JPS5850157A - Mold for continuous casting - Google Patents

Mold for continuous casting

Info

Publication number
JPS5850157A
JPS5850157A JP15032781A JP15032781A JPS5850157A JP S5850157 A JPS5850157 A JP S5850157A JP 15032781 A JP15032781 A JP 15032781A JP 15032781 A JP15032781 A JP 15032781A JP S5850157 A JPS5850157 A JP S5850157A
Authority
JP
Japan
Prior art keywords
mold
copper
thickness
plates
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15032781A
Other languages
Japanese (ja)
Inventor
Katsuhiko Yamada
勝彦 山田
Yoshihiro Hashimoto
義弘 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15032781A priority Critical patent/JPS5850157A/en
Publication of JPS5850157A publication Critical patent/JPS5850157A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Abstract

PURPOSE:To decrease the induction losses of magnetic fluxes penetrating through mold walls under electromagnetic agitation and to reduce equipment and running costs by constituting four faces of mold walls of composite plates wherein thin walled copper plates and non-magnetic stainless steel provided with cooling water passages are welded by pressure. CONSTITUTION:Four faces of mold walls 10 are constituted respectively of composite plates wherein copper or copper alloys 11 of <=10mm. thickness and non- magnetic stainless steel plates 12 of >=20mm. thickness are welded by pressure. Plural cooling water passages 15 are provided on the side of the plates 12 nearer than the press-welded surfaces 13. Here, the mold is constituted by using the composite plates satisfying t<=p<=2t and 0.5t<=s<=3t when the thickness of the copper or copper alloy plates 11 is 3-7mm. and the width in the press-welded parts between the passages 15 on the surfaces 13 is defined as (p) and the width of the passages 15 as (s).

Description

【発明の詳細な説明】 鋼を電磁攪拌して鋳片内質を改良する際に用いられる電
磁力の貫通性の良い鋳型の構iに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure of a mold having good penetration of electromagnetic force, which is used when improving the internal quality of a slab by electromagnetically stirring steel.

一般に一連続鋳造鋳片においては、中心部に収縮孔や偏
析等の欠陥を伴ない易い。その改善手段として、凝固時
の鋳片殻内の溶鋼の電磁攪拌がしばしば採用される。上
記欠陥は、電磁攪拌による組織の微細化、均質化の結果
として軽減される。
In general, continuously cast slabs tend to have defects such as shrinkage holes and segregation in the center. As a means of improving this, electromagnetic stirring of the molten steel within the slab shell during solidification is often adopted. The above defects are reduced as a result of microstructural refinement and homogenization by electromagnetic stirring.

通常攪拌部位については、電磁力を鋳片殻内に貫通させ
るのに、構造的に都合が良い二次冷却帯が選ばれている
。しかし凝固の初期、すなわち鋳込面に近いところ程、
鋳片殻厚がまだ小さいので、鋳片断面のより広範な領域
が電磁攪拌により組織が改善される。
Usually, for the stirring part, a secondary cooling zone is selected because it is structurally convenient to allow the electromagnetic force to penetrate into the slab shell. However, in the early stages of solidification, that is, closer to the casting surface,
Since the slab shell thickness is still small, the structure of a wider area of the slab cross section is improved by electromagnetic stirring.

従ってこのような場合には、上記中心欠陥に対してだけ
でなく、内部割れに対して、その防止に効果が生ずる。
Therefore, in such a case, it is effective to prevent not only the above-mentioned central defect but also internal cracks.

凝固初期の攪拌とは、鋳型自溶鋼を電磁攪拌することで
あり、゛その工業化に当っては、小断面鋳片の連続鋳造
では比較的容易に実施されているが、他方大断面鋳片の
連続鋳造に対しては、欠配のように相当困難を伴なって
くる。
Stirring at the early stage of solidification is electromagnetic stirring of the self-melting steel in the mold.In terms of industrialization, it is relatively easy to carry out continuous casting of small-section slabs, but on the other hand, stirring of large-section slabs is carried out relatively easily. For continuous casting, considerable difficulties arise such as chipping.

大断面連続鋳造7は・通常鋳型は鋳片品竺と鋳 。Large cross-section continuous casting 7 is usually used for casting slab products.

