JPS5850278B2 - Nenryyou Gas Seizouhouhou - Google Patents

Nenryyou Gas Seizouhouhou

Info

Publication number
JPS5850278B2
JPS5850278B2 JP13343075A JP13343075A JPS5850278B2 JP S5850278 B2 JPS5850278 B2 JP S5850278B2 JP 13343075 A JP13343075 A JP 13343075A JP 13343075 A JP13343075 A JP 13343075A JP S5850278 B2 JPS5850278 B2 JP S5850278B2
Authority
JP
Japan
Prior art keywords
gas
gasification
catalyst
reaction tower
reaction zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13343075A
Other languages
Japanese (ja)
Other versions
JPS5257204A (en
Inventor
美嗣 船木
俊憲 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Mining Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining Co Ltd, Mitsui Zosen KK filed Critical Mitsui Mining Co Ltd
Priority to JP13343075A priority Critical patent/JPS5850278B2/en
Publication of JPS5257204A publication Critical patent/JPS5257204A/en
Publication of JPS5850278B2 publication Critical patent/JPS5850278B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/26Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations
    • B01J8/28Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with two or more fluidised beds, e.g. reactor and regeneration installations the one above the other

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は重質油、特に減圧残渣油より燃料ガスを製造す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing fuel gas from heavy oil, particularly vacuum residue oil.

従来、LPGやナツタのごとき軽質な炭化水素類を接触
的水蒸気分解反応を行なわせガス化する方法は公知であ
る。
Conventionally, a method of gasifying light hydrocarbons such as LPG and Natsuta by subjecting them to a catalytic steam cracking reaction is well known.

これは通常酸化ニッケル系触媒を使用し、700〜85
0℃の温度において外熱式管状反応器により行なわれて
いるが、この方法では処理し得る原料炭化水素に制限が
あり、コンラドソン炭素値の高い重質炭化水素類の場合
は触媒上への炭素の析出が激しいため原料として用いる
ことができないとされている。
This usually uses a nickel oxide catalyst and has a
The process is carried out using an externally heated tubular reactor at a temperature of 0°C, but this method has limitations on the raw material hydrocarbons that can be treated, and in the case of heavy hydrocarbons with a high Conradson carbon value, the carbon on the catalyst is It is said that it cannot be used as a raw material because of severe precipitation.

これらの析出炭素は、炭化水素類の熱分解ガス化の際副
生ずるものであり、触媒の存在のもとに水蒸気と反応し
て水性ガスに変換されるものである。
These precipitated carbons are by-products during the thermal decomposition and gasification of hydrocarbons, and are converted into water gas by reacting with water vapor in the presence of a catalyst.

ところで前記固定床式接触的水蒸気分解ガス化法では触
媒の充填空隙率を大きくする必要から、どうしても反応
器単位体積あたりの触媒表面積が小さくなり、そのため
原料を分解ガス化する際に副生ずるスス、タール等の炭
素質物質が水性ガス化を受けにくく、コンラドソン炭素
値の大きい重質油などを処理しようとするとガス化速度
よりも炭素質の析出速度が大きいために運転が連続して
行なえなくなるのである。
By the way, in the fixed bed catalytic steam cracking gasification method, since it is necessary to increase the packing porosity of the catalyst, the surface area of the catalyst per unit volume of the reactor inevitably becomes small. Carbonaceous substances such as tar are difficult to undergo water gasification, and if you try to process heavy oil with a high Conradson carbon value, the rate of precipitation of carbonaceous substances is greater than the rate of gasification, making continuous operation impossible. be.

このような固定床式接触的水蒸気分解法の欠点を是正し
得るものとして流動床を用いて接触分解ガス化を行なう
ことが考えられる。
One possible solution to the shortcomings of the fixed bed type catalytic steam cracking method is to perform catalytic cracking and gasification using a fluidized bed.

流動床であれば触媒粒子の粒径な小さくすることができ
、反応器単位体積あたりの触媒表面積が大きくなる結果
、多量の副生炭素質をガス化することが可能である。
If a fluidized bed is used, the particle size of the catalyst particles can be reduced, and as a result, the surface area of the catalyst per unit volume of the reactor is increased, and as a result, it is possible to gasify a large amount of by-product carbonaceous matter.

この方法の例として、流動化ガスとして酸化性ガス(例
えば空気)を用い、部分燃焼法により分解ガス化を行な
わせる方法がある。
An example of this method is a method in which an oxidizing gas (for example, air) is used as a fluidizing gas, and decomposition and gasification are performed by a partial combustion method.

