JPS58501430A - Production of carbide particles - Google Patents
Production of carbide particlesInfo
- Publication number
- JPS58501430A JPS58501430A JP56502412A JP50241281A JPS58501430A JP S58501430 A JPS58501430 A JP S58501430A JP 56502412 A JP56502412 A JP 56502412A JP 50241281 A JP50241281 A JP 50241281A JP S58501430 A JPS58501430 A JP S58501430A
- Authority
- JP
- Japan
- Prior art keywords
- carbide particles
- group
- integer
- cemented carbide
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 超硬粒子の製造 技術分野 本発明は主成分として実質的に炭素により構成される超硬粒子の製造に関する。[Detailed description of the invention] Production of carbide particles Technical field The present invention relates to the production of cemented carbide particles consisting essentially of carbon as a main component.
背景技術 グラファイト(黒鉛)を含む種々の形態の炭素をダイヤモンドその他の超硬炭素 形態に変えるために、1955年までに幾多の試みが為されたが、適正に実用化 されたものは無かった。成る適当なダイヤモンド合成法が19551200°〜 2400℃の温度と55,000〜100,000気圧またはそれ以上の圧力の 下で遷移金属(クロム、マンガン、鉄、コバルト、ニッケル、ルテニウム、ロジ ウム、)ξラジウム、オスミウム、イリジウム、白金)またはタンタルの存在に よシ炭素はダイヤモンドの形態に変わる。温度が高いと、よシ高圧が必要となる 。Background technology Various forms of carbon, including graphite, diamond and other hard carbon Many attempts were made to change the form until 1955, but none were properly put into practical use. Nothing was done. An appropriate diamond synthesis method consisting of 19551200° ~ At a temperature of 2400℃ and a pressure of 55,000 to 100,000 atmospheres or more transition metals (chromium, manganese, iron, cobalt, nickel, ruthenium, um, ) ξradium, osmium, iridium, platinum) or tantalum present Yoshi carbon changes into the form of diamond. Higher temperatures require higher pressure .
より容易な炭素−ダイヤモンド変換法をめて、非常に複雑な方法も研究された。In addition to simpler carbon-to-diamond conversion methods, very complex methods have also been investigated.
フィジカル・レビュー・レターズ(Physical Revievr Let ters) 7 : 367 (1961)に報告されたように、グラファイト に超高圧の爆発衝撃波を作用させると、100万分の1秒よりも短時間でダイヤ モンドを得る可能性のあることが示された。事実、爆発衝撃波を受けた炭素から 実際にダイヤモンドが回収された。Physical Review Letters Graphite When an ultra-high pressure explosive shock wave is applied to It has been shown that there is a possibility of obtaining mondo. In fact, carbon from the explosion shock wave The diamond was actually recovered.
メタン、エタンおよびプロ・ξンのような気体が粉末ダイヤモンドに接して分解 するとダイヤモンドの生長を促すエピタキシー法も報告されている。しかしエピ タキシー法を行う場合は、1300°に近辺の温度と10−3〜10−4気圧の 程度の圧力が必要とさ九ることか判った。Gases such as methane, ethane and pro-ξ decompose in contact with powdered diamond. Epitaxy methods that promote diamond growth have also been reported. But epi When performing the taxi method, the temperature near 1300° and the temperature between 10-3 and 10-4 atm. It turned out that a certain amount of pressure was required.
人造ダイヤモンドその他の超硬炭素材の製造に用いられた在来手法はせいぜい実 施しても厄介かつ高価であることが明らかである。温度および圧力の極限を維持 するには、膨大なエネルギーと複雑な装置が必要であり、それ故に人造ダイヤモ ンド製造を広く商業ベースにのせる魅力がない。Conventional methods used to produce synthetic diamonds and other carbide carbon materials are at best impractical. It is clear that even when applied, it is cumbersome and expensive. Maintains temperature and pressure extremes This requires enormous amounts of energy and complicated equipment, which is why man-made diamonds There is no appeal for widespread commercialization of semiconductor manufacturing.
発明の開示 在来技術による製造手法に存在する欠点を克服しつつ、超硬炭素粒子を製造する ことが本発明の一目的である。Disclosure of invention Manufacture cemented carbide particles while overcoming the drawbacks of conventional manufacturing methods This is one object of the present invention.
在来技術に必要な極限の温度および圧力を用いる必要なしに、超硬炭素粒子を製 造することが本発明のもう一つの目的である。Manufacture cemented carbide particles without the need to use the extreme temperatures and pressures required by conventional techniques It is another object of the present invention to create a.
グラファイト又は無足形炭素から超硬炭素粒子を製造することが本発明のさらに もう一つの目的である。It is a further aspect of the invention to produce cemented carbide particles from graphite or anatomical carbon. This is another purpose.
高熱力学的駆動による炭素生成反応法により超硬炭素粒子を製造することが本発 明のさらにもう一つの目的である。The present invention is to produce cemented carbide particles using a carbon production reaction method driven by high thermodynamics. This is yet another purpose of Ming.
