JPS5850786A - Lateral mode excitation type gas laser device - Google Patents

Lateral mode excitation type gas laser device

Info

Publication number
JPS5850786A
JPS5850786A JP14873181A JP14873181A JPS5850786A JP S5850786 A JPS5850786 A JP S5850786A JP 14873181 A JP14873181 A JP 14873181A JP 14873181 A JP14873181 A JP 14873181A JP S5850786 A JPS5850786 A JP S5850786A
Authority
JP
Japan
Prior art keywords
gas flow
dielectric electrode
laser
laser device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14873181A
Other languages
Japanese (ja)
Inventor
Masao Hishii
菱井 正夫
Masaaki Tanaka
正明 田中
Yukio Sato
行雄 佐藤
Haruhiko Nagai
治彦 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14873181A priority Critical patent/JPS5850786A/en
Publication of JPS5850786A publication Critical patent/JPS5850786A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition

Abstract

PURPOSE:To greatly increase the maximum output power of main discharge, and attain the high power output of laser resulting in the realization of high efficiency laser oscillation, by remarkably reduce the gas flow turbulence due to a dielectric electrode. CONSTITUTION:A rectifying member 14 is mounted on the cylindrical dielectric electrode 6. Since the gas flow turbulence due to this electrode arrangement is remarkably reduced, the instability of the main discharge due to the gas flow turbulence is prevented, and the maximum output power greatly increases. Under the normal typical laser operating condition, the output power increases approx. twice, and therefore the laser output also increases approx. twice. Simultaneously, the set position for the dielectric electrode particularly in the direction of gas flow can be arbitrarily set. Since the gas flow turbulence is greatly reduced by the streamlined dielectric electrode 15, the high output and high efficiency of the laser and simultaneously the improvement of lateral mode patterns can be realized.

Description

【発明の詳細な説明】 この発明は、無声放電補助グロー放電励起方式のガス循
環型レーザ装置に関し、無声放電々極(誘電体電極)の
流体抵抗を低減させることにより、投入グロー放電々力
の増大を図ったものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas circulation type laser device using a silent discharge assisted glow discharge excitation method. This is an attempt to increase the number of employees.

従来のこの種レーザの代表的な例として、光軸、主放電
、ガス流の各方向が互いにはソ垂直な構成の、いわゆる
3軸直交屋の002レーザがあった。
A typical example of a conventional laser of this type is a so-called 002 laser with three axes orthogonal to each other, in which the optical axis, main discharge, and gas flow directions are perpendicular to each other.

第1図は従来の装置の縦断面図、第2図はその田−円線
よりみた横断面図+、(1)は陽極、(2)は陰極、(
3)li絶縁性陰極基板、(4)dそれぞれの陰極に接
続された安定化抵抗、(5)は主放電を生。
Figure 1 is a longitudinal cross-sectional view of a conventional device, and Figure 2 is a cross-sectional view of the conventional device taken along the line. (1) is an anode, (2) is a cathode, (
3) li insulating cathode substrate, (4) d stabilizing resistor connected to each cathode, (5) produces main discharge.

成させるための直流高圧電源、(6)はガラス勢の誘電
体で被榎された誘電体電極、(7)は誘電体電極(6)
と陰極(2)iたは陽極口)との間に無声放電を生成さ
せるための高周波電源、(8)はレーザガス流の向き、
(9)は放電励起媒質、 aSは全反射ミラ−、aaは
レーザ光軸、Uはレーザビームである。
(6) is a dielectric electrode covered with a glass dielectric, (7) is a dielectric electrode (6)
and the cathode (2) i or anode port); (8) is the direction of the laser gas flow;
(9) is a discharge excitation medium, aS is a total reflection mirror, aa is a laser optical axis, and U is a laser beam.