型費の両面から、第1図(イ)、(ロ)に例を示すよう
に、肉厚の銅板で4面を組立てて作られている。(イ)
図は縦断面図、(ロ)図は(イ)図に示すA−A’断面
を示す図である。図において、鋳型壁全構成する厚肉の
銅板lは、水冷ジャケット2に多数のボルト3により強
固に取付けられている。銅板1の背面には、上下方向に
複数条の冷却水溝5が設けられており、冷却水6は水冷
ジャケット2より下部ヘッダー7全通って溝5内に入り
、それ−全通って上部ヘッダー8より排出される。この
ような鋳造壁を4面組立てて鋳型4を構成する。
In terms of mold cost, it is made by assembling four sides of thick copper plates, as shown in Figure 1 (a) and (b). (stomach)
The figure is a longitudinal sectional view, and the figure (b) is a view showing the AA' cross section shown in figure (a). In the figure, a thick copper plate 1 making up the entire mold wall is firmly attached to a water cooling jacket 2 with a large number of bolts 3. A plurality of cooling water grooves 5 are provided in the vertical direction on the back side of the copper plate 1, and the cooling water 6 enters the groove 5 from the water cooling jacket 2 through the entire lower header 7, and then passes through the entire lower header 7 and enters the upper header. It is discharged from 8. A mold 4 is constructed by assembling four such casting walls.

このような鋳型では、大断面連鋳のものは、耐久性、冷
却均等性上銅板1が厚肉となるため、それによる磁気じ
ゃ蔽が極めて大となり、攪拌不足となるので、大型の電
磁攪拌装置が必要となる。
In such molds, continuous casting with a large cross section requires a large electromagnetic stirrer because the copper plate 1 has a thick wall for durability and cooling uniformity, and the resulting magnetic shielding becomes extremely large, resulting in insufficient stirring. equipment is required.

因みに鋳型周囲に取付けられた電磁攪拌装置の電磁力は
数十分の1に減衰するので(実効ある電磁攪拌装置は非
経済的となる。
Incidentally, since the electromagnetic force of the electromagnetic stirring device attached around the mold is attenuated to several tenths of that (an effective electromagnetic stirring device becomes uneconomical).

この問題に対して、下記の方法が提案ないし実施されて
いる。
To address this problem, the following methods have been proposed or implemented.

(1)電源周波数を小さくシ、銅板による磁気じゃ蔽を
小さくする。一般に1は2〜IOサイクルが適切とされ
る。
(1) Reduce the power supply frequency and reduce the magnetic shielding caused by the copper plate. Generally, 2 to IO cycles are appropriate for 1.

(2)銅板を適当に分割して銅板内に生ずる誘導電流を
細分化し、磁気じゃ蔽を小さくする。
(2) Divide the copper plate appropriately to subdivide the induced current generated within the copper plate and reduce magnetic shielding.

(3)銅板を許容限まで薄くする。通常50M11程度
の銅板全構造上の工夫をこらし、20H程度まで下げる
(3) Make the copper plate as thin as possible. The copper plate is usually about 50M11, and we have taken measures to reduce the overall structure to about 20H.

第1の方法は、金属製鋳型内の溶鋼を電磁攪拌する場合
には、必要条件として常に利用されている。
The first method is always used as a necessary condition when electromagnetically stirring molten steel in a metal mold.

第2の方法は、電気的には有利であるが、冶金的にはき
わめて困難である。何故なら、本来平滑であるべき鋳型
内面に接合部が必然的に生ずるので、溶鋼が溶着し易い
だけでなく、冷却の不均等、鋳型の熱変形増大等が起り
易くなる。
The second method is electrically advantageous but metallurgically extremely difficult. This is because joints are inevitably formed on the inner surface of the mold, which should be smooth, which not only tends to cause molten steel to adhere, but also tends to cause uneven cooling and increased thermal deformation of the mold.

第3の方法では、銅板による磁気じゃ蔽効果は成る程度
抑制できるが、充分ではなく、従って実用に当って大容
量の電源と過大な出力を持つコイルが適用されている。
In the third method, the magnetic shielding effect due to the copper plate can be suppressed to some extent, but it is not sufficient, and therefore, in practical use, a large-capacity power source and a coil with excessive output are used.

、これは単に設備費で不利となるたけでなく、電力ロス
も大きく、その上当然ながら鋳型の寿命は短かくなる。
This is not only disadvantageous in terms of equipment costs, but also causes large power losses, and of course shortens the life of the mold.

