JPS58500445A - Novel carbonaceous material and method for producing hydrogen and light hydrocarbons from this material - Google Patents

Novel carbonaceous material and method for producing hydrogen and light hydrocarbons from this material

Info

Publication number
JPS58500445A
JPS58500445A JP57501336A JP50133682A JPS58500445A JP S58500445 A JPS58500445 A JP S58500445A JP 57501336 A JP57501336 A JP 57501336A JP 50133682 A JP50133682 A JP 50133682A JP S58500445 A JPS58500445 A JP S58500445A
Authority
JP
Japan
Prior art keywords
carbon
carbonaceous material
group metal
cobalt
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57501336A
Other languages
Japanese (ja)
Other versions
JPH0463913B2 (en
Inventor
ブルメンタル・ジヤツク・エル
バ−ク・マクシミリアン
Original Assignee
テイア−ルダブリユ− インコ−ポレ−テツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テイア−ルダブリユ− インコ−ポレ−テツド filed Critical テイア−ルダブリユ− インコ−ポレ−テツド
Publication of JPS58500445A publication Critical patent/JPS58500445A/en
Publication of JPH0463913B2 publication Critical patent/JPH0463913B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/54Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
    • C10J3/56Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/06Catalysts as integral part of gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1656Conversion of synthesis gas to chemicals
    • C10J2300/1662Conversion of synthesis gas to chemicals to methane
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 新規炭素質物質およびこの物質から水素および軽質炭化水素の製造法 本発明は炭素、鉄族金属成分、水素からなる炭素質物質と水蒸気とを反応させる ことによる、水素、炭素酸化物、メタン、他の軽質炭化水素、およびこれら生成 物の一種1れはそれ以上の混合物の新規な製造方法に関する。[Detailed description of the invention] Novel carbonaceous material and method for producing hydrogen and light hydrocarbons from this material The present invention involves reacting a carbonaceous material consisting of carbon, an iron group metal component, and hydrogen with water vapor. Possibly hydrogen, carbon oxides, methane, and other light hydrocarbons, and their production. One of the articles relates to a novel method for the preparation of further mixtures.

これらの方法は、商業的に魅力ある温度範囲で、商業的に魅力ある生成物収率を 与える。These methods provide commercially attractive product yields at commercially attractive temperature ranges. give.

本発明は捷た炭素、水素、鉄族金属成分、特にニッケルおよびコバルトからなる 新規な炭素質物質に関する。The present invention consists of chopped carbon, hydrogen, iron group metal components, especially nickel and cobalt. Concerning new carbonaceous materials.

この新規な炭素質物質を製造するために、−酸化炭素と水素とを含むガス状混合 物を1つ捷たはそれ以上の鉄族金属成分と反応させる。In order to produce this new carbonaceous material - a gaseous mixture comprising carbon oxide and hydrogen; Reacting an object with one or more iron group metal components.

米国特許庁に、7979年7243日提出された、共に係属中の米国特許出願牙 9q、 71号は、本発明の新規な炭素質物質を含む広い組の炭素質物質を明ら かにしている。その特許出願はまた、本発明の新規な炭素質物質の製造法も明ら かにしている。本出願においては、上記出願および夫々797g年6月20日お よび7977年7月27日に米国特許庁に提出された米国特許出願子9/7,2 ’lO号、牙g/7.A’@7号をここで参照文献とする。Co-pending U.S. patent application filed 7243/7979 with the U.S. Patent Office 9q, No. 71 discloses a broad set of carbonaceous materials, including the novel carbonaceous materials of the present invention. I'm doing it. The patent application also discloses a method for producing the novel carbonaceous material of the present invention. I'm doing it. In this application, the above-mentioned applications and and U.S. Patent Application No. 9/7,2 filed with the U.S. Patent Office on July 27, 7977. 'lO, Fang g/7. A'@No. 7 is referred to here.