次に動作について説明する。陽極(1)と陰極(2)と
の間の主放電ギャップの上流側に設置さ、れた誘電体電
極(6)とアースと9間に高周波電−(7> K −よ
り高電圧を印加すると、誘電体電極(6)と陰極(2)
マたは陽極(1)との間に無声放電(以後、8Dと呼ぶ
)が生成される。この8Dによシ予備電離されたレーザ
ガス(Co2− N2− H,混合ガス)は流れの向き
(8)に沿って主放電ギャップ部に欅入する。8.I)
補助放電によ)レーザ光軸方向(2)に一様に予備電離
され九ガス中で主放電の陽極(1)−陰極(2)間に直
流高圧電源(5)により放電々力を投入すると、均質で
かつ高電力密度の放電励起媒質(9)が生成される。こ
の放電励起媒質(9)を挾み全反射゛ミラー峙と適切な
反射率を有する部分反射ミラー■とを対向して配置させ
そと、レーザ発振が生じ2部分反射ミラーa珍からレー
ザビームa:1が出射する。
Next, the operation will be explained. A high voltage is applied between the dielectric electrode (6), which is installed upstream of the main discharge gap between the anode (1) and the cathode (2), and the ground and the high-frequency electric current (7>K). Then, the dielectric electrode (6) and the cathode (2)
A silent discharge (hereinafter referred to as 8D) is generated between the main electrode and the anode (1). The laser gas (Co2-N2-H, mixed gas) pre-ionized by this 8D flows into the main discharge gap along the flow direction (8). 8. I)
When a DC high-voltage power supply (5) is used to apply a discharge force between the anode (1) and cathode (2) of the main discharge in a gas that is pre-ionized uniformly in the direction of the laser optical axis (2) by auxiliary discharge, , a homogeneous and high power density discharge excitation medium (9) is produced. By sandwiching this discharge excitation medium (9) and placing a total reflection mirror (1) and a partial reflection mirror (2) having an appropriate reflectance facing each other, laser oscillation occurs and a laser beam (a) is emitted from the two partial reflection mirrors (a) and (a). :1 is emitted.

通常、誘電体電極(6)として断面が円形の鉄製パイプ
にガラスライニングした円筒状のもの。
Usually, the dielectric electrode (6) is a cylindrical piece made of a glass-lined iron pipe with a circular cross section.

またはガラスパイプの内部に給電のための金属細線を備
えたものが用いられる。・両方のタイプの電極とも、そ
の内部は脱イオン水により冷却される構瘉となっている
。8D補助放電の放電均質化と高電力密度化の作用を顕
著に現せしめ′るためには、8D電力として主放電のも
ののaS〜5−が必要となる。8D電力Wは、大路次の
関係式に従う。
Alternatively, a glass pipe with a thin metal wire for power supply inside is used. -Both types of electrodes are internally cooled with deionized water. In order to noticeably exhibit the effects of discharge homogenization and high power density of the 8D auxiliary discharge, an 8D power of aS~5- of that of the main discharge is required. The 8D power W follows Ohji's following relational expression.

%式% ここで、F(V)は電源電圧のゼロ−ピーク値Vの関数
、fは電源周波数、Cは誘電体のキャパシタンスである
。代表的なレーザ動作条件において、 f −1@ k
Hg 、 V −51cv f:仮定すれば、上述の8
D放電々力を投入するためには、10■直径以上の誘電
体電極(6)′が必要となる。ただし。
% Formula % Here, F(V) is a function of the zero-to-peak value V of the power supply voltage, f is the power supply frequency, and C is the capacitance of the dielectric. Under typical laser operating conditions, f −1@k
Hg, V -51cv f: If assumed, the above 8
In order to input the D discharge force, a dielectric electrode (6)' with a diameter of 10 mm or more is required. however.

誘電体は肉厚が約1mのガラスであるとした。The dielectric material was assumed to be glass with a wall thickness of approximately 1 m.