本発明は、上述の問題点を解決するため成されたもので
、4面の鋳型壁を構成する特殊な構造の複合板を使用し
、接合面に冷却水路を設けることにより、鋳型内溶鋼を
鋳型周囲から移動磁界によって電磁攪拌する際の鋳型壁
全、電磁力の貫通性の良いものとし、鋳型壁を貫通する
磁束の誘導損失金より少なくして、電磁攪拌装置の6鎗
が小さくてすみ、設備費、操業費とも低減し得る連続鋳
造用鋳型を提供せんとするものである。
The present invention was made to solve the above-mentioned problems, and uses a specially structured composite plate that forms the four walls of the mold, and by providing cooling channels on the joint surfaces, the molten steel inside the mold is reduced. When electromagnetic stirring is performed by a moving magnetic field from around the mold, the entire mold wall should have good penetration of electromagnetic force, so that the induction loss of magnetic flux penetrating the mold wall is less than that, and the size of the electromagnetic stirring device can be small. The present invention aims to provide a continuous casting mold that can reduce both equipment costs and operating costs.

本発明は、鋼の連続鋳造用の4面組立式水冷鋳型におい
て、4面の鋳型壁が、それぞれ厚さ15fl以下の銅又
は銅合金板と厚さ20HM以上の非磁性ステンレス鋼板
を真空圧接した複合板より成り、上記圧接面よりステン
レス鋼板側に複数本の冷却水路ケ設けたことを特徴とす
る電磁力の貫通性の良い連続鋳造用鋳型である。
The present invention is a four-sided assembled water-cooled mold for continuous steel casting, in which each of the four mold walls is made by vacuum-pressure welding a copper or copper alloy plate with a thickness of 15 fl or less and a non-magnetic stainless steel plate with a thickness of 20 HM or more. This continuous casting mold is made of a composite plate and has a plurality of cooling channels provided on the side of the stainless steel plate from the pressure contact surface, and has good penetration of electromagnetic force.

本発明を適用される連続鋳造用鋳型は、鋼の連続鋳造に
おいて、鋳型の周囲に電磁攪拌装置を設けた4面組立式
水冷鋳型である。
The continuous casting mold to which the present invention is applied is a four-sided assembly type water-cooled mold in which an electromagnetic stirring device is provided around the mold for continuous casting of steel.

以下、本発明を図面を用いて実施例により説明する。第
2図は本発明鋳型の実施例を示す図で、(イ)図は鋳型
の縦断面図、(ロ)図は(イ)図に示すB−B’断面を
示す図で、(ハ)図は鋳型壁の横断面を示す図である。
Hereinafter, the present invention will be explained by examples using the drawings. FIG. 2 is a diagram showing an embodiment of the mold of the present invention, in which (a) is a vertical cross-sectional view of the mold, (b) is a cross-sectional view taken along line B-B' shown in (a), and (c) is a longitudinal cross-sectional view of the mold. The figure shows a cross section of the mold wall.

図において、鋳型14は4面の鋳型壁1o1四角形に組
立てて構成されている。鋳型壁lOは09図に示すよう
に、厚さl 5 mm以下の薄肉の銅又は銅合金板C以
下、銅板と称す)11と厚さ2011以上の非磁性ステ
ンレス鋼C以下、単にステンレス鋼と称す)板12’t
−真空圧接法により接合された複合板より成っている。
In the figure, the mold 14 is assembled into a rectangular shape with four mold walls 1o1. As shown in Figure 09, the mold wall IO is made of thin copper or copper alloy plate C with a thickness of 5 mm or less (hereinafter referred to as copper plate) 11 and non-magnetic stainless steel C with a thickness of 2011 or more, simply referred to as stainless steel. ) Plate 12't
- Consists of composite plates joined by vacuum pressure welding.

圧接面13に面するステンレス鋼板12の面には複数本
(2本以上)の冷却水路15用溝が設けられ、このmr
t除く面で接合されている。
A plurality of (two or more) grooves for cooling water channels 15 are provided on the surface of the stainless steel plate 12 facing the pressure contact surface 13.
It is joined at the surface excluding t.