この新規な炭素質物質は、多量の炭素と、少量の水素と、1つ捷たはそれ以上の 鉄族金属成分とを含んでいる。This new carbonaceous material contains a large amount of carbon, a small amount of hydrogen, and one or more Contains iron group metal components.

新規炭素質物質は約SS〜約9g重量%の、好ましくは約7!;〜約95重量% の炭素を含んでいる。鉄族金属成分は炭素質物質の約7〜約lI1重量%の、好 ましくは約−3〜約S重量係の範囲の量を構成している。この高い炭素対金属比 で、炭素質物質は水蒸気と容易に反応し商業的に魅力ある温度範囲で多量の商業 的に魅力ある量の水素、メタン、および(また咳)他の軽質炭化水素を生成する 。さらに、これらの炭素質物質を水蒸気と反応させる場合、これらの炭素質物質 は流動床反応器ですぐれた流動塵を示す。この炭素質物質はまた約0.7〜約八 へ重量%の範囲の量で水素を含んでいる。低温ガス吸着法により測定し、炭素質 物質はそのig当り約700〜約300 ’L2 の範囲の全表面を有し、炭素 質物質7g当り約0.3〜約0.4mlの範囲の細孔容積を有している。The novel carbonaceous material has a weight percent of about SS to about 9 g, preferably about 7! ;~about 95% by weight contains carbon. The iron group metal component preferably comprises about 7% to about 1% by weight of the carbonaceous material. Preferably, the amount is in the range of about -3 to about S weight. This high carbon-to-metal ratio Carbonaceous materials react readily with water vapor and are commercially available in large quantities at commercially attractive temperature ranges. produces attractive amounts of hydrogen, methane, and (also cough) other light hydrocarbons. . Furthermore, when these carbonaceous substances are reacted with water vapor, these carbonaceous substances shows excellent fluidized dust in a fluidized bed reactor. The carbonaceous material also has about 0.7 to about 8 % by weight of hydrogen. Measured by low temperature gas adsorption method, carbonaceous The material has a total surface in the range of about 700 to about 300'L2 per i.g. The pore volume ranges from about 0.3 to about 0.4 ml per 7 g of solid material.

この新規炭素質物質中の鉄族金属成分は、ニッケル、コバルト、ニッケル合金、 コバルト合金、およびこれら金属および合金の混合物からなる群から選ばれる。The iron group metal components in this new carbonaceous material include nickel, cobalt, nickel alloy, selected from the group consisting of cobalt alloys and mixtures of these metals and alloys.

広くは、鉄は本新規炭素質物質の鉄族金属成分含量の約30重量−以下を、好ま しくは約70重量%以下を構成している。ニッケルおよびコバルトは本炭素質物 質中の鉄族金属成分含量の少なくとも70重量%を構成している。Generally, iron preferably makes up about 30- or less by weight of the iron group metal content of the novel carbonaceous material. or about 70% by weight or less. Nickel and cobalt are carbonaceous substances It constitutes at least 70% by weight of the iron group metal component content in the material.

以下で述べる析出法によって製造した、この新規炭素質物質は、典型的には幾つ かの相を含んでいる。主相(major phase)は約9S〜約99.9重 量%の炭素および約o、i〜約/重1%の水素を含んでいる。残りは上記の7種 またはそれ以上の鉄族金属成分である。この主相ぢゆうに分散して、上記で説明 し限定したような金属束なくとも約50重量%からなる鉄族金属成分に富んだ少 相(minor phase)がある。少相の残りは主として炭素であるが、若 干の水素を含むことができる。This new carbonaceous material, produced by the precipitation method described below, typically It contains that aspect. The major phase is about 9S to about 99.9 weight % carbon and about 0.1% to about 1% hydrogen by weight. The remaining 7 types are listed above. or higher iron group metal components. This main phase is well distributed and explained above. A metal bundle rich in iron group metals comprising at least about 50% by weight, such as There is a minor phase. The remainder of the minor phase is mainly carbon, but young Can contain dry hydrogen.