この方法は化石燃料を酸化力火シウムから成る粒子を含
む800〜950℃の温度範囲の第一流動化粒子床中で
化学量論量単化の酸素により部分的に燃焼させ、かくし
てこの化石燃料を可燃性ガスに変え且つ燃料中の実質的
に全ての硫黄をカルシウムと硫黄との固体化合物として
上記粒子に結合させること、上記可燃性ガスをこのガス
により流動化され且つ600℃以下に保った第二流動床
中を通過させ、かくして上記ガス中のタールを第二床中
の粒子上に凝縮させること、タールの凝縮した粒子を第
二床から第一床に戻し、部分酸化により可燃性ガスに変
換することから成っている。
This process involves partially combusting a fossil fuel with a stoichiometric amount of oxygen in a first fluidized bed of particles in the temperature range of 800-950°C containing particles consisting of oxidizing silium; into a flammable gas and bind substantially all of the sulfur in the fuel to the particles as a solid compound of calcium and sulfur, the flammable gas being fluidized by the gas and maintained below 600°C. passing through a second fluidized bed, thus condensing the tar in said gas onto the particles in the second bed, returning the condensed particles of tar from the second bed to the first bed, and partially oxidizing the combustible gas. It consists of converting into .

しかしながらこの方法によると生成する可燃性ガス中の
二酸化炭素の量が益々増大する欠点を持っており、窒素
ガスを除いたガス中の二酸化炭素の量は22〜30容積
%にも及ぶ。
However, this method has the disadvantage that the amount of carbon dioxide in the combustible gas produced increases, and the amount of carbon dioxide in the gas excluding nitrogen gas reaches 22 to 30% by volume.

従ってこの方法によるタールの回収及びガス化は良好な
手段であるとは云い難く、副生ずるタールはもつと二酸
化炭素を減少させるような方法でガス化させなげればな
らない。
Therefore, recovery and gasification of tar by this method cannot be said to be a good means, and the by-produced tar must be gasified by a method that reduces carbon dioxide.

その一つの手段として副生ずるタールを部分燃焼法でガ
ス化するのではなく、水蒸気との接触式分解反応により
ガス化する方法がある。
One method is to gasify the by-produced tar by a catalytic decomposition reaction with water vapor, instead of gasifying it by partial combustion.

本発明者らはかかる実情に鑑み重質油、ことに減圧残渣
油の流動接触分解によるガス化について鋭意研究を行な
った。
In view of this situation, the present inventors have conducted intensive research on the gasification of heavy oil, especially vacuum residue oil, by fluid catalytic cracking.

その結果従来の一基式流動床、あるいは二基式粒子循環
型流動床を用いて850〜900℃の温度範囲で適当な
ガス化触媒の存在のもとに前述の原料を供給して分解ガ
ス化を行なわせた場合には生成ガスの組成において十分
満足のいく結果が得られないことが明らかになった。
As a result, the above-mentioned raw materials were supplied in the presence of an appropriate gasification catalyst at a temperature range of 850 to 900°C using a conventional one-unit fluidized bed or a two-unit particle circulation type fluidized bed to generate cracked gas. It has become clear that when this process is carried out, it is not possible to obtain sufficiently satisfactory results regarding the composition of the produced gas.

即ち例えば触媒粒子強制循環流動床において減圧残渣油
を原料とし、反応塔流動床内温度を850〜870℃と
し、触媒としてアルカリ金属化合物、アルカリ土類金属
化合物から成る群から選択した1種以上の物質と周期律
表第■族、■族の化合物から成る群中の少なくとも2種
の物質、及び少なくとも1種の遷移金属化合物との混合
物から戒るものを使用し、水蒸気あるいは水蒸気と若干
の酸素との混合ガスを流動化ガスとして分解ガス化を行
ない、比較的高カロリーの燃料ガスを得ようとする時に
、水蒸気/原料比が小さいと反応は熱分解が支配的とな
る結果、生成ガスは重炭化水素類が多く、水素、一酸化
炭素などが少ない燃焼性のあまり良くないものになり、
同時にカーボン、タール等の副生炭素質が多量析出し著
しく装置運転の妨げとなる。
That is, for example, in a fluidized bed with forced circulation of catalyst particles, vacuum residue oil is used as a raw material, the temperature inside the fluidized bed of the reaction tower is set to 850 to 870°C, and one or more types selected from the group consisting of alkali metal compounds and alkaline earth metal compounds are used as a catalyst. Use a mixture of a substance and at least two substances from the group consisting of compounds of Groups I and II of the Periodic Table, and at least one transition metal compound, and use water vapor or water vapor and some oxygen. When attempting to obtain a relatively high-calorie fuel gas by decomposition gasification using a mixed gas with a mixture of It is high in heavy hydrocarbons and low in hydrogen and carbon monoxide, resulting in poor combustibility.
At the same time, a large amount of by-product carbonaceous substances such as carbon and tar precipitate, significantly interfering with the operation of the apparatus.

そこでどうしても水蒸気/原料比が大きくならざるを得
ないが、この結果前述の部分燃焼法と同様生成する二酸
化炭素の量が多くなり生成燃料ガスの総発熱量が減少す
る。
Therefore, the steam/raw material ratio inevitably increases, but as a result, the amount of carbon dioxide produced increases, similar to the above-mentioned partial combustion method, and the total calorific value of the produced fuel gas decreases.

このようにして得られた生成ガスは従来の吸収法によっ
てその二酸化炭素を除去し発熱量を高めることができる
が、除去された二酸化炭素はそのまま系外に出されてし
まうのでエネルギーの有効利用の観点から好ましいもの
とは云えない。
The generated gas obtained in this way can be used to remove carbon dioxide and increase its calorific value using conventional absorption methods, but the removed carbon dioxide is directly discharged from the system, making it difficult to use energy effectively. This cannot be said to be preferable from this point of view.

