JPS5850236Y2 - Heating furnace with cooling tube - Google Patents

Heating furnace with cooling tube

Info

Publication number
JPS5850236Y2
JPS5850236Y2 JP16249379U JP16249379U JPS5850236Y2 JP S5850236 Y2 JPS5850236 Y2 JP S5850236Y2 JP 16249379 U JP16249379 U JP 16249379U JP 16249379 U JP16249379 U JP 16249379U JP S5850236 Y2 JPS5850236 Y2 JP S5850236Y2
Authority
JP
Japan
Prior art keywords
furnace
cooling
specimen
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16249379U
Other languages
Japanese (ja)
Other versions
JPS5678997U (en
Inventor
庄喜 中野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP16249379U priority Critical patent/JPS5850236Y2/en
Publication of JPS5678997U publication Critical patent/JPS5678997U/ja
Application granted granted Critical
Publication of JPS5850236Y2 publication Critical patent/JPS5850236Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)

Description

【考案の詳細な説明】 本考案は加熱、冷却を反復する供試体試、@用の冷却筒
付き加熱炉に関する。
[Detailed Description of the Invention] The present invention relates to a heating furnace with a cooling tube for testing and testing specimens that repeat heating and cooling.

従来、加熱、冷却を繰返して供試体に作用させ、該供試
体の組織や強度の変化等を試験する加熱炉は、その冷却
を自然放冷にまがすものと、冷却用媒体カ゛スを炉内に
導入、排出して強制冷却を行なう改良型とか′用いられ
てきた。
Conventionally, heating furnaces that repeatedly heat and cool a specimen to test changes in its structure and strength, have been used to simulate natural cooling, and those that use a cooling medium in the furnace. An improved version has been used that performs forced cooling by introducing and discharging the air inside the tank.

第1図は後者に属する例として鋼管01の溶接部01
Aに対し加熱、冷却を反復作用させて強度を試験する加
熱炉02を示したもので、供試体である鋼管01を炉内
で支持し、がつそれに引張り負荷を加えるプルロッド0
3A、03Bが炉の両端部をそれぞれ貫通しており、炉
内の側壁側に沿って電熱コイル04を設け、強制冷却手
段として電磁弁05を具える空気圧送パイプ06を炉内
に連通させると共に炉内換気排出口07とそれに空気圧
で開く蝶型蓋08を設けている。
Figure 1 shows a welded part 01 of a steel pipe 01 as an example of the latter category.
This shows a heating furnace 02 in which the strength of A is tested by repeatedly heating and cooling it.A pull rod 0 supports a steel pipe 01 as a specimen in the furnace and applies a tensile load to it.
3A and 03B pass through both ends of the furnace, an electric heating coil 04 is provided along the side wall inside the furnace, and an air pressure feeding pipe 06 equipped with a solenoid valve 05 as a forced cooling means is communicated with the inside of the furnace. An in-furnace ventilation outlet 07 and a butterfly-shaped lid 08 that opens with air pressure are provided therein.

上記構成の加熱炉02によって、第2図に示すような供
試体加熱冷却試験温度サイクルを行なわせるのであるが
、加熱時には先行サイクルの冷却行程で略下限温度まで
冷却されている炉壁および広い炉内ガスの加温に大量の
熱量を消費しなければ供試体01の温度を所定の上限温
度まで上昇させることはできないから、加熱に多くの時
間と熱量とを要し、反対に強制冷却時には供試体01の
温度を所定の下限温度まで低下させるため炉壁と炉内ガ
ス全体の冷却にまた多くの時間と強制冷却手段の運転と
を要していた。
The heating furnace 02 with the above configuration is used to perform a temperature cycle of the test specimen heating and cooling test as shown in Fig. 2. During heating, the furnace walls and wide furnace are cooled to approximately the lower limit temperature in the cooling process of the preceding cycle. Since it is not possible to raise the temperature of specimen 01 to the predetermined upper limit temperature without consuming a large amount of heat to heat the internal gas, heating requires a lot of time and heat, while forced cooling requires a large amount of heat. In order to lower the temperature of specimen 01 to a predetermined lower limit temperature, it also required a lot of time and operation of the forced cooling means to cool the furnace wall and the entire gas inside the furnace.