炭化アルミ(14c’5)または炭化ベリIJウム(Be2C)のような金属炭 化物がハロゲン捷たは一飄ロゲ゛ン化合物と反応する時に超硬炭素粒子が生成さ れることは既知の事実である。炭素と寄生反応する物質または酸素2よび酸化力 を持つ酸素添加化付物のような反応物質の存在を少くするか除去するために、注 意が払われている。この反応は中位の温度での高度の発熱条件にて極く硬くて彊 い、共M結合格子講造を、生成する順向があった。この反応は比較的低い温度( 数100℃)と低圧(数気圧以下)とにおいて行われた。ダイヤモンド−グラフ ァイト変換エネルギの100倍以上程度のダラム原子当りの有効(自然)エネル ギーにて本発明の反応を行いながら、しかも炭素に対する溶媒力を持たない系を 用いることも本発明の一目的であった。適正な条件の下では、個々に分離される 炭素原子を待つ金属炭化物は極めて反応性が高い。行われた実際の反応では、反 応エネルギーは極めて有効であシ、グラファイト−炭素変換エネルギーの100 倍以上の炭素1原子当りのエネルギーとなることが判っている。Metallic carbon such as aluminum carbide (14c’5) or beryllium carbide (Be2C) Cemented carbide particles are produced when the compound reacts with a halogen compound or a single halogen compound. It is a known fact that Substances that parasitically react with carbon or oxygen 2 and oxidizing power to reduce or eliminate the presence of reactants such as oxygenated adducts with attention is being paid. This reaction is highly exothermic at moderate temperatures and is extremely hard and active. However, there was a trend toward creating co-M-coupled lattice structures. This reaction takes place at a relatively low temperature ( The experiments were carried out at temperatures of several hundred degrees Celsius) and low pressure (several atmospheres or less). diamond graph The effective (natural) energy per Durham atom is more than 100 times the pyrite conversion energy. We have created a system that performs the reaction of the present invention in ghee and that does not have solvent power for carbon. It was also an object of the present invention to use Under proper conditions, they can be separated individually Metal carbides waiting for carbon atoms are extremely reactive. In the actual reaction that took place, the reaction The conversion energy is extremely effective, with 100% of the graphite-carbon conversion energy It is known that the energy per carbon atom is more than twice as high.
発明を実施するための最良の形態 本発明に用いられる炭化アルミニウムまたは炭化ベリリウムは比較的に不純物、 特に炭素を含まないものでなけ几ばならない。金属炭化物中に自由炭素が存在す ると、ゲラファイトの核化が生じて超硬炭素粒子の発生を大いに阻害する可能性 がある。この故に、分子式Al4C3またはBe2Cで示されるよりも僅かに大 きな、アルミニウムまたはぺIJ リウム対炭素の化学量比を持つ炭化アルミニ ウムまたは炭化へロジウムの出発物質が選ばれる。本発明の実施において、炭化 アルミニウムまたは炭化ベリリウムの物理的形状は絶対重要条件ではない。しか し、50〜500メノシの範囲の微細化された粒子で、種々の反応がより迅速に 生ずる。BEST MODE FOR CARRYING OUT THE INVENTION The aluminum carbide or beryllium carbide used in the present invention contains relatively few impurities, In particular, it must be carbon-free. The presence of free carbon in metal carbides If so, nucleation of gelaphite may occur and greatly inhibit the generation of cemented carbide particles. There is. Therefore, it is slightly larger than that indicated by the molecular formula Al4C3 or Be2C. aluminum or aluminum carbide with a stoichiometric ratio of aluminum to carbon A starting material of rhodium or rhodium carbide is chosen. In the practice of this invention, carbonization The physical form of the aluminum or beryllium carbide is not an absolutely critical condition. deer However, with the miniaturized particles in the range of 50 to 500 particles, various reactions can be carried out more quickly. arise.
この反応は高温融解系において行われる。この融解系は2種以上の・・ロゲン化 金属の融解液から成り、その金属は周期律表の第1.n、l[[族から成る族か ら選ばれ、)・ロゲ゛ンは塩素、臭素、沃素および弗素から成る族から選ばれる 。硫化物、窒化物および炭化物のような酸化性陰イオンおよび水酸化物のような 水素含有陰イオンが本融解系内に存在することは避けるべきである。This reaction takes place in a high temperature melting system. This melting system consists of two or more... It consists of a molten liquid of metal, which is the first metal in the periodic table. n, l [[Is it a family consisting of a family? ) rogane is selected from the group consisting of chlorine, bromine, iodine and fluorine. . Oxidizing anions such as sulfides, nitrides and carbides and hydroxides The presence of hydrogen-containing anions within the melt system should be avoided.
この融解系は本発明の実施上幾つかの貴重な機能を果す。先ず、この系はダイヤ モンド−グラファイトの逆転が測定可能の速さで行われる温度よりかなり低い温 度において反応媒体を供給する。つぎにこの系はヒート・シンク(吸熱体)とし て働く。たとえば、塩化リチウム(Li(J)と塩化アルミニウム(Al(J3 )との組合せから成る融解系は150℃という低い温度で流体である。理想的に は、この融解系はハロゲ゛ン化アルミニウム(AIX5 : Xはc4Brまた は工を表わし、幾らかのFも存在する)と、アルカリ・・・ロゲ゛ン化物または アルカリ土ハロゲン化物のような1種以上の−・ロケ゛ン化金属との錯体から成 ることができる。T−4cl : AA’C13の重量モル比が1より大きい値 で塩化リチウムと塩化アルミニウムとが組合せて使用されると、優勢な融解要素 はLj+、AlCl4−およびCI!−である。比が高いと、固相のLlClま たはL15AIC16の存在の可能性もある。LiCl: II(J3の重1モ ル比が1:1より小さい、たとえば約1:2の値であると、優勢な融解要素ばL 1+。This melt system serves several valuable functions in the practice of this invention. First of all, this system is diamond mondo - at a temperature well below that at which graphite inversion occurs at a measurable rate. The reaction medium is fed at a temperature of 100°C. Next, we will consider this system as a heat sink (heat absorber). work. For example, lithium chloride (Li(J) and aluminum chloride (Al(J3) ) is fluid at temperatures as low as 150°C. ideally This melting system is aluminum halide (AIX5: X is c4Br or (represents chemical compound, and some F is also present), and alkali... logonide or consisting of a complex with one or more metal chlorides such as alkaline earth halides. can be done. T-4cl: AA’C13 weight molar ratio is greater than 1 When lithium chloride and aluminum chloride are used in combination in are Lj+, AlCl4- and CI! − is. When the ratio is high, LlCl or LlCl in the solid phase There is also a possibility that L15AIC16 exists. LiCl: II (J3 heavy 1 mo If the L ratio is less than 1:1, for example about 1:2, then the dominant melting element L 1+.