そこで本発明者らはかかる欠点を解消するため水蒸気に
よる接触分解ガス化法において使用水蒸気量を比較的少
量にし、二段流動床より構成されている第1ガス化反応
塔の第1段流動床で副生ずるスス、タール等の炭素質を
この流動床上部にあり、この反応塔の一部分である第2
段流動床に導き、ここをガス化反応温度よりはるかに低
温に保つことにより多量の副生炭素質を触媒粒子表面に
付着せしめ、この炭素付着触媒を別個に設けられた第2
ガス化反応塔に導き、ここで第1ガス化反応塔出ロガス
から除去された二酸化炭素をこの副生炭素質と反応せし
めて一酸化炭素に転換し、これを再び上記第1ガス化反
応塔出ロガスに編入することによりこの生成ガス中のC
O/ C02比を増大させ、一方この触媒を主として自
重により第1ガス化反応塔あるいは再生反応塔に戻して
循環使用することを特徴とする重質油、ことに減圧残渣
油よりの燃料ガス製造方法を提供せんとするものである
Therefore, in order to eliminate such drawbacks, the present inventors have reduced the amount of steam used in the catalytic cracking gasification method using steam to a relatively small amount. The carbonaceous materials such as soot and tar that are produced as by-products are removed from the second part of the reaction column, which is located in the upper part of this fluidized bed.
A large amount of by-product carbon is deposited on the surface of the catalyst particles by guiding the bed to a stage fluidized bed and keeping it at a temperature far lower than the gasification reaction temperature.
The carbon dioxide removed from the log gas output from the first gasification reaction tower is reacted with this by-product carbonaceous substance to convert it into carbon monoxide, which is then transferred again to the first gasification reaction tower. C in this produced gas by incorporating it into the output log gas
Fuel gas production from heavy oil, especially vacuum residue oil, characterized by increasing the O/C02 ratio and returning the catalyst mainly by its own weight to the first gasification reaction tower or regeneration reaction tower for circulation use. The purpose is to provide a method.

この際副生炭素質と二酸化炭素の反応に必要な熱は再生
塔を備えた装置であればこの再生塔出口流出ガスを間接
的に上記第2ガス化反応塔内流動床に導き、熱交換によ
りこの流出ガスの保有熱を供給することができる。
At this time, if the device is equipped with a regeneration tower, the heat required for the reaction between the by-product carbonaceous and carbon dioxide can be obtained by indirectly guiding the outflow gas at the outlet of the regeneration tower to the fluidized bed in the second gasification reaction tower for heat exchange. This makes it possible to supply the retained heat of this outflow gas.

また第1ガス化反応塔出ロガスから除去されたCO2を
第1ガス化反応塔内第1段流動床、あるいは第1段流動
床上部空間に間接的に導入し熱交換によってとのCO2
ガスの保有熱を高めた上で第2ガス化反応塔内流動床に
送入しても良い。
In addition, the CO2 removed from the log gas output from the first gasification reaction tower is indirectly introduced into the first stage fluidized bed in the first gasification reaction tower or into the space above the first stage fluidized bed, and the CO2 is converted into CO2 by heat exchange.
The gas may be fed to the fluidized bed in the second gasification reaction tower after increasing its retained heat.

また第2ガス化反応塔での反応に必要な熱の供給のため
酸化性ガス(例えば空気又は酸素)を第2ガス化反応塔
内流動床に導入し炭素質の一部を燃焼させることもでき
る。
In addition, in order to supply the heat necessary for the reaction in the second gasification reaction tower, an oxidizing gas (for example, air or oxygen) may be introduced into the fluidized bed in the second gasification reaction tower to burn part of the carbonaceous material. can.

あるいは同時に第1ガス化反応塔出ロガスの一部を第2
ガス化反応塔内流動床に導入し、このガスの燃焼により
反応熱を供給しても良い。
Alternatively, at the same time, a part of the log gas output from the first gasification reaction column is transferred to the second
The reaction heat may be supplied by introducing the gas into a fluidized bed in the gasification reaction tower and burning the gas.

更に第1ガス化反応塔上部の第2段反応帯は流動床に代
えて輸送層や移動層を用いても差支えない。
Furthermore, a transport bed or a moving bed may be used instead of the fluidized bed in the second stage reaction zone at the upper part of the first gasification reaction tower.

また上記触媒は粒径が50〜2000μであり、アルカ
リ土類金属化合物、アルカリ金属化合物から戒る群かも
選択した1種以上の物質と周期律表第■族、第■族の化
合物から成る群中の少なくとも1種の物質、及び少なく
とも1種の遷移金属化合物とを適当な割合で配合し、混
線・造粒したのちキルンで高温焼成したものを使用する
Further, the above catalyst has a particle size of 50 to 2000μ, and is a group consisting of one or more substances selected from the group consisting of alkaline earth metal compounds and alkali metal compounds, and compounds of Groups I and II of the Periodic Table. At least one substance among them and at least one transition metal compound are blended in appropriate proportions, mixed and granulated, and then fired at a high temperature in a kiln.