冷却水路15の下端、上端には、(イ)、(0)図に示
すように、それぞれ冷却水の入口16および出口17が
設けられており、それぞれ冷却水ヘッダー18.19が
機械的に冷却水の入口16、出口17と連結するように
取付けら−れてい4゜ 鋳型14の周囲には、鉄心21とコイル22から成る電
磁攪拌装置23が付設されており、これにより鋳型14
と同軸の回転磁界を発生せしめ、鋳型内の溶鋼は中・し
・軸の周りに回転攪拌され、鋳片内質が改良される。
As shown in Figures (A) and (0), the lower and upper ends of the cooling water channel 15 are provided with a cooling water inlet 16 and an outlet 17, respectively, and cooling water headers 18 and 19 mechanically cool the water. An electromagnetic stirring device 23 consisting of an iron core 21 and a coil 22 is attached around the 4° mold 14, which is connected to the water inlet 16 and the water outlet 17.
A coaxial rotating magnetic field is generated, and the molten steel in the mold is rotated and stirred around the center shaft, improving the internal quality of the slab.

上述の鋳型において、鋳型壁IOの形状、寸法は鋼の材
質、鋳造条件、電磁攪拌条件によって適当に選択される
が、第2図(ハ)に示す銅板IIの厚さ、圧接面13上
の冷却水路15間の圧接部の幅P1圧接而10−トの冷
却水路15の幅Sの間に欠配のような関係金有すること
が望ましい。
In the above-described mold, the shape and dimensions of the mold wall IO are appropriately selected depending on the steel material, casting conditions, and electromagnetic stirring conditions, but the thickness of the copper plate II shown in FIG. It is desirable to have a related metal such as a missing part between the width P1 of the pressure contact portion between the cooling water channels 15 and the width S of the cooling water channel 15 between the pressure contact portion 10 and the pressure contact portion 10-.

先ず銅板11の厚さ【ばl 51M以下、望捷しくけ3
〜7MMとする。151nl越えると磁気じゃ蔽が大き
くなり、不適切となる。従って薄い程良いが、3H未満
となると強度が不足し、又ステンレス鋼板12の圧接困
難となる。
First, the thickness of the copper plate 11 [balance 51M or less, Bokushikake 3
~7MM. If it exceeds 151 nl, the magnetic shielding becomes large and becomes inappropriate. Therefore, the thinner it is, the better, but if it is less than 3H, the strength will be insufficient and it will be difficult to press the stainless steel plate 12.

ステンレス鋼板12の厚さt′は20MN以上、望まし
くは30〜4QMMとする。20MM未満では銅板11
を補強する強度が不足し、40ffi越える厚さは強度
上不必要であ、る。
The thickness t' of the stainless steel plate 12 is 20 MN or more, preferably 30 to 4 QMM. Copper plate 11 for less than 20MM
There is insufficient strength to reinforce it, and a thickness exceeding 40ffi is unnecessary in terms of strength.

次に圧接部の幅Pはt≦P≦2tとすることが望ましい
。P(tでは銅板11の熱歪みをステンレス鋼板12で
拘束するのに強度不足となり、P〉2【では圧接部の冷
却力が弱くなって鋳型面内で冷却不均等となる。
Next, it is desirable that the width P of the pressure contact portion satisfies t≦P≦2t. When P(t), the strength is insufficient to restrain the thermal distortion of the copper plate 11 by the stainless steel plate 12, and when P>2[, the cooling force of the pressure welding part becomes weak, resulting in uneven cooling within the mold surface.

又圧接面lO上の冷却水路15の幅Sは0.5【≦S≦
3tとすることが望ましい。S<0.5tでは従来の厚
肉式鋳型と比較して、冷却能の向上が得にくく、S>a
tでは銅板11の熱歪を拘束しに<<、鋳型寿命は急に
短かくなる。
In addition, the width S of the cooling channel 15 on the pressure contact surface lO is 0.5 [≦S≦
It is desirable to set it to 3t. When S<0.5t, it is difficult to improve the cooling capacity compared to conventional thick-walled molds, and when S>a
At <<t, the mold life is suddenly shortened because the thermal distortion of the copper plate 11 is restrained.

次に銅板11とステンレス鋼板12ヲ接合するのに、真
空圧接は不可欠であり、コスト的にも有利である。その
理由は、溶接法では薄肉銅板11に溶接歪みが入って精
密を要する連鋳用鋳型に不適切である。又機械的に接合
する方法でもファスナー等の部材が薄肉鋼板11に取付
けられ、冷却不均等の原因となる。。
Next, vacuum pressure welding is essential for joining the copper plate 11 and the stainless steel plate 12, and is also advantageous in terms of cost. The reason is that the welding method introduces welding distortion to the thin copper plate 11, making it unsuitable for continuous casting molds that require precision. Furthermore, even in the mechanical joining method, members such as fasteners are attached to the thin steel plate 11, which causes uneven cooling. .