主放電ギヤ7プの上流!に10閤直径以上もの誘電体電
極(6)が存在すると、その電極(6)によるガス流の
顕著な乱れによシ、主放電の最大投入電力が制限される
。この制限を緩和罰せるためには、誘電体電極(6)を
主放電ギャップ部から上流側に遠く離して設置する方法
がある。しかしながら2、この方法を用いた場合の放電
励起媒質(9)はガス流方向に大きく広がシすぎて、共
、振器によるその媒質からの誘導放出光の拾い出し効率
が低下する。
Upstream of main discharge gear 7! If there is a dielectric electrode (6) with a diameter of 10 square meters or more, the maximum input power for the main discharge is limited due to significant disturbance of the gas flow caused by the electrode (6). In order to alleviate this restriction, there is a method in which the dielectric electrode (6) is installed far away from the main discharge gap part on the upstream side. However, 2. When this method is used, the discharge excitation medium (9) spreads too much in the gas flow direction, which also reduces the efficiency with which the oscillator picks up stimulated emission light from the medium.

従来のレーザ装置は以上のように構成されているので、
誘電体電極によるガス流の乱れが主放電の最大投入電力
を制限する。ガス流の乱れを緩和させるために、誘電体
電極をよシ上流側に移設した場合には、高効率なレーザ
発振が不可能となるなどの欠点があった。
Conventional laser equipment is configured as described above, so
Disturbance of the gas flow caused by the dielectric electrode limits the maximum input power for the main discharge. If the dielectric electrode was moved further upstream in order to alleviate the turbulence in the gas flow, there were drawbacks such as the inability to perform highly efficient laser oscillation.

この発明は上記のような従来のものの欠点を除去するた
めになされたもやで、誘電体電極によるガス流乱れを顕
著に低減させることによ)。
This invention was made to eliminate the above-mentioned drawbacks of the conventional method (by significantly reducing gas flow turbulence caused by dielectric electrodes).

主放電の投入最大電力を大幅に増大させ、したがって、
レーザの大出力化を達成させ、かつ放電励起媒質の断面
形状を適切に制御することにより、高効率レーザ発振を
実現させたレーザ装置を提供することを目的としている
Significantly increases the input maximum power of the main discharge and therefore
The object of the present invention is to provide a laser device that achieves high-efficiency laser oscillation by achieving high laser output and appropriately controlling the cross-sectional shape of a discharge excitation medium.

以下、この神明の実Q+として4例を取シ上げ、それぞ
れの図につりで説明する。、第3図において、軸は誘電
体!極(6)によるガス流oyすれを低減さ゛せるため
に配置した絶縁材で構成された整流部材である。第4図
において、a!9は流線臘形状の誘一体電一工ある。第
5図にお(、Nて。
Below, we will take up four examples of this Shinmei no Mi Q+, and explain them using each figure. , In Figure 3, the axis is a dielectric! This is a rectifying member made of an insulating material arranged to reduce the gas flow caused by the pole (6). In FIG. 4, a! 9 is a streamlined dielectric piece. In Figure 5 (, N).

復時はガス流の乱れが十分小さくなるような直径したも
のである。第6図において、 a’aは平板状倫属を誘
電体でサンドイッチ状に挾み、かつガス流方向と平行に
配置した平板状誘電体電極でjある。
The diameter is such that turbulence in the gas flow is sufficiently small during return. In FIG. 6, a'a is a plate-shaped dielectric electrode j which sandwiches a plate-shaped metal plate between dielectric materials and is arranged parallel to the gas flow direction.