AIICIJ4−およびAl12C:17−となる。全体または部分的に07の 代シにBrであってもよい。初期または最終の融解系の何れにおいても、成る量 の弗素、沃化物または沃素か自由形またはアルミニウム含有陰イオン形で存在す ることもある。また、このような融解系は、酸素または水の存在の下でアルミニ ウムまたは炭化アルミニウムの表面に自然に形成されるAl2O3および水酸化 アルミニウムの錯体に対して高い溶媒性と浸透性とを示す。Al2O3または結 合アルミニウム原子含有OH族の皮膜は極めて強靭であり、本発明の実施上、強 い障害となる。すなわち、本発明の作用をなす融解系は酸化アルミニウム、アル ミニウムー酸素複合体および水素含有アルミニウムー酸素複合体に対する溶媒性 を持たなければならない。またこの融解系は金属炭化物表面を湿らす能力を持た なければならないし、またハロゲン化炭素反応剤または金属炭化物を破壊しない 能力を持たなければならない。またこの系は実質的に無水であり、実質的に水酸 基族を含まないものでなければならない。AIICIJ4- and Al12C:17-. 07 in whole or in part Alternatively, Br may be used. The amount that consists of either the initial or final melting system Fluorine, iodide or iodine exists in free form or aluminum-containing anionic form. Sometimes. Also, such a melt system can melt aluminum in the presence of oxygen or water. Al2O3 and hydroxide formed naturally on the surface of aluminum or aluminum carbide Shows high solvent properties and permeability to aluminum complexes. Al2O3 or The OH group film containing aluminum alloy atoms is extremely tough, and in carrying out the present invention, it is difficult to It becomes an obstacle. That is, the melting system that functions in the present invention consists of aluminum oxide, aluminum Solvent properties for aluminum-oxygen complexes and hydrogen-containing aluminum-oxygen complexes must have. This melting system also has the ability to wet the metal carbide surface. Must also not destroy halocarbon reactants or metal carbides Must have the ability. This system is also substantially anhydrous and substantially hydroxyl. It must not contain any radicals.
本発明は約0.1〜100気圧の範囲の圧力にて実施することができる。上限と して、反応が平衡に達するまで待つことができる場合にはダイヤモンドが安定な 炭素の形であるような圧力、約20,000気圧よシも低い圧力にてこの反応が 生ずる筈である。しかし100気圧より高い圧力では、その高圧を維持するのに やや複雑な装置が必要であるのに、反応に対する利点が少ない。最適温度は融解 物を作るために、また1次反応剤として用いられる実際の化合物により異るであ ろう。原則として、温度は少くとも融解系を液相に保つのに充分な高さであるこ ととして、約100〜700℃が反応を遂行するのに用いられる。The invention can be practiced at pressures ranging from about 0.1 to 100 atmospheres. upper limit and If you can wait until the reaction reaches equilibrium, the diamond is stable. This reaction takes place at pressures as low as about 20,000 atmospheres, which is the form of carbon. It should occur. However, at pressures higher than 100 atmospheres, it takes Although it requires somewhat complicated equipment, there are few advantages for the reaction. Optimal temperature is melting may vary depending on the actual compound used to make the product and as the primary reactant. Dew. As a general rule, the temperature should be at least high enough to keep the molten system in the liquid phase. As such, a temperature of about 100-700°C is used to carry out the reaction.
以下に本発明の具体例を幾つか示す。Some specific examples of the present invention are shown below.
例 1 事実止金ての水素および塩化水素が系から確実に排出されるのに充分な時間をか けて加熱された混合)・ロゲン化合物の溶液を調製することによシ融解系を形成 させる。Example 1 In fact, allow sufficient time to ensure that all hydrogen and hydrogen chloride are evacuated from the system. A molten system is formed by preparing a solution of the rogen compound (heated mixture). let
本例では無水Li07 24.5jiを500−のフラスコの中で約130−1 40℃にて2日間加熱した。つぎに無水AIIJ3約67ノをアルゴンのブラン ケット(遮蔽ふんい気)の下で添加し、温度を約250℃に上げて、この混合物 を35分間攪拌した。この時点で、極く微IのHoeが認められた。In this example, 24.5ji of anhydrous Li07 was added to about 130-1 in a 500- Heated at 40°C for 2 days. Next, add about 67 liters of anhydrous AIIJ3 to an argon bran. Add this mixture under a blanket and raise the temperature to about 250°C. was stirred for 35 minutes. At this point, very slight I Hoe was observed.
融解系が形成さnた後、金属炭化物を添加した。本例ではA14052.99を 添加し、暫く放置した。ついでノ・ロゲン含有反応剤を段階的に、過剰となるま で添加することができる。本例ではCCl41−づつを10分間隔で全部で10 mになるまで添加し、その後さらに2−づつを10分毎に追加した。OCj?4 の添加の間、常に温度を約265℃に保ち、その後その懸濁液を冷却させた。After the molten system was formed, the metal carbide was added. In this example, A14052.99 is It was added and left for a while. Then add the reactant containing nitrogen in stages until an excess is reached. It can be added with. In this example, CCl41- each was applied at 10 minute intervals for a total of 10 m, followed by additional 2 additions every 10 minutes. OCj? 4 The temperature was kept at about 265° C. throughout the addition, after which the suspension was allowed to cool.