42圧接法では、精度、強度、接合力の均等性、冷却性
能の均等性、コスト、作業性など実用条件すべてに好都
合である。
The 42 pressure welding method is advantageous in all practical conditions such as accuracy, strength, uniformity of joining force, uniformity of cooling performance, cost, and workability.

なお本発明に用いられる薄肉の銅板は、純銅に限らず、
光分な熱伝導率を持つ銅合金板でも良く−さらに表面に
クロム等のめっきを施して耐用を図っても良い。
Note that the thin copper plate used in the present invention is not limited to pure copper.
It may be a copper alloy plate that has a thermal conductivity as high as that of light; it may also be plated with chromium or the like on the surface to ensure durability.

又非磁性ステンレス鋼板は、磁束を通すため非磁性、か
つ低導電性が必要で、オーステナイト系ステンレス鋼が
適切である。
In addition, the non-magnetic stainless steel plate needs to be non-magnetic and have low conductivity in order to pass magnetic flux, and austenitic stainless steel is suitable.

、上述のように構成された本発明の連続鋳造用鋳型は次
のような効果がある。
The continuous casting mold of the present invention configured as described above has the following effects.

(イ) 4面の鋳型壁が、それぞれ厚さl 5 、MM
以下の銅又i/i銅合金板と厚さ20111以上の非磁
性ステンレス鋼板金真空圧接して成り、上記圧接面より
上記ステンレス鋼板側に複数本の冷却水路を設けたため
、鋳型壁が薄肉銅板と非磁性ステンレス鋼板で構成され
るから、磁気じゃ蔽が小さく、鋳型内溶鋼を鋳型壁全通
して電磁攪拌する蓋の鋳型壁を貫通する磁束の誘導損失
?少なくできるので、電磁攪拌装置およびその電源の出
力?小さく設計できるため、設備費、操業費共低減でき
る。
(a) Each of the four mold walls has a thickness of l 5 , MM
The following copper or i/i copper alloy plates and non-magnetic stainless steel sheets with a thickness of 20111 or more are vacuum pressure welded, and a plurality of cooling channels are provided on the stainless steel plate side from the pressure welding surface, so that the mold wall is a thin copper plate. Since it is composed of a non-magnetic stainless steel plate, the magnetic shielding is small, and the molten steel inside the mold is electromagnetically stirred through the entire mold wall.Is there an induction loss of magnetic flux penetrating the mold wall of the lid? Can the output of the electromagnetic stirring device and its power supply be reduced? Since it can be designed to be small, both equipment costs and operating costs can be reduced.