第3図に示した例では、従来の円筒状誘電体電極(6)
に整流部材(14が取り付けられているので−1この電
極配置によるガス流の乱シ゛顕声に低減される。したが
って、ガス流乱れによる主放電の不安率化が防止され、
j!大−入電力が大1@に増大する。通常の典型的なレ
ーザ動作条件においては、投入電力が約2倍となるので
、レーデ出力もま友釣2倍となる。同時に、誘電体電極
の設定位置、特にガス流方向の位置を任意に設定できる
。すなわち、放電励起断面形状の制御がその電極の位置
によシ可能となる。この制御によシレーザ発振に適した
励起断面形状が得られるので、高効率発振が可能となシ
、かつレーザビームの横モードパターンの改善が実現で
きる。
In the example shown in Fig. 3, the conventional cylindrical dielectric electrode (6)
Since the rectifier member (14) is attached to -1, the turbulence of the gas flow due to this electrode arrangement is reduced to an obvious level. Therefore, the unstable rate of the main discharge due to the turbulence of the gas flow is prevented,
j! Large - Input power increases to large 1@. Under typical laser operating conditions, the input power is approximately doubled, so the laser output is also approximately doubled. At the same time, the position of the dielectric electrode, especially the position in the gas flow direction, can be set arbitrarily. That is, the discharge excitation cross-sectional shape can be controlled by the position of the electrode. This control makes it possible to obtain an excitation cross-sectional shape suitable for laser oscillation, thereby enabling highly efficient oscillation and improving the transverse mode pattern of the laser beam.

第4図に示した例においても、第3図で述べたと同様に
、流線型誘電体電極α啼によシガス流乱れが大幅に低減
できるので、レーザの大出力かつ高効率化と同時に横手
−ドパターンの改善を実挑できることが容易に判る。
In the example shown in Fig. 4, as described in Fig. 3, the turbulence of the gas flow can be greatly reduced by the streamlined dielectric electrode α, so that the laser output and efficiency can be increased and the Yokote It is easy to see that you can try to improve the pattern.

第5図に示した例は、従来例の円筒状誘電体電極(6)
の直径ヲ1/3と、し九小直径の誘電体電極(Leがガ
ス流方向に3列配置されたものである。
The example shown in Fig. 5 is a conventional cylindrical dielectric electrode (6).
The dielectric electrodes (Le) each having a diameter of 1/3 and 1/3 are arranged in three rows in the gas flow direction.

この場合、小直径の誘電体電極(IQの表面積の総和が
従来の誘電体電極(6)の表面積と等しくなるので、8
D投入電力もまえ等しく彦る。一方。
In this case, since the total surface area of the small diameter dielectric electrode (IQ) is equal to the surface area of the conventional dielectric electrode (6), 8
D input power is also the same. on the other hand.

小直径の誘電体電極alによるガス流の乱れは。The gas flow is disturbed by the small diameter dielectric electrode al.

その@極のガス流に対向する前面の面積が1/3となる
ので、大幅に低減される。したがって。
Since the area of the front surface facing the gas flow of the @ pole is reduced to 1/3, it is significantly reduced. therefore.

第5図に示した例においても、前に示したこの発明の2
つの実施例の場合とは望同様な効果が得られることが容
易に判る。第5図の例では。
In the example shown in FIG.
It is easily seen that the same effect as desired can be obtained compared to the case of the two embodiments. In the example of Figure 5.

3列配置させた小直径の誘電体電極員を示したが、その
列数は任意の複数列であればよく、この発明の効果が得
られる。
Although three rows of small-diameter dielectric electrode members are shown, any number of rows may be used to obtain the effects of the present invention.

第6図に示した例は、第5図の場合の小直径の誘電体電
極OeJの列数を無限に多くしたものと等価なも−ので
あり、平板状の誘電体電極α1を採用したもめである。
The example shown in FIG. 6 is equivalent to infinitely increasing the number of rows of small-diameter dielectric electrodes OeJ in the case of FIG. 5, and is an example in which a flat dielectric electrode α1 is used. It's a good thing.

当然のことながら、8D電力投入の観点から、この誘電
体電極aηの表面積は従来の誘電体電極(6)のそれと
はゾ等しくなるように設定されている。平板状の誘電体
電極aカによるガス流の乱れは無視できるので、前記3
例と同様に、この発明の効果が十分得られるこが判る。
Naturally, from the viewpoint of 8D power input, the surface area of this dielectric electrode aη is set to be equal to that of the conventional dielectric electrode (6). Since the disturbance in the gas flow caused by the flat dielectric electrode a can be ignored, the above 3.
As in the example, it can be seen that the effects of the present invention can be sufficiently obtained.