本発明の好ましい析出法によってつくった場合、本新規な炭素質物質は透過また は走査電子顕微鏡の高倍率下で繊維状にみえる。矛S図14.コバルト含有炭素 質繊維の走査電子顕微鏡写真である。この繊維状炭素質物質は炭素約90重量% 以上を含んでおり、牙S図で矢印で示すように上記種類のコバルトに富んだ少相 を少なくとも約S重量%含んでいる。When prepared by the preferred precipitation method of the present invention, the new carbonaceous materials can be appears fibrous under the high magnification of a scanning electron microscope. Spear S Figure 14. cobalt-containing carbon This is a scanning electron micrograph of quality fibers. This fibrous carbonaceous material is about 90% carbon by weight. As shown by the arrow in the Fang S diagram, it contains a minor phase rich in the above types of cobalt. containing at least about S weight percent.

広くは、本新規炭素質物質の製造法は一酸化炭素含有ガス混合物から炭素を7種 またはそれ以上の鉄族金属開始剤上に析出することからなる。炭素析出工程で、 鉄族金属は開始剤から゛木炭素質物質に移動し、上記のようにこれら物質の一体 部分となる。この新規炭素質物質中の鉄族金属成分と区別するために、析出反応 で開始剤と呼ばれる鉄族金属原料は担持または担持されてない鉄族金属、鉱石、 合金、またはその混合物であることができる。Broadly speaking, the method for producing the new carbonaceous material involves extracting seven types of carbon from a carbon monoxide-containing gas mixture. or more consisting of precipitation on an iron group metal initiator. In the carbon precipitation process, The iron group metals move from the initiator to the carbonaceous material, and as described above, they are integrated into these materials. become a part. In order to distinguish it from the iron group metal component in this new carbonaceous material, precipitation reaction Iron group metal raw materials called initiators are supported or unsupported iron group metals, ores, It can be an alloy, or a mixture thereof.

析出工程は約7〜約100気圧またはそれ以上で、約300〜約700ccの範 囲で行なわれる。鉄族金属成分が約70重量%以上のニッケルを含み、炭素析出 温度が約30θ〜約s o occの範囲であるときは、この炭素質物質は水蒸 気との反応によりメタンの製造に特に適している。約SSθヤ以上の析出温度で 、特に鉄族金属成分が約70重量%以上のコバルトであるときは、この炭素質物 質は水蒸気との反応による水素の製造に特に適している。The precipitation process ranges from about 300 to about 700 cc at about 7 to about 100 atmospheres or more. It is carried out in a circle. The iron group metal component contains approximately 70% by weight or more of nickel, and carbon precipitation When the temperature is in the range of about 30θ to about s o occ, this carbonaceous material It is particularly suitable for the production of methane by reaction with air. At precipitation temperatures above about SSθ , especially when the iron group metal component is about 70% by weight or more of cobalt. The quality is particularly suitable for the production of hydrogen by reaction with water vapor.

本新規炭素質物質は約7〜約100気圧またはそれ以上の圧力で、約300〜約 750°Cの範囲の温度で水蒸気と高反応性である。このスチーミング反応で、 水素、−酸化炭素、二酸化炭素、メタン、他の軽質炭化水素を含む生成物ガス混 合物が得られる。スチーミング反応で生成する各ガスの量は、炭素質物質の性質 および水蒸気ガス化を行なう温度と圧力に依存する。特に、約300〜約5oo C′Cの範囲で、特にニッケル単独からまたは少なくとも約70重量%のニッケ ルを含む鉄族金属成分からこの温度範囲で生成する炭素質物質は、本発明の水蒸 気ガス化反応で実質量のメタンを生成する傾向がある。The novel carbonaceous material can be produced at pressures of from about 7 to about 100 atmospheres or more, from about 300 to about Highly reactive with water vapor at temperatures in the range of 750°C. This steaming reaction Product gas mixture containing hydrogen, carbon oxides, carbon dioxide, methane, and other light hydrocarbons. A compound is obtained. The amount of each gas produced in the steaming reaction depends on the nature of the carbonaceous material. and the temperature and pressure at which the steam gasification is carried out. In particular, about 300 to about 5oo C′C, especially from nickel alone or at least about 70% by weight nickel. The carbonaceous material produced in this temperature range from iron group metal components including Gasification reactions tend to produce substantial amounts of methane.