本発明を触媒として酸化カルシウム、酸化マグネシウム
を主成分としこれに酸性珪素と酸化鉄を鉄分が全体の約
15重量%になるように配合し、混線・造粒したのち、
キルンで高温焼成したものを使用した場合の実施例につ
いて、図面によって説明する。
Using the present invention as a catalyst, calcium oxide and magnesium oxide are the main components, and acidic silicon and iron oxide are mixed therein so that the iron content is about 15% by weight of the total, and after mixing and granulation,
An example in which a product fired at a high temperature in a kiln is used will be described with reference to the drawings.

第1図に示すように原料重質残油を管9の先端のノズル
により好ましくは管29によって導入される水蒸気と共
に第1ガス化反応塔の第1段反応帯1の固体触媒流動床
5に送入する。
As shown in FIG. 1, the raw material heavy residual oil is introduced into the solid catalyst fluidized bed 5 in the first stage reaction zone 1 of the first gasification reaction tower together with steam introduced through the nozzle at the tip of the pipe 9, preferably through the pipe 29. Send.

流動化ガス、例えば水蒸気は管20によって容器の底部
から流動床5中の触媒粒子を流動化し、且つ原料を適当
にガス化するのに十分な流速で供給される。
A fluidizing gas, e.g. steam, is supplied from the bottom of the vessel by pipe 20 at a flow rate sufficient to fluidize the catalyst particles in the fluidized bed 5 and to properly gasify the feedstock.

第1ガス化反応塔の第1段反応帯1に送入された原料は
流動床内温度850〜950℃の温度条件、大気圧以上
の圧力条件で接触的ガス化を受け、生成ガスは未反応水
蒸気及び副生ずるスス、タール等の炭素質物質を同伴し
て上昇気流となり、第1ガス化反応塔の中間部でくびれ
部により分けられた第2段反応帯2の固体触媒流動床6
の流動化ガスとなる。
The raw material fed into the first stage reaction zone 1 of the first gasification reaction tower undergoes catalytic gasification at a fluidized bed temperature of 850 to 950°C and a pressure above atmospheric pressure, and the produced gas is The reaction steam and by-produced carbonaceous substances such as soot and tar are entrained and become an upward flow, which flows into the solid catalyst fluidized bed 6 in the second stage reaction zone 2 separated by a constriction in the middle of the first gasification reaction tower.
becomes a fluidizing gas.

この流動床6内には熱交換用の伝熱管13が設置されて
おり、この伝熱管13に適当な冷却用流体、好ましくは
高圧水を流動床6内温度が350〜600℃に保たれる
ように通してあり、この床内で主に第1段反応帯1から
のガスに同伴してくる副生炭素質のコーキング反応が起
こる。
A heat exchanger tube 13 for heat exchange is installed in this fluidized bed 6, and a suitable cooling fluid, preferably high pressure water, is supplied to this heat exchanger tube 13 to maintain the temperature inside the fluidized bed 6 at 350 to 600°C. The coking reaction of the by-product carbonaceous material accompanying the gas from the first stage reaction zone 1 mainly takes place within this bed.

また必要であればこの第2段反応帯2の底部に設けられ
た管31によって酸化性ガス、又は水蒸気が送入される
Further, if necessary, oxidizing gas or water vapor is fed through a pipe 31 provided at the bottom of the second stage reaction zone 2.

生成分解ガスは管23から出て次の工程に移る。The generated decomposition gas exits from the pipe 23 and is transferred to the next step.

生成ガスに同伴して床6から飛散する触媒微粒子は第2
段反応帯2上部に設けられた図示しない気固分離装置(
例えばサイクロン)で捕集し、流動床6に戻される。
The catalyst fine particles scattered from the bed 6 along with the generated gas are the second
A gas-solid separator (not shown) provided above the stage reaction zone 2 (
For example, it is collected by a cyclone) and returned to the fluidized bed 6.

この気固分離装置は必ずしも反応塔内部にある必要はな
い。
This gas-solid separator does not necessarily need to be located inside the reaction tower.

生成したコークスは触媒粒子表面に付着し、このコーク
ス付着粒子は第2段反応帯2内流動床6の上部と第2ガ
ス化反応塔3内流動床7の下部とを連結している管18
中を主として自重により降下し、第2ガス化反応塔3内
にはいる。
The generated coke adheres to the surface of the catalyst particles, and the coke-adhered particles are transferred to the pipe 18 connecting the upper part of the fluidized bed 6 in the second stage reaction zone 2 and the lower part of the fluidized bed 7 in the second gasification reaction tower 3.
It descends mainly due to its own weight and enters the second gasification reaction tower 3.

一方第1ガス化反応塔の第2段反応帯2を出た生成分解
ガスは管23を通って吸収塔26にはいり、従来公知の
酸性ガスの除去方法によって分解生成ガス中の酸性ガス
が選択的に除去される。
On the other hand, the generated cracked gas leaving the second stage reaction zone 2 of the first gasification reaction tower passes through the pipe 23 and enters the absorption tower 26, where the acidic gas in the cracked gas is selected by a conventionally known acid gas removal method. removed.