AA’4C5+ 3CO14→6C+ 4iC!73上式の反応により形成され た融解懸濁液を、製塩化水素H(J 10 dと水H2O200−の中に混入し て洗滌した。AA’4C5+ 3CO14→6C+4iC! 73 Formed by the reaction of the above formula The molten suspension was mixed into hydrogen chloride H (J10d) and water H2O200-. I washed it.
懸濁液を50分間沸騰させた。その代シに、H2SO4または0H3So3Hの ような非酸化性酸の水溶液またはニトロベンゼンのような無水系の中に懸濁液を 混入することもできた。ついで懸濁液を濾過し、固形物を1:10のH(Jlo omlの中で洗滌し、つづいて水100−の洗滌を3回行い、インプロビール・ アルコール40ゴの洗滌を2回行って、アセトン25m1の洗滌4回で完了した 。製品を乾燥させると、超硬炭素粒子が存在した。The suspension was boiled for 50 minutes. Instead, H2SO4 or 0H3So3H suspension in an aqueous solution of a non-oxidizing acid such as or an anhydrous system such as nitrobenzene. It could also be mixed in. The suspension was then filtered and the solid was dissolved in 1:10 H (Jlo Wash in Oml, then wash 3 times with 100% water, and then wash with Improv beer. It was completed with 2 washes with 40ml of alcohol and 4 washes with 25ml of acetone. . When the product was dried, cemented carbon particles were present.
例 2 例1で調製したのと同じ融解系に、Al4O3の他にさらにKBr約22を添加 した。C!(J4をやはジハロゲン反応剤として、これを例1と同様に段階的に 添加した。最終的な超硬炭素製品を例1同様に洗滌し、乾燥させた。Example 2 To the same melt system prepared in Example 1, in addition to Al4O3, approximately 22 more KBr was added. did. C! (Same as Example 1, using J4 as the dihalogen reactant) Added. The final cemented carbide product was washed and dried as in Example 1.
融解系は例1と同じであるが、反応剤はAl4C3とCBr4とを含んでいた。The melt system was the same as Example 1, but the reactants included Al4C3 and CBr4.
よシ具体的には、高温融解液にAl4C3を添加した後、CBr41j1を添加 し、つづいてCCl40.5dづつを5分毎に、全部で10m添加した。この超 硬炭素製品を例1同様に洗滌した。Specifically, after adding Al4C3 to the high temperature molten liquid, CBr41j1 is added. Then, 40.5 d of CCl was added every 5 minutes for a total of 10 m. This super The hard carbon product was washed as in Example 1.
例 4 融解系は例1と同様に調製され、第1の反応剤として炭化アルミニウムAl4C 3が選ばれた。残シの反応剤にはCBr419と、5分毎に1.79づつ添加さ れる全部で13.6タの02C16とが含まれた。この超硬炭素粒子を例1のよ うに洗滌し乾燥し、次式の反応による最終製品を生じた。Example 4 The melt system was prepared similarly to Example 1, with aluminum carbide Al4C as the first reactant. 3 was selected. CBr419 was added to the remaining reactant and 1.79 was added every 5 minutes. A total of 13.6 ta 02C16 were included. These carbide carbon particles were prepared as in Example 1. The sea urchin was washed and dried to yield the final product according to the following reaction.
2C2C16+Al4C3→ 4iC73+ 70例 5 例1のように調製した融解系にA14052.59と、核化剤としてNaC11 8■に添加したFee 2■とを添加した。2C2C16+Al4C3 → 4iC73+ 70 cases 5 A14052.59 and NaC11 as nucleating agent were added to the melt system prepared as in Example 1. Fee 2■ added to 8■ were added.
後者の添加物を融解系の中で約10分間混合した後、 CBr41j1とC2C 1679とを添加し、この反応混合液を240℃にて約65分間還流(リフラツ クス)させた。つづく10分間にわたってc2cit6の追加を3回行い、再び 懸濁液を20分間還流させた。最後にC2CΔ63Fを20分間にわたって添加 し、再び懸濁液を30分間加熱した。ついでとの超硬炭素粒子を例1同様に洗滌 し乾燥する。After mixing the latter additive in the melt system for about 10 minutes, CBr41j1 and C2C 1679 and the reaction mixture was refluxed at 240°C for about 65 minutes. (giggle) Add c2cit6 three times over the next 10 minutes, and then The suspension was refluxed for 20 minutes. Finally, C2CΔ63F was added for 20 minutes. and heated the suspension again for 30 minutes. Next, wash the carbide carbon particles in the same manner as in Example 1. and dry.
例 6 融解系を例1のように調製し、それにA14C32,9ノと、核化剤としてNa 0l中にFe510%を混入したもの209とを添加した。この反応混合液を約 240℃にて15分間攪拌した後、CBr42j’づつを5分毎に全部で249 添加した。化合式: %式% による反応が進んで生じた超硬炭素粒子を例1同様に濾過し、洗滌し乾燥させた 。Example 6 A molten system was prepared as in Example 1 and added with A14C32,9 and Na as a nucleating agent. 209 containing 510% Fe in 0l was added. This reaction mixture was heated to approx. After stirring for 15 minutes at 240°C, add CBr42j' every 5 minutes for a total of 249 Added. Compound formula: %formula% The superhard carbon particles produced as the reaction progressed were filtered, washed, and dried in the same manner as in Example 1. .