これに対比し、約550℃以上の温度で、特にコバルト単独または少なくとも約 70重量%のコバルトを含む鉄族金属成分からこの温度以上で生成する炭素質物 質は、本発明の水蒸気ガス化反応で実質量の水素を生成する傾向がある。In contrast, at temperatures above about 550°C, especially cobalt alone or at least about Carbonaceous material produced above this temperature from an iron group metal component containing 70% by weight of cobalt properties tend to produce substantial amounts of hydrogen in the steam gasification reactions of the present invention.

供給水蒸気対ガス化炭素のモル比が少なくとも約3で(そこで熱力学平衡に必要 な量を越える)、水蒸気ガス化圧が約7〜約io気圧の範囲の場合は、特に炭素 質物質がコバルトベースの場合は、ガス化反応は多量の水素を生成する傾向があ る。供給水蒸気対ガス化炭素のモル比が約3以下で、水蒸気ガス化圧が約10〜 約100気圧の範囲の場合は(そこで熱力学平衡に要する量にほぼ等しい)、特 に炭素質物質がニッケルペースの場合、ガス化反応は多量のメタンを生成する傾 向がある。The molar ratio of feed steam to gasified carbon is at least about 3 (where thermodynamic equilibrium requires (exceeding the amount of carbon If the material is cobalt-based, the gasification reaction tends to produce large amounts of hydrogen. Ru. The molar ratio of feed steam to gasified carbon is about 3 or less, and the steam gasification pressure is about 10 to In the range of about 100 atm (approximately equal to the amount required for thermodynamic equilibrium there), the When the carbonaceous material is nickel-based, the gasification reaction tends to produce large amounts of methane. There is a direction.

本発明のスチーミング反応ではじめに生成するガス状生成物を、その温度を下げ て新しいまたは一部分反応した炭素質物質と約300〜約5ooccの範囲で接 触させることにより、および以下に説明するように所望のガスを得るため圧力と 水蒸気供給速度を調節することにより、炭化水素、水素、または両者に富んだガ ス混合物に変換できる。The temperature of the gaseous products initially produced in the steaming reaction of the present invention is lowered. contact with fresh or partially reacted carbonaceous material in the range of about 300 to about 5 oocc. by contacting and applying pressure to obtain the desired gas as described below. Hydrocarbon-, hydrogen-, or both-rich gases can be can be converted into a gas mixture.

この新規な炭素質物質は、本発明の初期水蒸気ガスrヒ法において、およびひき 続いてのスチーミング反応からのガス化生成物の低温変換反応において、著しく 異なる目的のため働ら〈。スチーミング反応においては、この新規炭素質物質は 反応物として寄与する。水蒸気がス化温度以下の温度での水素に富んだまたは炭 化水素に富んだ生成物ガス混合物への水蒸気ガス化生成物の次の変換においては 、この炭素質物質は触媒として働ら〈。This novel carbonaceous material can be In the subsequent low-temperature conversion reaction of the gasification products from the steaming reaction, significantly Worked for different purposes. In the steaming reaction, this new carbonaceous material Contributes as a reactant. Hydrogen-rich or charcoal at temperatures below the sulfurization temperature of water vapor In the subsequent conversion of the steam gasification product to a product gas mixture rich in hydrogen hydride, , this carbonaceous material acts as a catalyst.