(ロ)又圧接面に冷却水路を設け、それと鋳片との間の
銅板の肉厚が薄いので、冷却能力が大きく、有利なだけ
でなく、又銅板に、これを補強するステンレス鋼板が真
空圧接されているので、従来の鋳型より強固で、寿命が
長く、真空圧接により精度、強度、接合力の均等性、冷
却性能の均等性が良く、又作業住良く、安価に連続鋳造
し得る電磁攪拌用鋳型を提供するものである。
(b) In addition, a cooling channel is provided on the pressure welding surface, and since the copper plate between it and the slab is thin, the cooling capacity is large, which is not only advantageous. Because it is pressure welded, it is stronger and has a longer lifespan than conventional molds. Vacuum pressure welding provides good accuracy, strength, uniformity of joining force, and uniformity of cooling performance. It is also an electromagnetic mold that is comfortable to work with and allows continuous casting at low cost. A stirring mold is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)、(ロ)に従来の連続鋳造用鋳型の例を示
す図で、(イ)図は縦断面図、(ロ)図は(イ)図に示
すA−A’断面を示す図である。 第2図(イ)、(ロ)、(ハ)は本発明鋳型の実施例を
示す図で、(イ)図は鋳型の縦断面図で、(ロ)図は(
イ)図に示すB−B’断面を示す図で、(−9図は鋳型
壁の横断面を示す図である。 1・・・銅板、2・・・水冷ジャケット、3・・・ポル
ト、4・・・鋳型、5・・・冷却水溝、6・・・冷却水
、7・・・下部ヘッダー、8・・・上部ヘッダー、10
・・・鋳型壁、11・・・銅又ll′i銅合金板、12
・・・非磁性ステンレス鋼板、I3・・・圧接面、14
・・・鋳型、15・・・冷却水路、16・・・入口、1
7・・・出口、18.19・・・冷却水へ7グー、21
・・・鉄心、22・・・コイル、23・・・電磁攪拌装
置、1.1/・・・厚さ、P・・・圧接部の幅、S・・
・冷却水路の幅。 芳1図 (イ) 手続補正書 昭和57年を月/7日 特許庁長官  島 1)春 樹 殿 1、事件の表示 特    許 昭和56年與廂I瞳貴願第150327号2、発明禽嘲
の名称 連続鋳造用鋳型 3、補正をする者 事件との関係  特許出願人 住 所   大阪市東区北浜5丁目15番地名称(21
B)住友電気工業株式会社 代表者 社長 亀 井 正 夫 4、代理人 住所 大阪市淀用区西中島1丁目9番20Ji+明細書
中、特許請求の範囲の欄および発明の詳細な説明の欄。 7、補正の内容 (1)  明細書、第1頁、4行目−718行目、特許
請求の範囲を別紙の如く訂正する。 (2)明細書、第5頁、166行目 「15」を「10」に訂正する。 (3)明細書、第5頁、188行目 「真空」を削除する。 (4)  明細書、第5頁、200行目「路を設けた」
を[路が設けられ、上記鋼又は銅合金板厚さtが3〜7
11m1であり、かつ上記圧接面上の冷却水路間の圧接
部の幅をP1上記圧接面上の冷却水路の幅をSとした時
、 t≦P≦2t O15t≦S≦8t なる関係を有する」に訂正する。 (5)  明細書、第6貞、122行目「15」を「l
O」に訂正する。 (6)明細書、第6頁、155行目 「真空」を削除する・ (7)明細書、第7頁・ 15行目〜 「15」を「10」に訂正する。 (8)明細書、第7頁・ 166行目 「15」を「10」  に訂正する。 (9)明細書、第8頁、14行目〜第9頁、3行目、「
次に銅板・ ・・好都合である、」を肖11除する。 00)明細書、第9頁、133行目 「15」を「10]に訂正する。 61)  明細書、第9頁、155行目「真空」を削除
する。 6の  明#al書、第1O頁、4行目、「薄いので、
」ヲ「薄く、又前述の式のような関係を有するので、」
に訂正する。 (l→ 明細書、第10頁、6行目、 「真空」を削除する。 64)  明細書、第1O頁、7行目〜9行目、「真空
圧接・ ・作業性良く、」ヲ「従って」に訂正する。 特許請求の範囲 「(1)  、鋼の連続鋳造用の4面組立式水冷鋳型に
おいて、4面の鋳型壁が、それぞれ厚さ】0闘以下の銅
又は銅合金板と厚さ20闘以上の非磁性ステンレス鋼板
を圧接した複合板より成り、上記圧接面より上記ステン
レス鋼板側に複数本の冷却水路が設なる関係を有するこ
とを特徴とする電磁力の貫通性の良い連続鉤造用鋳型。 」 特開昭58− 50157(6)
Figure 1 (a) and (b) are diagrams showing examples of conventional continuous casting molds, in which (a) is a vertical cross-sectional view, and (b) is a cross-sectional view taken along line AA' shown in (a). FIG. Figures 2 (a), (b), and (c) are views showing examples of the mold of the present invention, (a) is a vertical cross-sectional view of the mold, and (b) is (b) a longitudinal cross-sectional view of the mold.
B) A diagram showing a cross section along line B-B' shown in the figure, (Figure -9 is a diagram showing a cross section of the mold wall. 1... Copper plate, 2... Water cooling jacket, 3... Porto, 4... Mold, 5... Cooling water groove, 6... Cooling water, 7... Lower header, 8... Upper header, 10
...Mold wall, 11...Copper or ll'i copper alloy plate, 12
...Nonmagnetic stainless steel plate, I3... Pressure contact surface, 14
...Mold, 15...Cooling channel, 16...Inlet, 1
7...Exit, 18.19...7 goo to cooling water, 21
... Iron core, 22 ... Coil, 23 ... Electromagnetic stirring device, 1.1 / ... Thickness, P ... Width of pressure welding part, S ...
・Width of cooling channel. Yoshi 1 Figure (a) Procedural amendment dated 1982/1980 Commissioner of the Japan Patent Office Shima 1) Haruki Tono1, Patent indicated in the case 1981 Yoshitori I Hitomi Takahan No. 1503272, Invention bird mockery Name of Continuous Casting Mold 3, Relationship with the case of the person making the amendment Patent Applicant Address 5-15 Kitahama, Higashi-ku, Osaka Name (21
B) Sumitomo Electric Industries Co., Ltd. Representative: President Masao Kamei 4, Agent Address: 1-9-20Ji Nishinakajima, Yodoyo-ku, Osaka + In the specification, the claims column and the detailed description of the invention column. 7. Contents of amendment (1) The scope of claims on page 1, lines 4 to 718 of the specification will be corrected as shown in the attached sheet. (2) In the specification, page 5, line 166, "15" is corrected to "10". (3) Delete "vacuum" on page 5, line 188 of the specification. (4) Specification, page 5, line 200: “A road was established.”
[The path is provided, and the thickness t of the steel or copper alloy plate is 3 to 7
11 m1, and when the width of the pressure contact between the cooling channels on the pressure contact surface is P1 and the width of the cooling waterway on the pressure contact surface is S, the relationship is as follows: t≦P≦2t O15t≦S≦8t Correct. (5) Specification, No. 6, line 122, “15” is replaced with “l”
Correct to "O". (6) Delete "vacuum" on page 6, line 155 of the specification. (7) Correct "15" to "10" from page 7, line 15 of the specification. (8) In the specification, page 7, line 166, "15" is corrected to "10". (9) Specification, page 8, line 14 to page 9, line 3, “
Next, divide "copper plate...it's convenient" by 11. 00) Specification, page 9, line 133, "15" is corrected to "10". 61) Specification, page 9, line 155, "vacuum" is deleted. 6, Akira #al, page 1O, line 4, “Because it is thin,
``Because it is thin and has a relationship like the above formula,''
Correct. (l → Specification, page 10, line 6, "vacuum" is deleted. 64) Specification, page 10, lines 7 to 9, "Vacuum pressure welding... Good workability," Therefore, it should be corrected to "Accordingly." Claims ``(1) In a four-sided assembled water-cooled mold for continuous casting of steel, the four mold walls each have a copper or copper alloy plate with a thickness of 0 mm or less and a copper or copper alloy plate with a thickness of 20 mm or more. A mold for continuous hook making with good penetration of electromagnetic force, characterized in that it is made of a composite plate in which non-magnetic stainless steel plates are pressed together, and that a plurality of cooling channels are provided on the side of the stainless steel plate from the pressure-welded surface. ” Japanese Patent Publication No. 58-50157 (6)