しかして、この試験温度サイクルは1つの供試体(また
は同じ炉内で同時に行なうロッドの複数供試体)の試験
に8000サイクルをこえるようなものとなるので、加
熱および冷却時間の短縮と、これに伴なう消費電力の節
減とが強く要望されていた。
However, since this test temperature cycle requires over 8000 cycles to test one specimen (or multiple rod specimens conducted simultaneously in the same furnace), it is necessary to shorten heating and cooling times and to There has been a strong demand for the accompanying reduction in power consumption.

本考案は上記従来のものに対する要望を解決するために
なされたもので、炉内における供試体と、要すればその
支持機構とを囲む冷却筒を設けて炉内空域を区画すると
共に、強制冷却手段をこの冷却筒内の区画だけに適用し
て、供試体の冷却時に直接冷却すべき空域の縮小を計り
、かっ炉壁に及ふ゛冷却を間接的なものとしてその冷却
を遅延させ、次のサイクルにおける加温行程の発足時に
は従来のものより温度の高い炉壁と同じく温度の高い一
部(実状は大部を占める)空域の利用を可能にし、もっ
て作業能率が高く、かつ熱効率の高い加熱炉を提供する
ものである。
The present invention was made in order to solve the above-mentioned demands for the conventional ones, and it provides a cooling cylinder that surrounds the specimen in the furnace and, if necessary, its support mechanism, to partition the air space inside the furnace, and also to provide forced cooling. By applying the method only to this section of the cooling cylinder, it is possible to reduce the air space that must be directly cooled when cooling the specimen, and to slow the cooling down to the furnace wall by making the cooling indirect. At the start of the heating process, it is possible to use the furnace walls, which are hotter than conventional ones, and a part (actually, the majority) of the air space, which is also high in temperature, thereby creating a heating furnace with high work efficiency and high thermal efficiency. It provides:

以下、本考案を図面に示す実施例に基いて具体的に説明
する。
Hereinafter, the present invention will be specifically explained based on embodiments shown in the drawings.

第3図、第4図に示す本考案の第1実施例は供試体1と
して溶接部1Aを有する鋼管に加熱、冷却の繰返し操作
を加え、その強度を試験するようにした加熱炉であって
、縦方向に2分割された炉本体2はヒンジ3によって開
閉可能に構成されている。
The first embodiment of the present invention shown in FIGS. 3 and 4 is a heating furnace in which a steel pipe having a welded portion 1A as a specimen 1 is subjected to repeated heating and cooling operations to test its strength. The furnace body 2, which is vertically divided into two parts, is configured to be openable and closable by a hinge 3.

炉内に持込まれた供試体1を支持するように、支持機構
としてのプルロッド5A、5Bが炉本体2の両端部4A
、4Bを摺動自在に貫通して供試体の両端に取付けられ
1.かつ該プルロッド5は供試体1に引張応力を与える
よう図示しない装置で牽引されている。
Pull rods 5A and 5B as support mechanisms are attached to both ends 4A of the furnace body 2 so as to support the specimen 1 brought into the furnace.
, 4B to be attached to both ends of the specimen by slidingly penetrating through 1. Further, the pull rod 5 is pulled by a device not shown in the drawings so as to apply a tensile stress to the specimen 1.

炉の側壁6の内面に沿って加熱手段としてのニクロム線
7が設けられ、そのニクロム線7は供試体1に取付けら
れた図示しない検温素子からの信号を受けて作動する図
示しない加熱制御装置を経て図示しない電源に接続して
いる。
A nichrome wire 7 as a heating means is provided along the inner surface of the side wall 6 of the furnace, and the nichrome wire 7 is connected to a heating control device (not shown) that operates in response to a signal from a temperature measuring element (not shown) attached to the specimen 1. It is connected to a power supply (not shown) through the power supply.

また、炉内には、供試体1とプルロッド5とを囲む2分
割された冷却筒8が設けられて炉内空域を冷却筒内側お
よび外側の空域に区画している。
Furthermore, a cooling cylinder 8 divided into two is provided inside the furnace, surrounding the specimen 1 and the pull rod 5, and dividing the air space inside the furnace into an air space inside and outside the cooling cylinder.

上記冷却筒8は縦方向に2分割され、各分割冷却筒は対
応する各分割炉本体にその両端が取付けられて、炉本体
2の観音開き的な開閉に伴って開閉する。
The cooling cylinder 8 is vertically divided into two parts, and each divided cooling cylinder is attached at both ends to the corresponding divided furnace body, and opens and closes as the furnace body 2 opens and closes in a double-door manner.

