JPS5850106B2 - High voltage AC/DC converter - Google Patents

High voltage AC/DC converter

Info

Publication number
JPS5850106B2
JPS5850106B2 JP7756876A JP7756876A JPS5850106B2 JP S5850106 B2 JPS5850106 B2 JP S5850106B2 JP 7756876 A JP7756876 A JP 7756876A JP 7756876 A JP7756876 A JP 7756876A JP S5850106 B2 JPS5850106 B2 JP S5850106B2
Authority
JP
Japan
Prior art keywords
tank
oil
paper
voltage
pedestal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7756876A
Other languages
Japanese (ja)
Other versions
JPS533622A (en
Inventor
新一 毛受
茂 茂木
「巌」 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP7756876A priority Critical patent/JPS5850106B2/en
Publication of JPS533622A publication Critical patent/JPS533622A/en
Publication of JPS5850106B2 publication Critical patent/JPS5850106B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)

Description

【発明の詳細な説明】 本発明は高電圧交直変換器に係り、とくに直流高電斤課
電部を有する油冷サイリスクバルブ等の絶縁構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a high-voltage AC/DC converter, and particularly to an insulating structure such as an oil-cooled silicate valve having a DC high-voltage charging section.

高電圧油入交直変換器としての油冷サイリスクバルブの
従来構造を第1図に示す。
Figure 1 shows the conventional structure of an oil-cooled syrisk valve as a high-voltage oil-filled AC/DC converter.

この図において、タンク1内には絶縁油が充填され、こ
の中に高圧大電流のサイリスタ2の直列接続を取り付け
た架台(ステージ)3が支柱4で支持される。
In this figure, a tank 1 is filled with insulating oil, and a pedestal (stage) 3 in which a series connection of high-voltage, large-current thyristors 2 is attached is supported by a support 4.

またタンク1上部には、外部機器との接続のため、ブッ
シング5が設置される。
Further, a bushing 5 is installed above the tank 1 for connection with external equipment.

ところで、第1図の破線で囲った部分には直流高電圧及
び交流電圧、インパルス性の複雑な波形の電圧が印加さ
れるが、この絶縁構造においては、その破線部の絶縁を
絶縁油だけでまかなっている。
By the way, high DC voltages, AC voltages, and impulse voltages with complex waveforms are applied to the area surrounded by the broken line in Figure 1. In this insulation structure, the area surrounded by the broken line is insulated only with insulating oil. It is covered.

このため、(1)運転電圧が高くなるにしたがい絶縁油
の耐電圧との関係上架台3とタンク1との間の距離を長
くしなけ和ばならず、(2)長時間運転時の油中塵埃の
耐電圧に及ぼす影響が懸念され、絶縁安定性に欠ける等
の欠点がある。
For this reason, (1) as the operating voltage increases, the distance between the pedestal 3 and the tank 1 must be lengthened due to the withstand voltage of the insulating oil; There are concerns about the effect of dust on the withstand voltage, and there are drawbacks such as a lack of insulation stability.

とくに(1)項の欠点により、タンク1の形状が大きく
なることは避けられず、これにより油量の増加を招き、
輸送方法が限定され、コストアップの問題も生じる。
In particular, due to the drawback of item (1), it is inevitable that the shape of the tank 1 will become larger, which will lead to an increase in the amount of oil.
Transportation methods are limited and there is also the problem of increased costs.

これらの問題を解決するものとして、第2図に示す構造
が考えられる。
The structure shown in FIG. 2 can be considered as a solution to these problems.

この図において、架台3とタンク1との間には紙巻シー
ルド10(導体に油浸紙を巻回したもの)が設けられる
In this figure, a paper-wrapped shield 10 (a conductor wrapped with oil-impregnated paper) is provided between the pedestal 3 and the tank 1.

この構造を採用すれば、その電位分布は点線で示す如く
にな3゜すなわち、直流の電位分布は絶縁体の抵抗で定
まるから、絶縁油よりも抵抗率の大きい紙巻シールド1
0の油浸紙に電位が集中する。
If this structure is adopted, the potential distribution will be 3 degrees as shown by the dotted line.In other words, since the DC potential distribution is determined by the resistance of the insulator, the paper roll shield 1, which has a higher resistivity than the insulating oil,
The potential is concentrated on the oil-impregnated paper at 0.