Claims (1)

【特許請求の範囲】 (1)  dt4の連続鋳造用の4面組立式水冷鋳型に
おいて、4面の鋳型壁が、それぞれ厚さ150以下の銅
又は銅合金板と厚さ2011I1以上の非磁性ステンレ
ス鋼板を真空圧接した複合板より成り、上記圧接面より
上記ステンレス鋼板側に複数本の冷却水路を設けたこと
を特徴とする電磁力の貫通性の良い連続鋳造用鋳型。 (2)銅又は銅合金板厚さtが3〜71′IIであり、
圧接面上の冷却水路間の圧接部の幅をP、圧接1m上の
冷却水路の幅をSとした時、 t≦P≦21 0.5t≦S≦3t なる関係を有する特許請求の範囲第1項記載の電磁力の
貫通性の良い連続鋳造用鋳型。
[Claims] (1) In a four-sided assembled water-cooled mold for continuous casting of dt4, each of the four mold walls is made of a copper or copper alloy plate with a thickness of 150 or less and a non-magnetic stainless steel with a thickness of 2011I1 or more. A mold for continuous casting with good penetration of electromagnetic force, characterized in that it is made of a composite plate in which steel plates are vacuum-pressed and is provided with a plurality of cooling channels on the side of the stainless steel plate from the pressure-welded surface. (2) The thickness t of the copper or copper alloy plate is 3 to 71'II,
When the width of the press-contact portion between the cooling channels on the press-contact surface is P, and the width of the cooling channel 1 m above the press-contact surface is S, the following claims have the following relationships: t≦P≦21 0.5t≦S≦3t The continuous casting mold as described in item 1, which has good penetration of electromagnetic force.
JP15032781A 1981-09-21 1981-09-21 Mold for continuous casting Pending JPS5850157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15032781A JPS5850157A (en) 1981-09-21 1981-09-21 Mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15032781A JPS5850157A (en) 1981-09-21 1981-09-21 Mold for continuous casting