この新規な炭素質物質製造のための析出工程で使われる一酸化炭素含有ガス混合 物は、低圧または高圧発生炉ガスまたは合成ガスであることができる。このよう なガス混合物は、かなりの量の窒素および二酸化炭素を含むことができるが、硫 化水素、二硫化炭素、または二酸化硫黄のような硫黄化合物をほとんど捷たは全 く含んではならない。必要ならば、炭素析出開始前に硫黄含有ガスを除去するた め、既知の方法によって一酸化炭素含有ガス混合物を前処理する。Carbon monoxide-containing gas mixture used in the precipitation process to produce this new carbonaceous material The gas can be low pressure or high pressure generator gas or synthesis gas. like this The gas mixture can contain significant amounts of nitrogen and carbon dioxide, but sulfur Eliminates most or all of sulfur compounds such as hydrogen hydride, carbon disulfide, or sulfur dioxide. shall not contain too much. If necessary, remove sulfur-containing gases before starting carbon deposition. For this purpose, the carbon monoxide-containing gas mixture is pretreated by known methods.

炭素析出はほとんど700%の熱効率で一酸化炭素含有ガス混合物から炭素の若 干を除去する。反応熱が一酸化炭素の枯かつした燃料ガス流中で著しい熱として 残り得るからである。炭素析出反応からの反応で加熱された一酸化炭素の枯かつ したガス混合物は、組合せたサイクル電力発生のための良好な燃料源である。Carbon deposition removes carbon young from carbon monoxide-containing gas mixtures with almost 700% thermal efficiency. Remove dryness. The heat of reaction occurs as significant heat in a fuel gas stream depleted of carbon monoxide. This is because it can remain. Carbon monoxide heated by reaction from carbon precipitation reaction This gas mixture is a good fuel source for combined cycle power generation.

新規炭素質物質のこの水蒸気がス化法の驚くべき捷だ予想外の面は、このような 炭素質物質が主鉄族金属成分として鉄を含むときは、上記炭素質物質は約300 〜約乙θ0″Cの範囲の温度で水蒸気と全く低い反応速度をもつことである。約 70θ℃以上でのこのような炭素質物質の水蒸気ガス化は、鉄成分と水蒸気との 副反応により悪影響を受け、全炭素がガス化するずっと以前にガス化は止まる。This water vapor of the new carbonaceous material is a surprising advantage of the oxidation process. When the carbonaceous material contains iron as the main iron group metal component, the carbonaceous material has about 300% It has a very low reaction rate with water vapor at temperatures in the range of ~0~0''C. Steam gasification of such carbonaceous materials at temperatures above 70θ℃ involves the interaction of iron components and water vapor. Gasification stops long before all the carbon is gasified due to side reactions.

これに対比し、実質量のニッケル、コバルト、ニッケル合金、コ・ぐルト合金、 およびその混合物を含むこの新規な炭素質物質は水蒸気との高い反応速度を有し 、不活性化副反応を受けない。17図は本発明の炭素質物質を含め、幾つかの異 なる炭素質物質との水蒸気反応性の範囲を示す。In contrast, substantial amounts of nickel, cobalt, nickel alloys, co-Gult alloys, This novel carbonaceous material containing and mixtures thereof has a high reaction rate with water vapor. , does not undergo inactivation side reactions. Figure 17 shows several different materials including the carbonaceous material of the present invention. This shows the range of water vapor reactivity with carbonaceous materials.