また、炉本体の両端部4 A 、4 Bには炉内の冷却
筒8の内側空域に開口する冷却媒体導入孔9゜同排出孔
12がそれぞれ設叶られ、図示しない冷却媒体送風機か
ら導がれたパイプ10は加熱制御装置の信号で開閉する
電磁弁11を介して上記導入孔9に着脱可能に挿着され
ている。
Further, at both ends 4A and 4B of the furnace body, a cooling medium introduction hole 9° and a cooling medium discharge hole 12, which open into the inner air space of the cooling cylinder 8 in the furnace, are provided, respectively, and the cooling medium is introduced from a cooling medium blower (not shown). The pipe 10 is removably inserted into the introduction hole 9 via a solenoid valve 11 that opens and closes in response to a signal from a heating control device.

(第1.第2図参照)排出孔12は導入孔9に見合う数
が設けられ−、各分割炉本体の端部4Bの外側面には該
排出孔12を塞ぐように蝶型蓋13が取付けられており
、その蝶型蓋13は自重または図示しないばね機構の助
けを得て平常は排出孔閉塞の状態にあるが冷却筒8の内
圧が高まると自動的に持上げられて開口状態となるよう
構e、されている。
(See Figures 1 and 2) The number of discharge holes 12 is equal to the number of introduction holes 9. A butterfly-shaped lid 13 is provided on the outer surface of the end 4B of each divided furnace body so as to close the discharge holes 12. The butterfly-shaped lid 13 is normally in a closed state due to its own weight or the help of a spring mechanism (not shown), but when the internal pressure of the cooling cylinder 8 increases, it is automatically lifted and opened. It is structured as such.

しかして、冷却媒体送風機、電磁弁11.パイプ10.
導入孔9.排出孔12および蝶型蓋13は強制冷却手段
を構成する。
Therefore, the cooling medium blower and the solenoid valve 11. Pipe 10.
Introduction hole 9. The discharge hole 12 and the butterfly-shaped lid 13 constitute forced cooling means.

なお、上記冷却媒体としては空気、ヘリューム。アルゴ
ン、窒素等の不燃性ガスを用いる。
Note that the above cooling medium is air or helium. Use nonflammable gas such as argon or nitrogen.

」二記第1実施例の構成において、ヒンジ3を中心に開
く方の分割炉本体からパイプ10を取外した後、その分
割炉本体を観音開きにして冷却筒8内に供試体1を挿入
し、それにプルロッド5A、5Bを取付けて供試体1を
支持し、開いた分割炉本体を再び閉じ、かつ先に取外し
たパイプ10を炉本体に取付けて試験準備を終わる。
2. In the configuration of the first embodiment, after removing the pipe 10 from the split furnace main body that opens around the hinge 3, the test specimen 1 is inserted into the cooling tube 8 with the split furnace main body opened double-sidedly, The pull rods 5A and 5B are attached to it to support the specimen 1, the opened split furnace body is closed again, and the pipe 10 that was previously removed is attached to the furnace body to complete the test preparation.

電源スィッチを入れると電流は加熱制御装置を経てニク
ロム線7を加熱し、炉内は次第に暖められ試験温度サイ
クルの所定上限温度に達すると検温素子からの信号を受
けた加熱制御装置はニクロム線7への回路を遮断し、次
いで供試体1の温度が上限温度から下降すると再びニク
ロム線への回路を閉じて加熱を始めるサーモスタットが
働いて供試体の温度を所定の上限温度に保つ。
When the power switch is turned on, the current passes through the heating control device and heats the nichrome wire 7, and the inside of the furnace is gradually warmed up. When the predetermined upper limit temperature of the test temperature cycle is reached, the heating control device receives a signal from the temperature sensor and heats the nichrome wire 7. Then, when the temperature of the specimen 1 falls below the upper limit temperature, the thermostat closes the circuit to the nichrome wire again and starts heating, keeping the temperature of the specimen 1 at a predetermined upper limit temperature.