例 7 粉末KEr 10jl 、 LlCl 2 iノおよびAlC713約67タを 混合して融解系が形成された。この混合体を約240℃に加熱し、アルゴンの下 で1時間攪拌した。この融解系に可能な触媒としてHgCd22029を添加し 、さらにA14”32.92を添加した。5分間放置して、C2c14約1−を 高温融解物に添加した。この溶液を還流させ、1o分後に0Br41ノを添加し た。ついで、c2c141−づつを10分間隔で、全部で94を系に加えた。こ れら反応物を45分間加熱し、例1同様に濾過し、洗滌し、乾燥させた。反応は 次式: %式% により進行し、超硬炭素粒子を生じた。Example 7 10 l of powdered KEr, 2 l of LlCl and about 67 g of AlC713. Upon mixing, a molten system was formed. This mixture was heated to about 240°C and under argon. The mixture was stirred for 1 hour. Adding HgCd22029 as a possible catalyst to this melt system , additional A14"32.92 was added. Leave for 5 minutes to add about 1- Added to hot melt. The solution was refluxed and after 10 minutes, 0Br41 was added. Ta. C2c141- were then added to the system at 10 minute intervals for a total of 94 doses. child The reactions were heated for 45 minutes, filtered, washed and dried as in Example 1. The reaction is The following formula: %formula% The process proceeded to produce cemented carbide particles.
例 8 例1の融解系が調製され、それにA14032.9ノと、核化剤としてNa1J に10%のFeSを混ぜたもの20■とを添加した。第2の反応剤Br28〜を 0.4m/づつ5分間隔で添加した。例1同様にこの反応生成物を沖過し、洗滌 し、乾燥させると、次式 %式% による製品を生じた。Example 8 The melt system of Example 1 was prepared and added with A14032.9 and NaJ as a nucleating agent. and 20 μm of a mixture of 10% FeS were added. The second reactant Br28~ 0.4 m/each was added at 5 minute intervals. The reaction product was filtered and washed in the same manner as in Example 1. and when dried, the following formula %formula% produced a product.
例 9 例1により調製された融解系にに工5ノを添加した。これにAA’4C!3A1 403250℃にて添加し、これと、CCl40.5dづつを5分間隔で合計2 0回系に添加して反応させた。反応により超硬粒子を生じ、これを例1の手順に よp濾過し、洗滌し、乾燥させた。Example 9 To the molten system prepared according to Example 1 was added 5 chloride. AA’4C for this! 3A1 403 at 250°C, and add this and 40.5d of CCl for a total of 2 times at 5 minute intervals. It was added to the system 0 times and reacted. The reaction produced carbide particles, which were then subjected to the procedure of Example 1. It was thoroughly filtered, washed and dried.
例1によシ調製された融解系にNaF 59を添加した。NaF 59 was added to the melt system prepared according to Example 1.
この融解系に微粉化されたAl4C3約2.889を添加し、これにOCA’4 Idづつを10分間隔で合計12回添加した。Approximately 2.889 pulverized Al4C3 is added to this melt system, and OCA'4 Each Id was added a total of 12 times at 10 minute intervals.
例1によりこの反応生成物を濾過し、洗滌し、乾燥して、本発明の超硬炭素材を 生じた。The reaction product was filtered, washed and dried according to Example 1 to obtain the cemented carbide material of the present invention. occured.
例11 L=c1429とAlCl3134Fとから成る融解系が例1のように調製され 、それに270メツシのサイズのA14032.769が添加された。約236 ℃の開始温度にて、フレオン11(CC13F)1−づつを5分間隔で合計23 回添加した。例1のように反応生成物を濾過し、洗滌し、乾燥させて、本発明の 超硬炭素材を生じた。Example 11 A melt system consisting of L=c1429 and AlCl3134F was prepared as in Example 1. , to which A14032.769 of size 270 mesh was added. Approximately 236 A total of 23 Freon 11 (CC13F) 1- each at 5 minute intervals at a starting temperature of °C. Added twice. The reaction product was filtered, washed and dried as in Example 1 and A carbide carbon material was produced.
例12 例1の融解系が調製され、これに270メツシのAl4C3約2.88jiを2 42℃にて添加した。つぎにこの高温融解系に塩素ガスを0.05ft5/時( 0,0014?M5/時)の割合で1/2時間、導入して発泡させる。ついで塩 素ガスを0.1ft’/時(0,0028m57時)の割合まで上げて次の2N /2時間導入し、合計の塩素ガス添加量をIQ、#とじた。例1同様にこの反応 生成物を濾過し、洗滌し、乾燥させて、本発明による超硬炭素粒子を生じた。Example 12 The melt system of Example 1 was prepared and to which approximately 2.88 ji of 270 mesh of Al4C3 was added. Addition was made at 42°C. Next, chlorine gas is added to this high-temperature melting system at a rate of 0.05 ft5/hour ( 0,0014? Foaming is carried out at a rate of 1/2 hour (M5/hour). Then salt Raise the elementary gas to a rate of 0.1 ft'/hour (0,0028 m57 hours) and then apply the next 2N /2 hours, and the total amount of chlorine gas added was calculated as IQ and #. Similar to Example 1, this reaction The product was filtered, washed and dried to yield cemented carbon particles according to the present invention.
例13 フラスコにNa0J 29.2Fを入れ、18CN:にて真空下で2時間加熱し て、完全真空の下で1晩中放置した。アルゴンのブランケットの下でAlIC1 3679を添加して融解系を完成した。この融解系にA14032.88Fを添 刀口し、第2の反応剤としてCCl41ffi/づつを10分間隔で合計13回 添加した。温度を300℃より高く保ち、その反応生成物を例1により濾過し、 洗滌し、乾燥して、本発明の超硬炭素粒子を生じた。Example 13 Put Na0J 29.2F into a flask and heat under vacuum at 18CN for 2 hours. and left under full vacuum overnight. AlIC1 under argon blanket 3679 was added to complete the melt system. Add A14032.88F to this melt system. Then, as a second reactant, 41ffi/CCl was added at 10 minute intervals for a total of 13 times. Added. keeping the temperature above 300°C and filtering the reaction product according to Example 1; Washing and drying yielded the cemented carbide particles of the present invention.