牙1図にグラフで示したデータを得るために、−酸化炭素ざ3%と水素is%か らなるガス混合物を、各試料の炭素対金属比が47捷たはそれ以上に達するまで 鉄、ニッケル、コ・ぐルト開始剤の小試料上に送った。ついで順次温度を上げて 、各炭素質物質のo、s g試料を水蒸気ガス化し、生成する乾燥ガス化生成物 の生成速度を測定した。17図が示すように、これらの炭素質物質と水蒸気との 反応性は著しく変化した。コバルト含有炭素質物質jは5ooCcで迅速にガス 化した。これに対比し、鉄ベースの炭素質物質は温度がgoo’cに達するまで 不活性であった。したがって、特Gτ水蒸気/炭素質物質の反応は吸熱で、間接 熱伝達によって駆動する必要があるから、水素およびメタンの商業的製造にとっ てはニッケルおよびコ・ぐルトベースの炭素質物質がはるかに一層魅カ的でアル 。このニッケルベースおよびコバルトベースの炭素質物質が容易に水蒸気ガス化 する約SOO〜約too”Cの範囲の温度では、間接熱伝達は当該技術の状態に より容易に行なわれる。goθ″)Cおよびそれより高温で1は、間接熱伝達は 達成が困難で、壕だ費用がかかる。牙、2図は本発明の新規な炭素質物質の水蒸 気ガス化により作られる生成物ガスの組成に対する炭素析出温度の効果を示す。To obtain the data shown graphically in Figure 1, - carbon oxide is 3% and hydrogen is%? until the carbon-to-metal ratio of each sample reached 47°C or higher. A small sample of iron, nickel, and co-Gult initiator was sent over. Then gradually raise the temperature , o, s g samples of each carbonaceous material are steam-gasified, and the resulting dry gasification products are The production rate was measured. As shown in Figure 17, the relationship between these carbonaceous substances and water vapor is Reactivity changed significantly. Cobalt-containing carbonaceous material j quickly turns into gas at 5ooCc It became. In contrast, iron-based carbonaceous materials are It was inactive. Therefore, the reaction between Gτ water vapor and carbonaceous material is endothermic and indirect. It is not suitable for commercial production of hydrogen and methane as it needs to be driven by heat transfer. Nickel- and co-Glut-based carbonaceous materials are much more attractive and . This nickel- and cobalt-based carbonaceous material is easily steam gasified At temperatures in the range of about SOO to about too"C, indirect heat transfer is within the state of the art. more easily done. goθ'')C and 1 at higher temperatures, the indirect heat transfer is It is difficult to achieve and costly. Figure 2 shows water evaporation of the novel carbonaceous material of the present invention. 2 shows the effect of carbon deposition temperature on the composition of product gas produced by gas gasification.

この炭素析出温度の効果を示すため番で、−酸化炭素g5チと水素/S%からな る混合物から常圧で炭素を析出することにより、2種の異なるコバルトベースの 炭素質物質をつくった。/試料をlIs oC′Cで他試料をbs。This is a number to show the effect of this carbon precipitation temperature. Two different cobalt-based Created a carbonaceous material. /sample lIs oC'C and other samples bs.

℃で形成することにより、コバルト粉末との反応にょって、内炭素質試料をつく った。炭素対コ・ぐルト重量比10が得られるまで、析出反応を続けた。牙コ図 に示すように、630℃で析出した炭素質物質は4’ j O’Cでつくったコ バルトベースの炭素質物質よりも水蒸気ガス化反応ではるかに多く水素を生成し た。事実、水蒸気ガス化中生成した二酸化炭素の除去後、A!i0℃でつくった 炭素質’vr ’J :ま、5り0℃でスチーミングするとほとんど純粋の水素 を生成する。By forming at ℃, an inner carbonaceous sample is created by reaction with cobalt powder. It was. The precipitation reaction was continued until a carbon to co-gurt weight ratio of 10 was obtained. Tooth diagram As shown in Figure 2, the carbonaceous material precipitated at 630°C is Produces much more hydrogen in steam gasification reactions than baltic-based carbonaceous materials Ta. In fact, after removal of the carbon dioxide produced during steam gasification, A! iMade at 0℃ Carbonaceous 'vr 'J: Well, when steamed at 0℃, it becomes almost pure hydrogen. generate.