この吸収塔で除去され、回収された二酸化炭素は管32
によって第1ガス化反応塔第1段反応帯1内流動床5、
又は流動床上部空間33、あるいは再生反応塔4内流動
床8、又は流動床上部空間34に設置された熱交換器1
2に導入され、ガスの保有顕熱な間接的に高めた上で管
10によって第2ガス化反応塔3の底部から送入され、
この第2ガス化反応塔3内流動床7の流動化ガスとなり
触媒粒子に付着したコークスと次式で表わされる反応に
従って一酸化炭素に転化される。
The carbon dioxide removed and recovered by this absorption tower is transferred to a pipe 32.
A fluidized bed 5 in the first stage reaction zone 1 of the first gasification reaction tower,
or the heat exchanger 1 installed in the fluidized bed upper space 33, or the fluidized bed 8 in the regeneration reaction tower 4, or the fluidized bed upper space 34.
2, the sensible heat of the gas is indirectly increased, and then the gas is fed from the bottom of the second gasification reaction tower 3 through the pipe 10,
The fluidized gas in the fluidized bed 7 in the second gasification reaction tower 3 is converted into carbon monoxide according to the reaction expressed by the following formula with the coke attached to the catalyst particles.

この一酸化炭素ガスは第2ガス化反応塔3の頂部より管
25によって第1ガス化反応塔の第2段反応帯2よりの
生成分解ガスに編入される。
This carbon monoxide gas is introduced from the top of the second gasification reaction tower 3 through a pipe 25 into the cracked gas produced from the second stage reaction zone 2 of the first gasification reaction tower.

また第2ガス化反応塔3内での反応に必要な熱量は再生
反応塔4の流出ガスを管24により第2ガス化反応塔3
内の流動床7内に設けられた熱交換器14内に流動床7
内温度が850〜950℃に保たれ得るような条件で送
ることによりまかなわれる。
In addition, the amount of heat required for the reaction in the second gasification reaction tower 3 is determined by directing the outflow gas from the regeneration reaction tower 4 to the second gasification reaction tower 3 through a pipe 24.
The fluidized bed 7 is placed in the heat exchanger 14 provided in the fluidized bed 7 in the heat exchanger 14.
This is covered by sending the material under conditions that allow the internal temperature to be maintained at 850 to 950°C.

また必要であれば第2ガス化反応塔3の下部から管30
によって酸化性ガス(例えば空気又は酸素)を送入して
も良い。
In addition, if necessary, a pipe 30 from the lower part of the second gasification reaction tower 3
An oxidizing gas (eg, air or oxygen) may be introduced by.

第2ガス化反応塔3中の触媒粒子は流動床T内の適当な
位置に設けられた連絡口から管19にはいり、主として
自重により管中を下方に移動し、吹込口16よりの流動
化流体(例えば水蒸気)の流れに伴われて管20によっ
て第1段反応帯1の底部から流動床5内にはいる。
The catalyst particles in the second gasification reaction tower 3 enter the pipe 19 from a communication port provided at an appropriate position in the fluidized bed T, move downward in the pipe mainly due to their own weight, and are fluidized through the blowing port 16. A fluid (for example, water vapor) enters the fluidized bed 5 from the bottom of the first reaction zone 1 through a pipe 20 along with the flow thereof.

流動床5内で反応に関与し、表面に適当量のコークスを
つげた触媒粒子は流動床5内の適当な位置に設置された
連絡口から管17にはいり、主として自重によってこの
管中な下方に移動し、管17最下端の送入口15から送
入される流動化流体(例えば水蒸気)の流れに伴われて
管21によって再生反応塔4の底部から流動床8内には
いる。
The catalyst particles that are involved in the reaction in the fluidized bed 5 and have an appropriate amount of coke on their surface enter the pipe 17 from a communication port installed at an appropriate position in the fluidized bed 5, and are transported downward in this pipe mainly due to their own weight. It enters the fluidized bed 8 from the bottom of the regeneration reaction tower 4 through the pipe 21 along with the flow of fluidizing fluid (for example, steam) fed from the inlet 15 at the bottom end of the pipe 17.

この流動床8はこの床底部よりの流体及び再生反応塔4
下部の管27から送入される酸化性ガス(例えば空気)
によって流動化されている。
This fluidized bed 8 is composed of fluid from the bottom of the bed and regeneration reaction tower 4.
Oxidizing gas (e.g. air) sent from the lower tube 27
It is fluidized by.

また必要であれば再生反応塔4の下部の管2Bから水蒸
気を送入しても良い。
Further, if necessary, steam may be introduced from the pipe 2B at the bottom of the regeneration reaction tower 4.

再生反応帯4内で送入される酸化性ガスにより触媒粒子
表面に付着したコークスが燃焼して粒子の保有顕熱が高
められる。
The oxidizing gas fed into the regeneration reaction zone 4 burns the coke attached to the surface of the catalyst particles, increasing the sensible heat possessed by the particles.