炉内空域はニクロム線側区画と供試体側区画とに熱電導
率の高い薄手の冷却筒8によって仕切られているが、側
区画の温度追随には若干のタイムラックのあることは脱
れない。
The air space inside the reactor is divided into the nichrome wire side compartment and the specimen side compartment by a thin cooling cylinder 8 with high thermal conductivity, but it cannot be avoided that there is a slight time lag in tracking the temperature in the side compartment. .

供試体1の上限温度保持が所定時間継続する加熱制御装
置が自動的に働いてニクロム線への回路を遮断し5その
遮断は供試体温度が試験温度サイクルの所定下限温度に
達するまで続けられる。
The heating control device, which maintains the upper limit temperature of the specimen 1 for a predetermined period of time, automatically operates to interrupt the circuit to the nichrome wire 5 until the specimen temperature reaches the predetermined lower limit temperature of the test temperature cycle.

上記ニクロム線−\の回路遮断と同時に加熱制御装置は
信号を電磁弁11に送って該弁11を開き、冷却媒体送
風機からの冷却媒体ガスをパイプ10゜導入孔9を介し
て冷却筒8に送風し、筒内の高温ガスは排出孔12を経
、蝶型蓋13を突上げて炉外に排出される。
Simultaneously with the circuit breaking of the nichrome wire -\, the heating control device sends a signal to the solenoid valve 11 to open the valve 11, and the cooling medium gas from the cooling medium blower is introduced into the cooling cylinder 8 through the pipe 10° introduction hole 9. The hot gas inside the cylinder passes through the exhaust hole 12, pushes up the butterfly-shaped lid 13, and is discharged to the outside of the furnace.

このようにして冷却筒8内は可成急速に冷却され、続い
て供試体1が冷却されて行く。
In this way, the inside of the cooling cylinder 8 is cooled fairly rapidly, and then the specimen 1 is cooled down.

勿論、ニクロム線側区画も冷却筒を介しであるタイムラ
ッグの下に次第に冷却されていくものであるが、ニクロ
ム線側区画と供試体側区画との熱交換面積である冷却筒
円周面積は比較的小さく、かつニクロム線側区画の容積
は供試体側区画のそれに比し極めて大きく、さらに熱保
有量の大きな炉本体の例えば耐火煉瓦等からなる側壁6
があるので、ニクロム線側区画の冷却タイムラッグは甚
だ大きい。
Of course, the nichrome wire side section is also gradually cooled down through the cooling cylinder under a certain time lag, but the circumferential area of the cooling cylinder, which is the heat exchange area between the nichrome wire side section and the specimen side section, is compared. The volume of the nichrome wire side compartment is extremely large compared to that of the specimen side compartment, and the side wall 6 of the furnace body, which has a large heat retention capacity, is made of firebrick, etc.
Therefore, the cooling time lag in the nichrome wire side section is extremely large.

供試体1が上記下限温度に達すると、加熱制御装置は供
試体の検温素子からの信号を得て電磁弁11を閉じると
共に、ニクロム線7への回路を閉じて再び加熱炉の加熱
を開始し5て次の試験温度サイクルに移るものである。
When the specimen 1 reaches the above-mentioned lower limit temperature, the heating control device receives a signal from the temperature detection element of the specimen, closes the solenoid valve 11, closes the circuit to the nichrome wire 7, and starts heating the heating furnace again. 5, then move on to the next test temperature cycle.

第2回目以降の試験温度サイクルにおける加熱行程では
その加熱開始時のニクロム線側区画の温度が上記冷却行
程時のタイムラッグ冷却によって初回サイクルの場合よ
りも遥かに高い温度にあるから所定上限温度に達する時
間は少なくて済むことになる。
In the heating process in the second and subsequent test temperature cycles, the temperature of the nichrome wire side section at the start of heating is much higher than that in the first cycle due to the time lag cooling during the cooling process, so it reaches the predetermined upper limit temperature. It will take less time.

第5図に第2回目以降の試験温度サイクルの一例を実線
で示したが、冷却筒を設けない同型の従来の加熱炉にお
ける試験温度サイクル(破線で示す)に比べ、加熱行程
および冷却行程の時間が著しく短縮されているのを知る
ことができる。
Figure 5 shows an example of the second and subsequent test temperature cycles as a solid line. You can see that the time is significantly shortened.

これに伴って装置運転の電力も著しく節減されるもので
ある。
Along with this, the power for operating the device is also significantly reduced.