したがってタンク1と架台3との間の絶縁油に加わる電
界は緩和される筈である。
Therefore, the electric field applied to the insulating oil between the tank 1 and the pedestal 3 should be relaxed.

しかし、紙巻シールド10の油浸紙に電位が集中する影
響により、各紙巻シールド10間の絶縁油にも電位の集
中が発生するので、油浸紙よりも耐電圧の低い油は部分
破壊し、さらには矢印11に示すととく全路破壊を生じ
てしまう恐れがある。
However, due to the influence of potential concentration on the oil-impregnated paper of the paper-wrapped shield 10, potential concentration also occurs in the insulating oil between the paper-wrap shields 10, so the oil, which has a lower withstand voltage than the oil-impregnated paper, partially breaks down. Furthermore, in the case shown by arrow 11, there is a risk that the entire path will be destroyed.

この発明は、上記の欠点を除去し、タンクの小形化を可
能とした高電圧交直変換器の絶縁構造を提供しようとす
るものである。
The present invention aims to eliminate the above-mentioned drawbacks and provide an insulating structure for a high-voltage AC/DC converter that makes it possible to downsize the tank.

以下、この発明の実施例を図面に従って説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図において、各々の架台3の端部には成形プレスポ
ード20が取り付けられ、このプレスポード20に紙巻
シールド10が絶縁を施した腕金21を介して取り付け
られる。
In FIG. 3, a molded press pod 20 is attached to the end of each pedestal 3, and a paper roll shield 10 is attached to this press pod 20 via an insulated cross arm 21.

°そしてプレスポード20、腕金21は絶縁ボルト22
により架台3に取り付けられるようになっている。
°And the presspod 20 and armrest 21 are insulated bolts 22
This allows it to be attached to the pedestal 3.

このとき、紙巻シールド10は、タンク1との絶縁を図
るために最上段の架台3の上方、最下段の架台3の下方
およびそれぞれの架台3の間に設けるので、第3図およ
び第4図の如く最下段の架台3に2個の紙巻シールド1
0を取り付けるようにすると、その他の架台3には1個
づつの紙巻シールド10が取り付けられることになる。
At this time, the paper roll shield 10 is provided above the top pedestal 3, below the bottom pedestal 3, and between each pedestal 3 in order to insulate it from the tank 1. Two paper roll shields 1 are placed on the bottom pedestal 3 as shown in the figure.
0, one paper roll shield 10 will be attached to each of the other frames 3.

このようにすると、紙巻シールド10および成形プレス
ポード20はタンク対向側に等間隔で配列されるので、
直流耐圧試験時(架台3は全段とも同電位となる)には
いずれのシールドの間の電位分布も同じになる。
In this way, the paper-wrapped shield 10 and the molded press pods 20 are arranged at equal intervals on the opposite side of the tank.
During a DC withstand voltage test (all stages of the pedestal 3 have the same potential), the potential distribution between all shields becomes the same.

なお、その他は第1図と同様である。Note that the other details are the same as in FIG. 1.

このような絶縁構造にして装置を第1図に示すものと同
様のタンク1に入れて直流耐圧試験すると、電位分布は
第4図に点線で示した等電位線の如くになる。
When a device with such an insulating structure is placed in a tank 1 similar to that shown in FIG. 1 and subjected to a DC withstand voltage test, the potential distribution becomes as shown by the equipotential lines shown by dotted lines in FIG. 4.

(図中の60%、100%はそれぞれの等電位線の電位
のレベルを示し、0饅が接地レベルである)。
(60% and 100% in the figure indicate the potential level of each equipotential line, and 0 is the ground level).

すなわち、架台3、腕金21および紙巻シールド10は
等電位であり、かつ直流の電位分布は絶縁体の抵抗で決
定されるため、電位の集中(等電位線の間隔が接近して
電界が強くなること)は紙巻シールド10のタンク1に
面する側の油浸紙および架台3の先端部(タンク1に面
する側)の成形プレスポード20だけに限られる。
In other words, the pedestal 3, armrest 21, and paper shield 10 are at equal potential, and the DC potential distribution is determined by the resistance of the insulator. This is limited to the oil-impregnated paper on the side of the paper-wrapped shield 10 facing the tank 1 and the molded presspod 20 at the tip of the pedestal 3 (on the side facing the tank 1).