更に必要あれば流動床8下部に設置された管36から燃
料油あるいは燃料ガスを送入して燃焼させても良い。
Furthermore, if necessary, fuel oil or fuel gas may be fed through a pipe 36 installed at the bottom of the fluidized bed 8 for combustion.

流動床8において活性を回復すると共に加熱された触媒
粒子は流動床8内の適当な位置に設けられた下降管22
にはいり、主として自重により下方に移動し、管22最
下端の吹込口16から送入される流体(例えば水蒸気)
に伴われて第1ガス化反応塔の第1段反応帯1の底部か
ら流動床5内に送入されガス化反応に必要な熱を供給し
つつガス化反応を促進する。
The catalyst particles whose activity has been restored and heated in the fluidized bed 8 are transferred to a downcomer pipe 22 provided at an appropriate position within the fluidized bed 8.
Fluid (e.g. water vapor) enters the pipe and moves downward mainly due to its own weight, and is fed from the air inlet 16 at the lowest end of the pipe 22.
Along with this, it is fed into the fluidized bed 5 from the bottom of the first stage reaction zone 1 of the first gasification reaction tower, and accelerates the gasification reaction while supplying the heat necessary for the gasification reaction.

第2図は本発明の他の実施例を示すもので、第1ガス化
反応塔第2段反応帯2は前記実施例の如く流動床とせず
、第1段反応帯1より飛散してくる触媒微粒子による輸
送層を形成するようにし、管23から流出するコークス
を付着した触媒粒子は気固分離器3Tで同伴ガスと分離
された後第2ガス化反応塔3に落し込まれるようになっ
ており、その他は前記実施例と同様で前記実施例と同様
な部分には同一符号が付しである。
FIG. 2 shows another embodiment of the present invention, in which the second stage reaction zone 2 of the first gasification reaction tower is not made into a fluidized bed as in the previous embodiment, but the liquid is dispersed from the first stage reaction zone 1. A transport layer is formed by catalyst fine particles, and the catalyst particles adhering to coke flowing out from the pipe 23 are separated from the accompanying gas in the gas-solid separator 3T, and then are dropped into the second gasification reaction tower 3. The rest is the same as in the previous embodiment, and the same parts as in the previous embodiment are given the same reference numerals.

第3図は本発明の更に他の実施例を示すもので、本実施
例では再生反応塔を用いず第1ガス化反応塔あるいは第
2ガス化反応塔での反応に必要な熱の供給を化学量論比
以下の酸化性ガス(例えば空気又は赦素)を送入して次
式の発熱反応を起こすことにより燃料ガスを製造するも
のである。
FIG. 3 shows still another embodiment of the present invention, in which the heat necessary for the reaction in the first gasification reaction tower or the second gasification reaction tower is supplied without using a regeneration reaction tower. Fuel gas is produced by introducing an oxidizing gas (for example, air or hydrogen) in a proportion below the stoichiometric ratio to cause an exothermic reaction according to the following formula.

前記酸化性ガスは管37によって第1段反応帯1内流動
床5に送入される。
The oxidizing gas is introduced into the fluidized bed 5 in the first reaction zone 1 through a pipe 37.

また必要であれば管30によって第2反応塔内に導入さ
れるものであって、その他は前記実施例と同様である。
Further, if necessary, it is introduced into the second reaction tower through a pipe 30, and the rest is the same as in the previous embodiment.

而して本発明の実施例として表−1のような性状のガツ
チサラン減圧残渣油を原料とし、第1図に示すガス化装
置と同型で、第1ガス化反応塔の第1段反応帯内径41
.2im、第2段反応帯内径65.9皿、反応塔高さ5
10mm、第2ガス化反応塔内径41.2間、高さ22
0間、再生塔内径52.9關、高さ400mmの実験室
用装置によって表−2のような操作条件で分解ガス化を
行なった。
As an example of the present invention, Gatsuchisaran vacuum residue oil having the properties as shown in Table 1 is used as a raw material, and the gasification apparatus is of the same type as that shown in Fig. 1, and the inner diameter of the first reaction zone of the first gasification reaction tower is 41
.. 2im, second stage reaction zone inner diameter 65.9 dishes, reaction tower height 5
10mm, second gasification reaction tower inner diameter 41.2mm, height 22mm
Decomposition and gasification was carried out under the operating conditions shown in Table 2 using a laboratory apparatus having an inner diameter of 52.9 mm and a height of 400 mm.

