は、従来の周波数帰還方式又はダイナミックトラ
ッキングフィルタ方式等のFMi調方式の信号帰還回路
に入出力振幅比が入力振幅レベルによシ変わる非直線回
路を用い、帰還量をFM入力信号の偏移の大きさにより
i化させている。その結果、特にカラーTV信号でFM
変調された信号の復調に際し、スレッシュホールドレベ
ルの改善と共に更に復調画質の雑音改善が行われること
になる為、衛星受信−置の復調器として特に有効に利用
することができる。
The present invention uses a non-linear circuit whose input/output amplitude ratio changes depending on the input amplitude level of a signal feedback circuit of an FMi modulation method such as a conventional frequency feedback method or a dynamic tracking filter method. It is changed to i depending on the size of the shift. As a result, FM
When demodulating a modulated signal, not only the threshold level is improved, but also the noise of the demodulated image quality is improved, so it can be used particularly effectively as a demodulator for a satellite reception station.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の復調方式で$る周波数帰還方式のブロッ
ク図、第2図は従来の復調方式であるダイナミックトラ
ッキング方式のfロッ?図、第3図は本発明の第1の実
施例のブロック図、第4図゛は非直線回路10の特性を
示す説明図、第5図は非直線回路10の実施例を示す回
路図、第6図は本発明の第2の実施例のブロック図であ
る。 1・・・周波数変換器、2・・・狭帯域通過p波器、3
・・・リミッタ回路、4・・・周波数ディスクリミネー
タ、500.電圧可変周波数発振器、6・・・低域通過
p波器、2・・・FM信号の入力端子、8・・・FM信
号の検波出力端子、9・・・狭帯域可変ろ波器、lO・
・・非直線回路、Dl、 D2・・・ダイオード。 第3図 第5図 1 第6図 17一
Figure 1 is a block diagram of a conventional demodulation method using frequency feedback, and Figure 2 is a block diagram of a conventional demodulation method using dynamic tracking. 3 is a block diagram of the first embodiment of the present invention, FIG. 4 is an explanatory diagram showing the characteristics of the nonlinear circuit 10, and FIG. 5 is a circuit diagram showing an embodiment of the nonlinear circuit 10. FIG. 6 is a block diagram of a second embodiment of the invention. 1... Frequency converter, 2... Narrow band pass p-wave converter, 3
...Limiter circuit, 4...Frequency discriminator, 500. Voltage variable frequency oscillator, 6...Low pass p wave filter, 2...FM signal input terminal, 8...FM signal detection output terminal, 9...Narrow band variable filter, lO.
...Nonlinear circuit, Dl, D2...diode. Figure 3 Figure 5 Figure 1 Figure 6 17-

Claims (2)