第6図、第7図は冷却筒構成の第2実施例を示したもの
で、この冷却筒8′は第1実施例の冷却筒8の内周に螺
旋状の断片からなる冷却媒体ガス誘導のフィン14を複
数個突設したもので、冷却行程において冷却筒8′を通
過する媒体ガスはこのフィン14によって旋回誘導され
供試体1との片寄り接触をなくして冷却効果を高めるも
のである。
FIGS. 6 and 7 show a second embodiment of the cooling cylinder configuration, and this cooling cylinder 8' is formed of a spiral segment on the inner periphery of the cooling cylinder 8 of the first embodiment to guide the cooling medium gas. A plurality of fins 14 are provided protrudingly, and the medium gas passing through the cooling cylinder 8' during the cooling process is guided to rotate by the fins 14, thereby eliminating uneven contact with the specimen 1 and enhancing the cooling effect. .

図示しないが、上記フィン14の螺旋を延長して冷却筒
8′の全長に互って連続形成した螺旋帯としても差支え
ない。
Although not shown, the spiral band of the fins 14 may be extended to form a continuous spiral band along the entire length of the cooling cylinder 8'.

ただし、この螺旋帯は冷却筒8′の2つ割り分割時に共
に分割される構造とするものである。
However, this spiral band is designed to be divided into two parts when the cooling cylinder 8' is divided into two parts.

また、上記螺旋帯の数個所に微孔を設け、媒体ガスの一
部流線をさらに変化させて供試体1との5偏ない接触を
計り、さらに冷却効率を高めるようにしてもよい。
Furthermore, micropores may be provided at several locations in the spiral band to further change some of the streamlines of the medium gas to ensure even contact with the specimen 1, thereby further increasing the cooling efficiency.

なお、上記実施例において、加熱手段にニクロム線を使
用したが本考案は上記に限定されることなく、例えばガ
ス炉や重油炉としても差支えない。
In the above embodiment, a nichrome wire was used as the heating means, but the present invention is not limited to the above, and a gas furnace or a heavy oil furnace may be used, for example.

また、供試体の支持機構は供試体溶接部が所定の引張力
に対し何回の試験温度サイクルまでたえ得るか等の試験
を行なうためにプルロッドを用いたが、他の試験におい
てはそれに適応した支持機構としてよいことは勿論であ
る。
In addition, a pull rod was used as the support mechanism for the specimen in order to conduct tests such as how many test temperature cycles the welded part of the specimen could withstand a predetermined tensile force. Needless to say, it is suitable as a supporting mechanism.