表−1供給原料の性状 名 称 ガツチサラン減圧残渣油コンラドノ
ン炭素・wt% 21.4イ オ ウ
wt % 3.65 比 重 a 25 L 03ア
スファルテン分 wt% 8.3金属分 V ppm 492 Ni ppm 143 表−2 第1段反応帯流動床温度 第2段反応帯流動床温度 第2ガス化反応塔内流動床温度 再生反応塔内流動床温度 触媒循環速度 圧力(反応塔、再生塔内) H20/Cモル比 原料供給速度 880°C 450°C 880’C 905℃ 15〜30 ky/Hr 常圧 2.5 0.13 kg/Hr この実験の結果冷却された生成燃料ガスは吸収塔にはい
る前で次のような組成であった。
Table-1 Properties of feedstock Name Gatsuchisaran Vacuum residue oil Conradone Carbon/wt% 21.4 Sulfur
wt% 3.65 Specific gravity a 25 L 03 Asphaltene content wt% 8.3 Metal content V ppm 492 Ni ppm 143 Table-2 1st stage reaction zone fluidized bed temperature 2nd stage reaction zone fluidized bed temperature 2nd gasification reaction Fluidized bed temperature in the column Regeneration Fluidized bed temperature in the reaction column Catalyst circulation rate Pressure (in the reaction column and regeneration column) H20/C molar ratio Raw material supply rate 880°C 450°C 880'C 905°C 15-30 ky/Hr Normal Pressure 2.5 0.13 kg/Hr As a result of this experiment, the cooled generated fuel gas had the following composition before entering the absorption tower.

また5 i 75 kcal/Hm”のカロリー値を有
している。
It also has a calorie value of 5 i 75 kcal/Hm.

Vo1% H239,4 CO19,5 CO210,4 CH419,2 C2H410,3 C2H60,14 C3H60,10 c、、 0.56 H2S O,50 100,10 又比較例として第1ガス化反応塔の第2段反応帯、第2
ガス化反応塔を使わず表−1のガツチサラン減圧残渣油
を原料とし、表−2と同様の条件を採用して分解ガス化
を行なった。
Vo1% H239,4 CO19,5 CO210,4 CH419,2 C2H410,3 C2H60,14 C3H60,10 c,, 0.56 H2S O,50 100,10 Also, as a comparative example, the second stage of the first gasification reaction tower reaction zone, second
Decomposition and gasification was carried out using the Gatsuchisaran vacuum residue oil shown in Table 1 as a raw material without using a gasification reaction tower and using the same conditions as shown in Table 2.

生成ガスは吸収塔にはいる前にサンプリングし分析した
結果次の如き組成を有し、発熱量は4588kcaしN
dであった。
The generated gas was sampled and analyzed before entering the absorption tower and had the following composition, with a calorific value of 4588 kca and N
It was d.

Vo1% H241,7 CO9,4 CO220゜9 CH418,0 C2H48,6 C2H60,19 C30,08 C40,64 H2S O,60 ioo、it 以上の結果から本発明の方法を用いることにより燃焼性
が良く、発熱量の高い二酸化炭素含有量の低減した燃料
ガスが得られることが明らかである。
Vo1% H241,7 CO9,4 CO220゜9 CH418,0 C2H48,6 C2H60,19 C30,08 C40,64 H2SO O,60 ioo,it From the above results, the method of the present invention has good flammability, It is clear that a fuel gas with reduced carbon dioxide content, which has a high calorific value, is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料ガス製造方法の一実施例を示す概
略図、第2図及び第3図は夫々本発明の他の実施例を示
す概略図である。 1・・・・・・第1段反応帯、2・・・・・・第2段反
応帯、3・・・・・・第2ガス化反応塔、4・・・・・
・再生反応塔、5゜6・・・・・・固体触媒流動床、7
,8・・・・・・流動床、9゜10・・・・・・管、1
2・・・・・・熱交換器、13・・・・・・伝熱管、1
4・・・・・・熱交換器、15・・・・・・送入口、1
6・・・・・・吹込口、17,1B、19,20,21
.22,23゜24 、25・・・・・・管、26・・
・・・・吸収塔、27,2B。 29.30,31・・・・・・管、33 、34・・・
・・・流動床上部空間、36・・・・・・管、37・・
・・・・気固分離器。
FIG. 1 is a schematic diagram showing one embodiment of the fuel gas production method of the present invention, and FIGS. 2 and 3 are schematic diagrams showing other embodiments of the present invention, respectively. 1... First stage reaction zone, 2... Second stage reaction zone, 3... Second gasification reaction tower, 4...
・Regeneration reaction tower, 5゜6...Solid catalyst fluidized bed, 7
,8...Fluidized bed, 9゜10...Tube, 1
2... Heat exchanger, 13... Heat exchanger tube, 1
4... Heat exchanger, 15... Inlet port, 1
6...Inlet, 17, 1B, 19, 20, 21
.. 22, 23° 24, 25... tube, 26...
...Absorption tower, 27, 2B. 29.30,31...tube, 33,34...
...Fluidized bed upper space, 36...Pipe, 37...
...gas-solid separator.