従って、それぞれの紙巻シールド10の間の油および紙
巻シールド10と成形プレスポード20の間には電位は
あまり集中しない。
Therefore, the potential is not very concentrated in the oil between the respective paper-wrapped shields 10 and between the paper-wrapped shields 10 and the molded presspod 20.

ここで、直流耐電圧は油浸紙、プレスポードの方が絶縁
油よりも大きいから、上記の如く紙巻シールド10の油
浸紙、成形プレスポード20に電位が集中しても十分に
耐えることができる。
Here, since the oil-impregnated paper and presspod have a higher DC withstand voltage than the insulating oil, they can sufficiently withstand even if the electric potential concentrates on the oil-impregnated paper of the paper-wrapped shield 10 and the molded presspod 20 as described above.

この結果、タンク1と架台3との間にある絶縁油におけ
る電位の傾きは相対的に減少する(等電位線の間隔が大
きくなる)から、タンク1と架台3との直流耐電圧強度
は向上する。
As a result, the gradient of the potential in the insulating oil between the tank 1 and the pedestal 3 is relatively reduced (the distance between the equipotential lines becomes larger), so the DC withstand voltage strength between the tank 1 and the pedestal 3 is improved. do.

従って、タンク1と架台3をより接近させることができ
るので、タンク1の小型化が可能になる。
Therefore, the tank 1 and the frame 3 can be brought closer to each other, so that the tank 1 can be made smaller.

また、交流及びインパルス電圧に対しては、電位が各絶
縁物の誘電率の逆比で決まるため、油浸紙、成形プレス
ポード20及び油に一方的に電位が集中することはなく
、紙巻シールド10の効果により良好な絶縁特性を有す
る。
Furthermore, for alternating current and impulse voltages, the potential is determined by the inverse ratio of the permittivity of each insulator, so the potential is not concentrated unilaterally on the oil-impregnated paper, the molded presspod 20, and the oil, and the paper-wrapped shield 10 It has good insulation properties due to the effect of

以上説明したように、上記実施例によれば、油冷サイリ
スクバルブの架台3対タンク1間絶縁距離を絶縁油だけ
で絶縁する場合に比べ大巾に縮少出来る。
As explained above, according to the above embodiment, the insulation distance between the mount 3 and the tank 1 of the oil-cooled silice valve can be greatly reduced compared to the case where insulation is performed only with insulating oil.

しかして、タンク1の形状の縮少、タンク内油量の減少
が可能となり、輸送に有利となるとともにコストダウン
が可能となる。
Therefore, it is possible to reduce the shape of the tank 1 and the amount of oil in the tank, which is advantageous for transportation and reduces costs.

また紙巻シールド10を設けたことにより、絶縁油中の
塵埃の移動を減じることができるので、塵埃の耐圧に及
ぼす影響を緩和することもできる。
Further, by providing the paper-wrapped shield 10, the movement of dust in the insulating oil can be reduced, so that the influence of dust on the withstand pressure can also be alleviated.

なお、紙巻シールド10の替りにエポキシ等の合成樹脂
で絶縁したシールドを用いてもよく、成形プレスポード
の代りにエポキシ等の合成樹脂による成形品を用いても
差し支えない。
Note that a shield insulated with synthetic resin such as epoxy may be used instead of the paper-wrapped shield 10, and a molded article made of synthetic resin such as epoxy may be used instead of the molded press pod.

また、絶縁油のかわりにSF6ガス等の絶縁性ガスを用
いた場合にも同様に適用可能である。
Furthermore, the present invention is similarly applicable to the case where an insulating gas such as SF6 gas is used instead of insulating oil.