なお、上記実施例では、防接分割型p主放電廊極の場合
について述べ友が、@極分割型のものの場合、もしくは
陽極、陰極とも一体ものの場合であっても、上記実施例
と同様の効果が得られる。
In addition, in the above embodiment, the case of a shielded split type p main discharge corridor pole is described. Even if the case is a @ pole split type or the anode and cathode are integrated, the same method as in the above embodiment may be applied. Effects can be obtained.

また、上記4実施例では、光軸、主放電、ガス流の各方
向が互いにはり垂直な構成の、いわゆる3軸直交型のレ
ーザについて述べたが、生米を奏する。
Furthermore, in the above four embodiments, a so-called three-axis orthogonal type laser was described in which the optical axis, main discharge, and gas flow directions were perpendicular to each other.

以上のように、この発明はレーザガス流路内に配設され
下流位置に配設され九陽極および陰極との間で無−放電
を生成す忘誘電体電極を備えたものにおいて、上記誘電
体電極の断面形状を流体抵抗の少い形状としたことを特
徴とするもので、i#誘電体電極よるガス流の乱れが低
減するので、大出力かつ高効率で、その上横モードパタ
ーンの優れ九ガス循環型気体レーザ装置が得られる効果
がある。
As described above, the present invention is provided with a dielectric electrode disposed in a laser gas flow path at a downstream position and generating a non-discharge between an anode and a cathode. It is characterized by having a cross-sectional shape with low fluid resistance, which reduces turbulence in the gas flow due to the i# dielectric electrode, resulting in high output and high efficiency, as well as an excellent transverse mode pattern. This has the effect of providing a gas circulation type gas laser device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のレーザ装置を示す縦断面図。 第2図は第1図■−■線における横断面図、第る。 図において、(l)は陽極、(2)a陰極、(3)は絶
縁性陰極基板、(4は安定化抵抗、(5)は直流高圧電
源、(an誘電体電極、(7)は高周波電源、(8)は
レーザガス流の向き、(9)は放電励起媒質、鱒は全反
射ミラー、α力は部分反射ミラー、輪はレーザ光軸、1
1はレーザビーム、a◆は整流部材、 aSは流線型誘
電体電極、+1鴫は小直径の誘電体電極。 aηは平板状誘電体電極である。 なお2図中、同一符号はそれぞれ同一または相当部分を
示す。 出願人 工業技術院長石 坂 誠 − @2図 第3図 第4図 115図
FIG. 1 is a longitudinal sectional view showing a conventional laser device. FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1. In the figure, (l) is an anode, (2) a cathode, (3) is an insulating cathode substrate, (4 is a stabilizing resistor, (5) is a DC high voltage power supply, (an dielectric electrode, (7) is a high frequency power source, (8) is the direction of the laser gas flow, (9) is the discharge excitation medium, the trout is a total reflection mirror, the α force is a partial reflection mirror, the ring is the laser optical axis, 1
1 is a laser beam, a◆ is a rectifying member, aS is a streamlined dielectric electrode, and +1 is a small diameter dielectric electrode. aη is a flat dielectric electrode. Note that in the two figures, the same reference numerals indicate the same or corresponding parts. Applicant Makoto Ishizaka, Director of the Agency of Industrial Science and Technology - @Figure 2 Figure 3 Figure 4 Figure 115

Claims (4)