フラスコにKCl37.3Fを入れ、完全真空下にて2時間180℃に刀口熱し た。このKcalを完全真空下にて1晩中放置し、つぎに機械で攪拌しつつAl Cl367’9を添加して融解物を完成した。つぎにAl4C3約2.88ノを 添加して、これを1CCづつを10分間隔で合計、16回添加したCC/!4と 反応させた。例13のように、温度を600℃よシ高く保って、生じた反応生成 物を例1同様に濾過し、洗滌し、乾燥した。この反応は本発明による超硬炭素粒 子を生じた。Pour KCl37.3F into a flask and heat to 180℃ for 2 hours under complete vacuum. Ta. This Kcal was left under a complete vacuum overnight, and then the Al The melt was completed by adding Cl367'9. Next, add approximately 2.88 mm of Al4C3. CC/! was added 16 times in total at 10 minute intervals, 1 CC each! 4 and Made it react. As in Example 13, the reaction product produced by keeping the temperature higher than 600°C The material was filtered, washed and dried as in Example 1. This reaction is caused by the cemented carbide particles according to the present invention. gave birth to a child.
例15 例1により調製した融解系にIJ4C32,88j’を添加して、これにCC4 2F2を0.1ft’/時(0,0028m5/時)の割合で導入して反応させ た。温度を260〜245℃に維持しながら、CCl2F2を系内に2時間導入 して発泡させた。これらの添加の後で、反応生成物を例1に従って沖過し、洗滌 し、乾燥して、本発明による超硬炭素粒子を生じた。Example 15 IJ4C32,88j' was added to the melt system prepared according to Example 1, and CC4 2F2 was introduced at a rate of 0.1 ft'/hour (0,0028 m5/hour) and reacted. Ta. CCl2F2 was introduced into the system for 2 hours while maintaining the temperature between 260 and 245°C. and foamed. After these additions, the reaction product was filtered and washed according to Example 1. and dried to yield cemented carbide particles according to the invention.
例16 例1により融解系を調製した。温度約247℃にて、A14C!32.889を 添加し、これを、Q、i ft5/I寺(0,0028m34=)の割合で4時 間高温融解系に導入したCCl2Fと反応させた。温度を約238℃に保ち、濾 過し、洗滌し、乾燥して、超硬炭素粒子の性質を持つ反応生成物を生じた。Example 16 A melt system was prepared according to Example 1. At a temperature of about 247℃, A14C! 32.889 Add this to Q, i ft5/I temple (0,0028m34=) at 4 o'clock The mixture was reacted with CCl2F introduced into the high-temperature melting system. Keep the temperature at about 238℃ and filter Filtration, washing and drying yielded a reaction product with the properties of cemented carbon particles.
例17 例1による融解系を調製した。これにAl4C3約2.92とNa(J’に10 %のFeSを混ぜたもの20■とを添加して、さらに15分間加熱した。CHB r3から成る第2の反応剤を0.5dづつ5分間隔で合計ZOd添加した。この 反応生成物を濾過し、洗滌し、乾燥させると、次式:%式% による超硬炭素粒子を生じた。Example 17 A melt system according to Example 1 was prepared. Add to this about 2.92 Al4C3 and Na (10 % of FeS was added and heated for an additional 15 minutes. CHB A second reactant consisting of r3 was added in 0.5d increments at 5 minute intervals for a total of ZOd. this The reaction product is filtered, washed and dried, giving the following formula: % formula % produced cemented carbide particles.
例18 例1により調製された融解物にAA’4C!5 t 59とNa(Jに混合した FeS20 ’mfとを添加した。OH2工2から成る第2の反応剤0.5dづ つを5分間隔で添加して還流させながら全部で54を添加した。ついで生成物を 洗滌し乾燥させて、次式: %式% による超硬炭素粒子を生じた。Example 18 AA'4C! in the melt prepared according to Example 1! 5 t 59 and Na (mixed with J FeS20'mf was added. 0.5 d of the second reactant consisting of OH2 One addition was made at 5 minute intervals for a total of 54 additions under reflux. Then the product Wash and dry, then use the following formula: %formula% produced cemented carbide particles.
上記の実施例から判るように、Al4C3およびB e 2 Cから成る族から 選ばれた金属炭化物と、canxAY(4−n)〜A。As can be seen from the above examples, from the group consisting of Al4C3 and Be2C selected metal carbide and canxAY(4-n)~A.
C!2Hn’ XA’ Y(6−n” )−A’ + c2Hn’xA’y(4 −nつ−A′およびX2から成る族から選ばれた成分とを反応させた生成物とし て、超硬炭素粒子を生成することができる。ただしXおよびYは塩素、臭素、沃 素および弗素から成る族から選ばれた異るハロゲ゛ンであり、Aは0〜4の整数 、A′は0〜6の整数、およびA′は0〜4の整数であシ、nは0〜4の整数、 n′は0〜乙の整数およびn′は0〜4の整数であり、A、A’ 、A’、n、 n’またはn′はそれぞれ選ばれた任意の数の同一整数であり、またn+A=4 、 n’ +A’ =6およびn′+A″−4である。実行された実際の反応 では、反応エネルギは極めて優利であり、グラファイト−炭素転換エネルギーの 100倍以上のカーボン原子当シの大きさであることが判った。C! 2Hn’ XA’ Y (6-n”)-A’ + c2Hn’xA’y (4 - a product obtained by reacting n components selected from the group consisting of A' and X2; Thus, cemented carbide particles can be produced. However, X and Y are chlorine, bromine, iodine different halogens selected from the group consisting of elemental and fluorine, where A is an integer from 0 to 4 , A' is an integer of 0 to 6, and A' is an integer of 0 to 4, n is an integer of 0 to 4, n' is an integer from 0 to B; n' is an integer from 0 to 4; A, A', A', n, n' or n' are each selected arbitrary number of identical integers, and n+A=4 , n'+A'=6 and n'+A''-4.Actual reaction performed In this case, the reaction energy is extremely advantageous, and the graphite-carbon conversion energy is It was found that the size is more than 100 times that of a carbon atom.