上述のように、この発明によれば、タンクの形状の小形
化が可能な高電圧交直変換器の絶縁構造を得る。
As described above, according to the present invention, an insulating structure for a high voltage AC/DC converter is obtained that allows the size of the tank to be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の油冷サイリスクバルブの絶縁構造を示す
断面図、第2図は従来の紙巻シールドを設けた場合の油
冷サイリスクバルブの電圧分布を示す断面図、第3図は
本発明に係る高電圧交直変換器の絶縁構造の実施例を示
す断面図、第4図は実施例における電位分布を示す断面
図である。 1・・・・・・タンク、2・・・・・・サイリスク、3
・・・・・・架台、4・・・・・・支柱、5・・・・・
・ブッシング、10・・・・・・紙巻シールド、20・
・・・・・成形プレスポード、21・・・・・・腕金。
Fig. 1 is a sectional view showing the insulation structure of a conventional oil-cooled syrisk valve, Fig. 2 is a sectional view showing the voltage distribution of an oil-cooled syrisk valve when a conventional paper-wrapped shield is installed, and Fig. 3 is a sectional view showing the insulation structure of a conventional oil-cooled syrisk valve. FIG. 4 is a sectional view showing an embodiment of the insulation structure of the high voltage AC/DC converter according to the invention, and FIG. 4 is a sectional view showing the potential distribution in the embodiment. 1...tank, 2...cyrisk, 3
... Frame, 4... Support, 5...
・Bushing, 10...Paper shield, 20・
...Molded press pod, 21... Bracelet.

Claims (1)

【特許請求の範囲】 1 絶縁油又はガスを充填したタンク内に架台を多段積
にした高電圧課電部を収納して成る高電圧交直変換器に
おいて、 前記架台のそれぞれのタンク対向部分に絶縁カバーを取
り付けるとともに、その高電圧課電部のタンクに対向す
る側の最上段架台の上方、最下段架台の下方およびそれ
ぞれの架台の間にそれぞれ絶縁被覆されたシールドを配
設し、これらシールドはそれぞれ近傍の架台のいずれか
と等電位に保つようにしたことを特徴とする高電圧交直
変換器。
[Scope of Claims] 1. A high-voltage AC/DC converter that includes a high-voltage charging section with multi-tiered pedestals housed in a tank filled with insulating oil or gas, wherein each part of the pedestal facing the tank is insulated. In addition to attaching the cover, insulating-coated shields are placed above the top mount, below the bottom mount, and between each mount on the side facing the tank of the high voltage charging section, and these shields are A high-voltage AC/DC converter characterized in that each is maintained at the same potential as one of the nearby frames.
JP7756876A 1976-06-30 1976-06-30 High voltage AC/DC converter Expired JPS5850106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7756876A JPS5850106B2 (en) 1976-06-30 1976-06-30 High voltage AC/DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7756876A JPS5850106B2 (en) 1976-06-30 1976-06-30 High voltage AC/DC converter

Publications (2)

Publication Number Publication Date
JPS533622A JPS533622A (en) 1978-01-13
JPS5850106B2 true JPS5850106B2 (en) 1983-11-08

Family

ID=13637610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7756876A Expired JPS5850106B2 (en) 1976-06-30 1976-06-30 High voltage AC/DC converter

Country Status (1)

Country Link
JP (1) JPS5850106B2 (en)

Also Published As

Publication number Publication date
JPS533622A (en) 1978-01-13

Similar Documents

Publication Publication Date Title
WO2020098750A1 (en) High-voltage isolation transformer
JPH04348508A (en) Static induction electric device
US3348180A (en) Electrical inductive apparatus having a multi-conductor bushing
JPS5850106B2 (en) High voltage AC/DC converter
KR102563389B1 (en) Structure Design and Fabrication Techniques of a Rogowski Current Sensor Embedded inside the Spacer of GISs
US6140573A (en) Hollow core composite bushings
JP3372984B2 (en) Bushing shield device
EP1022749B1 (en) Electrostatic capacitive divided-voltage transformer
US3617606A (en) Shielded bushing construction
US2374049A (en) Electrical induction apparatus
JP2001093749A (en) Electric apparatus
JPH0624991Y2 (en) Gas insulated transformer
JPH04207917A (en) Gas insulated electric apparatus
US4097681A (en) Interface for high voltage oil-filled and gas-filled apparatus
CN208157981U (en) A kind of high pressure integrated equipment insulation system
CN207800361U (en) The just vertical standard capacitor of extra-high voltage
JPS6226969Y2 (en)
US1505252A (en) Combined insulator and transformer
JPS5832255Y2 (en) Three-phase gas-insulated instrument transformer
JPS6013220Y2 (en) Multi-phase bulk electrical equipment
JPH0683524B2 (en) Gas insulated electrical equipment
EP1074999A1 (en) Hollow core composite insulator
JP2540132Y2 (en) Winding structure of gas-insulated electrical equipment
JPS61145810A (en) Gas insulated transformer
CN115985593A (en) Basin-type insulator structure model with symmetrically distributed inner and outer surface creepage distances