【特許請求の範囲】[Claims] (1)  FM信号の入力端子、周波数変換μ、狭帯域
通過ろ波器、リミッタ回路、周波数ディスクリミ録−タ
、FM検波出力端子を直列接続し、更に前記周波数ディ
スクリミネータの出力端を信号周波数成分を通温させる
低域通過P波器又は帯域通過p波器と、非直線回路とを
直列に接続してなる帰還回路を介して電圧可変周波数発
振器に接続し、前記非直線回路において該非直線回路の
入力振幅(、)と出力振幅(b)とを前記入力振幅(、
)が大きくなるにつれて−の値が大きくなるように帰還
量を変化させて前記周波数ディスクリミネータから得ら
れる検波信号を前記電圧可変周波数発振器に送シ、該電
圧可変周波数発振器の出力である局部発振信号を前記周
波数変換器に与え、該周波数変換器にて前記局部発振信
号とFM入力信号との差周波数成分を発生させ、該差周
波数成分を前記の狭帯域F波器、リミッタ回路、周波数
ディスZリミネータに通してFM検波を行うことを特徴
とする高感度FM検波方式。
(1) Connect the FM signal input terminal, frequency conversion μ, narrow band pass filter, limiter circuit, frequency discriminator, and FM detection output terminal in series, and further connect the output terminal of the frequency discriminator to the signal A voltage variable frequency oscillator is connected to the voltage variable frequency oscillator through a feedback circuit formed by connecting a nonlinear circuit in series with a low-pass P-wave device or a band-pass P-wave device that heats frequency components, and the non-linear circuit is connected to the voltage variable frequency oscillator. The input amplitude (, ) and output amplitude (b) of the linear circuit are expressed as the input amplitude (,
) is increased so that the value of - becomes larger, and the detected signal obtained from the frequency discriminator is sent to the voltage variable frequency oscillator, and the local oscillation is the output of the voltage variable frequency oscillator. A signal is applied to the frequency converter, the frequency converter generates a difference frequency component between the local oscillation signal and the FM input signal, and the difference frequency component is applied to the narrowband F wave generator, limiter circuit, and frequency distributor. A high-sensitivity FM detection method characterized by performing FM detection through a Z liminator.
(2)  FM信号の入力端子、狭帯域可変F波器、リ
ミッタ回路゛、周波4数デイスクリミネータ、FM検波
出力端子を直列接続し、更に前記周波数ディスクリミネ
ータの出力端を信号周波数成分を通過させる低域通iF
波器又は帯域通過済波器と、非直線回路とを直列に接続
してなる帰還回路を介して前記狭帯域可変−ろ波器に帰
還接続し、前記非直線回路において該非直線回路の入力
振幅(、)と出力振幅(b)とを前記入力振幅(a)が
大きくなるにつれて−の値が大きくなるように帰還量を
変化させて前記周波数ディスクリミネータから得られる
検波信号を前記狭帯域可変F波器に帰還させ、該狭帯域
可変ろ波器の通過中心周波数を前記帰還信号によって変
化させてFM入力信号をF波し、前記のリミッタ回路、
周波数ディスクリミネータを通してFM検波を行うこと
を特徴とする高感度FM検波方式。
(2) Connect the FM signal input terminal, narrowband variable F wave device, limiter circuit, frequency 4-number discriminator, and FM detection output terminal in series, and further connect the output terminal of the frequency discriminator to the signal frequency component. Low frequency pass iF
The input amplitude of the non-linear circuit is connected to the narrow band variable filter via a feedback circuit formed by connecting a wave filter or a band-pass filter and a non-linear circuit in series, and the input amplitude of the non-linear circuit is (,) and the output amplitude (b) by changing the amount of feedback so that the - value increases as the input amplitude (a) increases, and the detected signal obtained from the frequency discriminator is adjusted to the narrow band range. Feedback to the F wave filter, change the passing center frequency of the narrowband variable filter by the feedback signal to make the FM input signal F wave, the limiter circuit,
A highly sensitive FM detection method characterized by performing FM detection through a frequency discriminator.
JP14882081A 1981-09-22 1981-09-22 High-sensitivity fm detection system Pending JPS5850804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14882081A JPS5850804A (en) 1981-09-22 1981-09-22 High-sensitivity fm detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14882081A JPS5850804A (en) 1981-09-22 1981-09-22 High-sensitivity fm detection system

Publications (1)

Publication Number Publication Date
JPS5850804A true JPS5850804A (en) 1983-03-25

Family

ID=15461445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14882081A Pending JPS5850804A (en) 1981-09-22 1981-09-22 High-sensitivity fm detection system

Country Status (1)

Country Link
JP (1) JPS5850804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7469127B2 (en) 2004-09-03 2008-12-23 Denso Wave Incorporated Noncontact information carrier reader and method of reading information stored in a noncontact information carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7469127B2 (en) 2004-09-03 2008-12-23 Denso Wave Incorporated Noncontact information carrier reader and method of reading information stored in a noncontact information carrier

Similar Documents

Publication Publication Date Title
EP0064819B1 (en) An fm signal demodulation system
US4531148A (en) High sensitivity FM signal demodulation system
US4405835A (en) Receiver for AM stereo signals having a circuit for reducing distortion due to overmodulation
CA1293798C (en) Picture quality indicator for satellite broadcasting receiver
US4943849A (en) Television transmission system having improved separation of audio and video spectra
EP0086839B1 (en) High-sensitivity fm demodulating system
US4403255A (en) FM/TV Automatic gain control system
US3290433A (en) Colour television transmitters
EP0135301B1 (en) Demodulation circuit from fm signals and demodulation system therefor
US2717956A (en) Reduction of quadrature distortion
JPS5850804A (en) High-sensitivity fm detection system
US5568305A (en) Heterodyne receiver provided with a frequency discriminator for coherent lightwave communications
EP0157460A2 (en) Closed circuit television system
EP0438224A2 (en) Transmission apparatus
Baghdady The theory of FM demodulation with frequency-compressive feedback
JPS6250027B2 (en)
Palmer et al. Simulation of tv transmission over the communications satellite channel
JPH0122763B2 (en)
JPS6027208A (en) Demodulating method of frequency-modulated signal
EP0563167B1 (en) Compatible non linear pre-emphasis for composite video signals
JPS6250028B2 (en)
KR830000899B1 (en) Frequency tracking circuit
JP2825163B2 (en) Wired transmission device
JPS62281685A (en) High sensitivity fm demodulator
JPH01108802A (en) Fm signal demodulator