【特許請求の範囲】[Claims] (1)  レーザガス流路内に配設され下流位置に配設
された陽電極および陰極との間で無声放電を生成する誘
電体電極を備えたものにおいて。 上記誘電体電極の断面形状を流体抵抗の少い形状とした
ことを特徴とする横方向励起型゛ガスレーザ装置。
(1) In one equipped with a dielectric electrode that is disposed within the laser gas flow path and generates a silent discharge between an anode and a cathode that are disposed downstream. A lateral excitation type gas laser device, characterized in that the dielectric electrode has a cross-sectional shape with low fluid resistance.
(2)断面円筒形の誘電体電極の下流側に、絶縁材で形
成された整流部材を備えた特許請求の範囲第1項記載の
横方向励起型ガスレーザ装置0
(2) Laterally excited gas laser device 0 according to claim 1, comprising a rectifying member made of an insulating material on the downstream side of the dielectric electrode having a cylindrical cross section.
(3)  誘電体電極を複数の小径の部材で構成し。 かつレーザガスの流路にそって配列せる構成とした特許
請求の範囲第1項記載の横方向励起型ガスレーザ装置。
(3) The dielectric electrode is composed of multiple small diameter members. A lateral excitation type gas laser device according to claim 1, wherein said gas laser device is arranged along a laser gas flow path.
(4)−′1体′−極が平板状に形成され喪ものである
特許請求の範囲第1項記載の横方向励起型ガスレーザ装
置。
(4) A laterally pumped gas laser device according to claim 1, wherein the pole is formed into a flat plate shape.
JP14873181A 1981-09-22 1981-09-22 Lateral mode excitation type gas laser device Pending JPS5850786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14873181A JPS5850786A (en) 1981-09-22 1981-09-22 Lateral mode excitation type gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14873181A JPS5850786A (en) 1981-09-22 1981-09-22 Lateral mode excitation type gas laser device

Publications (1)

Publication Number Publication Date
JPS5850786A true JPS5850786A (en) 1983-03-25

Family

ID=15459340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14873181A Pending JPS5850786A (en) 1981-09-22 1981-09-22 Lateral mode excitation type gas laser device

Country Status (1)

Country Link
JP (1) JPS5850786A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606035A (en) * 1984-03-22 1986-08-12 Agency Of Industrial Science And Technology Lateral excitation type gas laser
DE3914919A1 (en) * 1989-05-06 1990-11-08 Heraeus Holding DISCHARGE DEVICE
JPH04146678A (en) * 1990-10-09 1992-05-20 Nec Corp Laser device
US9532134B2 (en) 2009-02-10 2016-12-27 Yamaha Corporation Sound pickup apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606035A (en) * 1984-03-22 1986-08-12 Agency Of Industrial Science And Technology Lateral excitation type gas laser
DE3914919A1 (en) * 1989-05-06 1990-11-08 Heraeus Holding DISCHARGE DEVICE
JPH04146678A (en) * 1990-10-09 1992-05-20 Nec Corp Laser device
US9532134B2 (en) 2009-02-10 2016-12-27 Yamaha Corporation Sound pickup apparatus

Similar Documents

Publication Publication Date Title
US4064465A (en) Laser cavities with gas flow through the electrodes
US5434881A (en) Diffusion-cooled CO2 stripline laser having reduced ignition voltage
JPH03151678A (en) Laser device
US5255282A (en) Open waveguide excimer laser
US4331937A (en) Stability enhanced halide lasers
US4677637A (en) TE laser amplifier
US20100239748A1 (en) Electrodes for generating a stable discharge in gas laser systems
US4449220A (en) Apparatus and method for deposition of electrical power in an electric discharge laser
JPS5850786A (en) Lateral mode excitation type gas laser device
US4387463A (en) Electrical discharge apparatus and a gas laser pumped by an electrical discharge through the gas
JP2002510883A (en) Laser having electrode assembly including arc suppression means
GB2107512A (en) Apparatus for producing a laser-active state in a fast subsonic flow
JPS6339111B2 (en)
CA1140240A (en) Transversely electrically excited atmospheric pressure gas laser working in pulses (tea laser)
JPS61160984A (en) Co2 laser oscillation device
EP0180480A2 (en) Gas lasers
JPS6341233B2 (en)
JPH0337318B2 (en)
JPS5851581A (en) Lateral excitation type gas laser
JPS6339113B2 (en)
JPS631086A (en) Gas laser oscillator
JPS62181482A (en) Excimer laser equipment
RU1777526C (en) Electric discharge laser with diffusion cooling
SU1132761A1 (en) Active element of gas laser
Turner Relations between preionization density distribution, electrode design, and efficiency in high‐pressure discharge‐excited gas lasers