Publications (1)

Publication Number Publication Date
JPS5850157A true JPS5850157A (en) 1983-03-24

Family

ID=15494589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15032781A Pending JPS5850157A (en) 1981-09-21 1981-09-21 Mold for continuous casting

Country Status (1)

Country Link
JP (1) JPS5850157A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229265A (en) * 1983-06-10 1984-12-22 Mitsubishi Heavy Ind Ltd Construction for attaching electromagnetic coil
FR2595597A1 (en) * 1986-03-13 1987-09-18 Cegedur DEVICE FOR ADJUSTING THE LEVEL OF THE CONTACT LINE OF THE FREE SURFACE OF THE METAL WITH THE LINGOTIERE IN A VERTICAL CASTING
FR2625121A1 (en) * 1987-12-23 1989-06-30 Voest Alpine Ind Anlagen CONTINUOUS CASTING LINGOTIERE, ESPECIALLY PLATE LINGOTIERE FOR CONTINUOUS CASTING OF SLABS AND BLOOMS
US5332024A (en) * 1991-03-05 1994-07-26 Danieli & C. Officine Meccaniche Spa Multipurpose mold
JP2007136537A (en) * 2005-11-22 2007-06-07 Nippon Steel Corp Electromagnetic stirring mold for continuous casting
CN109158563A (en) * 2018-10-31 2019-01-08 燕山大学 Continuous cast mold magnetic stirrer with resultant field

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229265A (en) * 1983-06-10 1984-12-22 Mitsubishi Heavy Ind Ltd Construction for attaching electromagnetic coil
JPH0128664B2 (en) * 1983-06-10 1989-06-05 Mitsubishi Heavy Ind Ltd
FR2595597A1 (en) * 1986-03-13 1987-09-18 Cegedur DEVICE FOR ADJUSTING THE LEVEL OF THE CONTACT LINE OF THE FREE SURFACE OF THE METAL WITH THE LINGOTIERE IN A VERTICAL CASTING
FR2625121A1 (en) * 1987-12-23 1989-06-30 Voest Alpine Ind Anlagen CONTINUOUS CASTING LINGOTIERE, ESPECIALLY PLATE LINGOTIERE FOR CONTINUOUS CASTING OF SLABS AND BLOOMS
US5332024A (en) * 1991-03-05 1994-07-26 Danieli & C. Officine Meccaniche Spa Multipurpose mold
JP2007136537A (en) * 2005-11-22 2007-06-07 Nippon Steel Corp Electromagnetic stirring mold for continuous casting
CN109158563A (en) * 2018-10-31 2019-01-08 燕山大学 Continuous cast mold magnetic stirrer with resultant field

Similar Documents

Publication Publication Date Title
JP4610548B2 (en) Tubular mold for continuous casting
KR950001115A (en) Water Cooling Jacket and Forming Method
US6145579A (en) Liquid-cooled mould
US4239078A (en) Cooled continuous casting mould
JPH06503035A (en) Molten metal containment device and continuous forming method for metal sheets
JPS5934463B2 (en) Inductor interior mold
JPS5850157A (en) Mold for continuous casting
CN212145042U (en) Gas protection and welding bead interlayer cooling device for non-ferrous metal angle joint welding seam
US4579165A (en) Mold for use in continuous metal casting
JPS5750251A (en) Assembled mold for continuous casting of metal
JPH03133550A (en) Roll of device to continuously cast sheets directly using molten metal
CN105014030A (en) Continuous casting electromagnetic stirring crystallizer with composite backboard
JPS59229261A (en) Mold panel for continuous casting
JPS5890352A (en) Inside wall plate of mold for continuous casting and its production
JPS6033854A (en) Mold plate for continuous casting
TW359631B (en) Liquid cooled ingot mold
JPS5611149A (en) Mold for continuous casting of metal
JPS5758953A (en) Block type casting for continuous casting
JPS62114745A (en) Mold for continuous casting
JPS6057933B2 (en) Mold in continuous casting equipment
JPS5942199Y2 (en) electromagnetic stirring device
JPS6254552A (en) Continuous casting mold
JP3842387B2 (en) Wear-resistant ring, manufacturing method thereof, and piston equipped with wear-resistant ring
GB1191833A (en) Improvements to the Construction of Open-Ended Moulds for the Continuous Casting of Metals
JPS6289553A (en) Mold for continuous casting