Claims (1)

【特許請求の範囲】[Claims] 1 重質油、特に減圧残渣油から燃料ガスを大気圧以上
の圧力で製造する方法において、第1ガス反応塔の第1
段反応帯中にあるアルカリ金属化合物、アルカリ土類金
属化合物を主成分とする触媒粒子の床中へ原料を供給す
ること、この粒子を水蒸気又は水蒸気と酸化性ガスの混
合ガスの上昇流によって流動化させること、この流動反
応帯で850〜950℃の温度範囲で分解ガス化反応を
進行させること、生成する燃料ガスと副生ずるスス、タ
ール等の炭素質を上記流動化ガスとこれら生成ガス自体
の上昇力により第1ガス化反応塔内の第2段反応帯に送
ること、この第2段反応帯において第1段反応帯より揚
送されてくるスス、タール等の副生炭素質を350〜6
00℃の温度範囲で触媒粒子表面上にコークス化させる
こと、このコークス付着触媒を第2ガス化反応塔に送る
こと、該第2ガス化反応塔で上記第2段反応帯を出た生
成ガスから分離された二酸化炭素と上記コークス付着触
媒を840〜970℃で反応させ、この二酸化炭素を一
酸化炭素に転化させること、この主に一酸化炭素より成
るガスを上記第1ガス化反応塔出口生成ガスに編入する
こと、第2ガス化反応塔を出た触媒を第1段反応帯に戻
すことよりなる燃料ガス製造方法。
1 In a method for producing fuel gas from heavy oil, especially vacuum residue oil, at a pressure higher than atmospheric pressure, the first
Feeding raw materials into a bed of catalyst particles containing an alkali metal compound or alkaline earth metal compound as a main component in a stage reaction zone, and fluidizing the particles by an upward flow of steam or a mixed gas of steam and oxidizing gas. The decomposition and gasification reaction is allowed to proceed in this fluidized reaction zone at a temperature range of 850 to 950°C, and the produced fuel gas and carbonaceous substances such as by-produced soot and tar are combined with the fluidized gas and these produced gases themselves. The by-product carbonaceous substances such as soot and tar pumped up from the first stage reaction zone are sent to the second stage reaction zone in the first gasification reaction tower by the rising force of 350%. ~6
forming coke on the surface of the catalyst particles in a temperature range of 00°C; sending the coke-adhered catalyst to a second gasification reaction tower; and producing gas exiting the second stage reaction zone in the second gasification reaction tower. reacting the carbon dioxide separated from the carbon dioxide with the coke-adhered catalyst at 840 to 970°C to convert the carbon dioxide into carbon monoxide, and converting this gas mainly consisting of carbon monoxide to the outlet of the first gasification reaction tower. A method for producing fuel gas comprising incorporating the catalyst into the produced gas and returning the catalyst leaving the second gasification reaction tower to the first reaction zone.
JP13343075A 1975-11-06 1975-11-06 Nenryyou Gas Seizouhouhou Expired JPS5850278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13343075A JPS5850278B2 (en) 1975-11-06 1975-11-06 Nenryyou Gas Seizouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13343075A JPS5850278B2 (en) 1975-11-06 1975-11-06 Nenryyou Gas Seizouhouhou

Publications (2)

Publication Number Publication Date
JPS5257204A JPS5257204A (en) 1977-05-11
JPS5850278B2 true JPS5850278B2 (en) 1983-11-09

Family

ID=15104579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13343075A Expired JPS5850278B2 (en) 1975-11-06 1975-11-06 Nenryyou Gas Seizouhouhou

Country Status (1)

Country Link
JP (1) JPS5850278B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894849B1 (en) * 2005-12-20 2008-05-16 Inst Francais Du Petrole NEW REACTOR WITH TWO REACTIONAL ZONES FLUIDIZED WITH INTEGRATED GAS / SOLID SEPARATION SYSTEM

Also Published As

Publication number Publication date
JPS5257204A (en) 1977-05-11

Similar Documents

Publication Publication Date Title
US4298453A (en) Coal conversion
CA2755612C (en) Production of synthesis gas by heating oxidized biomass with a hot gas obtained from the oxidation of residual products
TWI640471B (en) A process for catalytic gasification of carbonaceous feedstock
US2884303A (en) High temperature burning of particulate carbonaceous solids
US20160102259A1 (en) Reforming methane and higher hydrocarbons in syngas streams
US8518334B2 (en) Coking apparatus and process for oil-containing solids
AU2007245732B2 (en) Gasification reactor and its use
WO2008013794A2 (en) Conversion of carbonaceous materials to synthetic natural gas by pyrolysis, reforming, and methanation
US4082520A (en) Process of producing gases having a high calorific value
US2538235A (en) Hydrogen manufacture
US3876392A (en) Transfer line burner using gas of low oxygen content
JPH0770569A (en) Gasification of carbonaceous substance
US20180312769A1 (en) First Stage Process Configurations in a 2-Stage BioReforming Reactor System
US2558746A (en) Production of carbon monoxide and other gases from carbonaceous materials
US2912315A (en) Fluidized solids town gas manufacturing process
PL166128B1 (en) Method of processing a material containing carbon into a finely grained carbon and methyl alcohol
US20070294943A1 (en) Gasification reactor and its use
JP2853548B2 (en) Vertical coal pyrolysis unit
JPS5850278B2 (en) Nenryyou Gas Seizouhouhou
EP0305047B1 (en) High temperature desulfurization of synthesis gas
JP2719424B2 (en) Coal gasification method and apparatus
US2590869A (en) Manufacture of gas
JPS6128602B2 (en)
JPS5831119B2 (en) Fluidized bed gasification equipment for coal or heavy oils
JPS58223602A (en) Steam reforming of heavy oil