人造ダイヤモンドその他の硬質炭素粒子の製造に用いられた極端に高い温度、圧 力などの条件は本発明の実施上、完全に必要で無くなった。Extremely high temperatures and pressures used to produce synthetic diamonds and other hard carbon particles Conditions such as force are completely unnecessary in the practice of the present invention.
金属が周期律表の第1、■および■族の金属から成る族から選ばれ、丑だハロゲ ン化合物が塩素、臭素、沃素および弗素から成る族から選ばれた場合の、2種以 上の・・ロゲン化金属の融解液から成る高温融解系において、この反応が行われ た。また本発明はダイヤモンドに近い格子常数を持つ核化剤の使用を考えている 。たとえば、FeS 、 cuまたはダイヤモンド自身の微細粒子を使用するこ ともできる。また本発明は工2のような触媒の使用も考えている。If the metal is selected from the group consisting of metals of Groups 1, ■, and ■ of the periodic table, two or more compounds selected from the group consisting of chlorine, bromine, iodine and fluorine; This reaction is carried out in a high-temperature melting system consisting of a molten liquid of the metal halogenide above. Ta. The present invention also considers the use of a nucleating agent with a lattice constant close to that of diamond. . For example, using fine particles of FeS, cu or diamond itself. Can also be done. The present invention also contemplates the use of catalysts such as No. 2.
上記の引用例により生成された超硬炭素生成の各々は硬度および対応する研磨性 について試験された。1が滑石、7が水晶、9がコランダム、そして10がダイ ヤモンドである、よく用いられる1から10までのモー・スケール(Moh65 cale)は純粋のひつかき能力による等級であり、相対的で定量的な意味はな い。成る研磨試験で、ダイヤモンドはコランダムの硬度の少くとも100倍の硬 度を示す。少量の粉末研磨材をガラス板にのせて、粉末を湿らせ、これをもう1 枚のガラス板に押付けて数秒間こすって、ガラス板を洗ってからその結果を反射 光により顕微鏡で見ると、研磨材の間に著しい定性的、定量的な差が表われる。Each of the carbide carbon products produced by the cited examples above has a hardness and a corresponding abrasiveness. tested for. 1 is talcum, 7 is crystal, 9 is corundum, and 10 is die. The commonly used Moh scale from 1 to 10 (Moh65) Cale) is a grade based on pure hitting ability, and has no relative or quantitative meaning. stomach. Diamond is at least 100 times harder than corundum in abrasive tests. Show degree. Place a small amount of powdered abrasive on a glass plate, moisten the powder, and apply another Press it against a glass plate and rub it for a few seconds, wash the glass plate and then reflect the result. When viewed under a light microscope, significant qualitative and quantitative differences appear between the abrasives.
微細粒または粉末のコランタム寸たはカーボランダムはせいぜい短かい溝を作る だけである。Fine-grained or powdered corantum or carborundum produces at most short grooves. Only.
これらの研磨材は比較的早くくずれて、ガラス板はすぐにフロスト(くもり)状 の外観を呈する。本発明の微細ダイヤモンド粒および炭素粉末は全く異る挙動を 示し、長い、非常に特徴的な流星状の溝を生ずる。上記の引用例の硬質炭素生成 物をそれぞれ試験するとこれらの特徴的な流星状の溝を生ずる傾向を少くとも成 る程度示した。These abrasive materials break down relatively quickly, and the glass plate quickly becomes frosted. It has the appearance of The fine diamond grains and carbon powder of the present invention behave completely differently. , giving rise to long, very characteristic meteor-like grooves. Hard carbon generation in the above cited example Testing each material at least shows a tendency to produce these characteristic meteor-like grooves. It was shown to the extent that
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1981/000866 WO1983000038A1 (en) | 1981-06-22 | 1981-06-22 | Production of ultra-hard particles |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58501430A true JPS58501430A (en) | 1983-08-25 |
Family
ID=22161296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56502412A Pending JPS58501430A (en) | 1981-06-22 | 1981-06-22 | Production of carbide particles |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0081487A4 (en) |
JP (1) | JPS58501430A (en) |
WO (1) | WO1983000038A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016517388A (en) * | 2013-03-15 | 2016-06-16 | ウエスト バージニア ユニバーシティ リサーチ コーポレーション | Pure carbon production method, composition and method thereof |
WO2017188442A1 (en) * | 2016-04-28 | 2017-11-02 | 味の素株式会社 | Method for manufacturing graphene |
US9909222B2 (en) | 2014-10-21 | 2018-03-06 | West Virginia University Research Corporation | Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions |
US11332833B2 (en) | 2016-04-20 | 2022-05-17 | West Virginia Research Corporation | Methods, apparatuses, and electrodes for carbide-to-carbon conversion with nanostructured carbide chemical compounds |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4551380A (en) * | 1984-05-10 | 1985-11-05 | W. R. Grace & Co., Cryovac Div. | Oriented heat-sealable multilayer packaging film |
US4514465A (en) * | 1984-05-30 | 1985-04-30 | W. R. Grace & Co., Cryovac Div. | Storm window film comprising at least five layers |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1274206A (en) * | 1960-11-24 | 1961-10-20 | Nilok Chemicals | Improvements with activated carbon |
US3268457A (en) * | 1962-04-05 | 1966-08-23 | Armando A Giardini | Method of creating electrically semiconducting diamond |
US3362788A (en) * | 1963-08-26 | 1968-01-09 | Sun Oil Co | Preparation of crystalline carbonaceous materials |