本考案は以上のように、炉内に供試体を囲む冷却筒を設
け、強制冷却装置をこれに適用した構造簡単な改良型加
熱炉でありながら、加温行程と冷却行程の時間を著しく
短縮し、作業能率の向上と動力の節減とを得ることがで
きた他、炉壁や加熱手段の温度変化を従来のものより小
さく抑えることができたので、それ等の寿命をも延長す
る優れた加熱炉を提供したものである。
As described above, the present invention is an improved heating furnace with a simple structure in which a cooling tube surrounding the specimen is provided inside the furnace and a forced cooling device is applied to this, while the time of the heating process and cooling process is significantly shortened. In addition to improving work efficiency and saving power, it was also possible to suppress temperature changes in the furnace walls and heating means to a smaller extent than with conventional methods, making it an excellent product that extends the life of these devices. It provided a heating furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の加熱炉の縦断面図、第2図は加熱炉を用
いた供試体加温冷却の代表的な試験温度サイクル図、第
3図ないし第6図は本考案の実施例を示したもので、第
3図は第1実施例としての加熱炉の縦断面図、第4図は
第3図のIV−IV線に沿った断面図、第5図は上記第
1実施例による供試体の試、験温度サイクル図、第6図
は冷却筒に係わる第2実施例の縦断面図、第7図は第6
図のVIVI線に沿った断面図である。 1:供試体、2:炉本体、5A、5Bニブルロツド(支
持機構)、6:側壁、7:ニクロム線(加熱手段)、8
.8’:冷却筒、 9 導入4便美 10:パイ 11:電磁弁、 (強制冷却手段) 12:排出孔、 13:蝶型蓋。
Figure 1 is a vertical cross-sectional view of a conventional heating furnace, Figure 2 is a typical test temperature cycle diagram for heating and cooling a specimen using a heating furnace, and Figures 3 to 6 are examples of the present invention. 3 is a vertical sectional view of the heating furnace according to the first embodiment, FIG. 4 is a sectional view taken along line IV-IV in FIG. 3, and FIG. 5 is a longitudinal sectional view of the heating furnace according to the first embodiment. Test of the specimen, test temperature cycle diagram, Fig. 6 is a vertical cross-sectional view of the second embodiment related to the cooling cylinder, Fig. 7 is the test temperature cycle diagram.
FIG. 3 is a sectional view taken along line VIVI in the figure. 1: Specimen, 2: Furnace body, 5A, 5B nibble rod (support mechanism), 6: Side wall, 7: Nichrome wire (heating means), 8
.. 8': Cooling cylinder, 9 Introducing 4 flights 10: Pie 11: Solenoid valve, (forced cooling means) 12: Discharge hole, 13: Butterfly-shaped lid.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 炉本体の内壁面に沿って加熱手段を設け、上記炉内に冷
却用媒体ガスを導入、排出する強制冷却手段を具えた加
熱炉において、上記炉内の供試体およびその支持機構を
囲む冷却筒を設けて炉内空域を区画し、上記強制冷却手
段を上記供試体、支持機構系区画に適用したことを特徴
とする冷却筒付き加熱炉。
A heating furnace provided with a heating means along the inner wall surface of the furnace body and equipped with a forced cooling means for introducing and discharging a cooling medium gas into the furnace, a cooling cylinder surrounding a specimen in the furnace and its support mechanism. A heating furnace with a cooling tube, characterized in that an air space inside the furnace is divided by providing a cooling tube, and the forced cooling means is applied to the specimen and support mechanism system sections.
JP16249379U 1979-11-23 1979-11-23 Heating furnace with cooling tube Expired JPS5850236Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16249379U JPS5850236Y2 (en) 1979-11-23 1979-11-23 Heating furnace with cooling tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16249379U JPS5850236Y2 (en) 1979-11-23 1979-11-23 Heating furnace with cooling tube

Publications (2)

Publication Number Publication Date
JPS5678997U JPS5678997U (en) 1981-06-26
JPS5850236Y2 true JPS5850236Y2 (en) 1983-11-15

Family

ID=29673497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16249379U Expired JPS5850236Y2 (en) 1979-11-23 1979-11-23 Heating furnace with cooling tube

Country Status (1)

Country Link
JP (1) JPS5850236Y2 (en)

Also Published As

Publication number Publication date
JPS5678997U (en) 1981-06-26

Similar Documents

Publication Publication Date Title
CN201069427Y (en) Bolt tester with heating device
JPS5850236Y2 (en) Heating furnace with cooling tube
CN110220380A (en) A kind of use for laboratory high throughput vacuum heat treatment furnace
CN205482351U (en) Split type thermal shock stove and thermal shock resistance experimental apparatus
EP0267387A1 (en) High temperature vacuum furnace
CN215288917U (en) Convenient annealing heat-preservation cover for electroslag ingot
CN2581914Y (en) Glue removing device for soft magnetic ferrite sinternig kiln
CN105509470B (en) Integral type thermal shock stove and thermal shock resistance experimental provision
CN209445807U (en) A kind of graphite raw embryo electrical heating roasting oven
CN2388611Y (en) High-temp. microscope heating stand
CN206146865U (en) Temperature programming oxidation of coal experimental apparatus
CN208526556U (en) Diamond press
CN208071764U (en) A kind of nodularization bell furnace without decarbonizing process using full nitrogen
CN218329319U (en) Vacuum multi-section temperature gradient furnace
CN105486085B (en) Split type thermal shock stove and thermal shock resistance experimental provision
CN101403026B (en) Quenching experimental device
JPS6118443Y2 (en)
JP3248342B2 (en) Thermal analyzer
CN216792089U (en) Temperature measuring device for high-temperature-resistant material
JPS60247464A (en) Heater for lining of metallurgical pan
JPS6034014Y2 (en) Furnace zone partition wall
JPS625635Y2 (en)
JP3275919B2 (en) Vertical furnace
CN209178440U (en) Heat treating castings furnace
JP2798203B2 (en) Method and apparatus for drying an amorphous refractory construction body lined in a container or the like