CH487799A (en) * | 1968-02-08 | 1970-03-31 | Battelle Memorial Inst Interna | Synthetic diamond manufacturing process |
US3711595A (en) * | 1971-07-22 | 1973-01-16 | R I Patents Inc | Chemical method for producing diamonds and fluorinated diamonds |
US4039648A (en) * | 1975-12-12 | 1977-08-02 | Aluminum Company Of America | Production of aluminum chloride |
US4228142A (en) * | 1979-08-31 | 1980-10-14 | Holcombe Cressie E Jun | Process for producing diamond-like carbon |
US4275050A (en) * | 1979-11-08 | 1981-06-23 | Tdc-Technology Development Corporation | Production of ultra-hard particles |
-
1981
- 1981-06-22 JP JP56502412A patent/JPS58501430A/en active Pending
- 1981-06-22 WO PCT/US1981/000866 patent/WO1983000038A1/en not_active Application Discontinuation
- 1981-06-22 EP EP19810901985 patent/EP0081487A4/en not_active Ceased
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016517388A (en) * | 2013-03-15 | 2016-06-16 | ウエスト バージニア ユニバーシティ リサーチ コーポレーション | Pure carbon production method, composition and method thereof |
US9701539B2 (en) | 2013-03-15 | 2017-07-11 | West Virginia University Research Corporation | Process for pure carbon production |
US9764958B2 (en) | 2013-03-15 | 2017-09-19 | West Virginia University Research Corporation | Process for pure carbon production, compositions, and methods thereof |
JP2018035064A (en) * | 2013-03-15 | 2018-03-08 | ウエスト バージニア ユニバーシティ リサーチ コーポレーション | Production method of pure carbon, and composition and method thereof |
US10035709B2 (en) | 2013-03-15 | 2018-07-31 | West Virginia University Research Corporation | Process for pure carbon production, compositions, and methods thereof |
US10144648B2 (en) | 2013-03-15 | 2018-12-04 | West Virginia University Research Corporation | Process for pure carbon production |
US10494264B2 (en) | 2013-03-15 | 2019-12-03 | West Virginia University Research Corporation | Process for pure carbon production, compositions, and methods thereof |
US10696555B2 (en) | 2013-03-15 | 2020-06-30 | West Virginia University Research Corporation | Process for pure carbon production |
US9909222B2 (en) | 2014-10-21 | 2018-03-06 | West Virginia University Research Corporation | Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions |
US11306401B2 (en) | 2014-10-21 | 2022-04-19 | West Virginia University Research Corporation | Methods and apparatuses for production of carbon, carbide electrodes, and carbon compositions |
US11332833B2 (en) | 2016-04-20 | 2022-05-17 | West Virginia Research Corporation | Methods, apparatuses, and electrodes for carbide-to-carbon conversion with nanostructured carbide chemical compounds |
WO2017188442A1 (en) * | 2016-04-28 | 2017-11-02 | 味の素株式会社 | Method for manufacturing graphene |
Also Published As
Publication number | Publication date |
---|---|
EP0081487A1 (en) | 1983-06-22 |
EP0081487A4 (en) | 1984-09-06 |
WO1983000038A1 (en) | 1983-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bonneau et al. | Low-temperature precursor synthesis of crystalline nickel disulfide | |
JPS5884106A (en) | Boron nitride compound, its manufacture and manufacture of cubic system boron nitride using said compound | |
JPS62294691A (en) | (hexakis(pentenenitrilo)nickel ii)bis- (mu-(cyano)bis(triphenylborane)(i)), manufacture and use | |
JPS58501430A (en) | Production of carbide particles | |
JPS62182103A (en) | Manufacture of hydrogenated or nitrided alkaline metal | |
US4275050A (en) | Production of ultra-hard particles | |
US4476102A (en) | Molybdenum oxycarbonitride compositions and process for preparing the same | |
US2741540A (en) | Method for preparing borohydrides of potassium, rubidium, and cesium | |
JPS6241706A (en) | Production of graphite intercalation compound | |
JPS5988308A (en) | Silane continuous manufacture | |
US4409193A (en) | Process for preparing cubic boron nitride | |
US4426366A (en) | Novel molybdenum oxycarbonitride compositions | |
US4045545A (en) | Manufacture of complex hydrides | |
JPH0629129B2 (en) | Method for producing phosgene | |
US4081524A (en) | Manufacture of complex hydrides | |
US4352787A (en) | Ultra-hard particles of carbon produced by reacting metal carbide with non-metal halide in hot melt system | |
US3505035A (en) | Process for the production of alkali metal borohydrides | |
JPS60176915A (en) | Production of disilane | |
JPS5983924A (en) | Method and apparatus for manufacturing pure silane by reaction of chlorosilane and lithium hydride | |
US2958581A (en) | Production of alumina | |
JPS6351965B2 (en) | ||
JPH0421640B2 (en) | ||
CA1156267A (en) | Production of ultra-hard particles | |
JPH01502975A (en) | Ceramic powder production method and obtained powder | |
US5756061A (en) | Diamond synthesis from silicon carbide |