才/表および牙2表のデータは、異なる鉄族金属を含む炭素質反応物の水蒸気− 炭素ガス化生成物が約500℃の炭素ガス化点以下の温度でさらに反応した場合 の最終生成物ガス組成の差を示す。牙7表では、約り5OCcでニッケル粉末上 への炭素析出(・てよってつくった炭素約90%とニッケル約9係からなる炭素 質物質は、q00℃で約/気圧で定常性反応器で一酸化炭素、水素、水蒸気の典 型的水蒸気−炭素ガス化混合物のさらに変換を接触する。17表が示すように、 はとんどすべての−酸化炭素がメタンと二酸化炭素に変換し、固体炭素はほとん どさらにガス化しない(203分で0.g39 から0.09g)。The data in the Tables 1 and 2 are for water vapor of carbonaceous reactants containing different iron group metals. If the carbon gasification products are further reacted at a temperature below the carbon gasification point of about 500°C shows the difference in final product gas composition. On the Fang 7 table, approximately 5OCc is applied on nickel powder. Carbon precipitation (carbon consisting of about 90% carbon and about 9% nickel) The quality material is reacted with carbon monoxide, hydrogen, and water vapor in a stationary reactor at q00°C and approximately /atm. Further conversion of the conventional steam-carbon gasification mixture is catalyzed. As Table 17 shows, Almost all of the carbon oxides are converted to methane and carbon dioxide, and almost all of the solid carbon is converted to methane and carbon dioxide. It does not gasify at all (from 0.g39 to 0.09g in 203 minutes).

jp2表は次の1つの例外で、同一実験に関係する。炭素質物質はニッケルの代 りにコ・ぐルトを含んでいた(炭素約qOチとコバルト約9%)。これらのデー タから、コバルトベースの炭素質物質は当該ガス混合物をメタンに変換するのに ニッケルベースの触媒よりも一層有効でないがにニッケルベースではメタン27 .24r、コ・ぐルートベースではq、s % ) 、水素への変換には一層有 効(コ・ぐルトベースの物質からは水素llq、g%、ニッケルベースの物質か らはコア、θ係)なことがわかる。The jp2 table is related to the same experiment with one exception: Carbonaceous materials are a substitute for nickel. (approximately qO of carbon and approximately 9% cobalt). these days From the above, cobalt-based carbonaceous materials are used to convert the gas mixture into methane. Although much less effective than nickel-based catalysts, nickel-based methane27 .. 24r, q, s% on a co-root basis), even more important for conversion to hydrogen. (Hydrogen llq, g% from co-gurt-based materials, nickel-based materials? It can be seen that these are the core and the θ section).

10 111積石8−5[!0445 (6)圧力は炭素質物質の水蒸気ガス化が進行 する速度に著しい効果をもたないが、得られる生成物ガスの組成に影響を与える 。、1−.7図および矛3表は、三つの異なる圧力、すなわちl気圧、+、y気 圧、り1g気圧でA& Oocでニラクルベースの炭素質物質のスチーミングか ら得られたデータを示す。反応器中の始めの炭素g当りコ3標準cr、/分の一 定水蒸気供給速度で、小さな流動床定常流反応器で、すべてのこれらの実験を行 なった。矛3図は実質上すべての炭素がガス化するまで炭素ガス化速度はほとん ど線状であることを示す。10 111 Stacked stones 8-5 [! 0445 (6) Pressure increases as water vapor gasification of carbonaceous material progresses does not have a significant effect on the rate of production, but does affect the composition of the resulting product gas. . , 1-. Figure 7 and Table 3 show three different pressures: 1 atm, +, y atm. Steaming of Niracle-based carbonaceous material with A & Ooc at 1g atm. The data obtained are shown below. 3 standard cr/min per g of initial carbon in the reactor Perform all these experiments in a small fluidized bed steady flow reactor, with a constant steam feed rate. became. Figure 3 shows that the carbon gasification rate is almost constant until virtually all the carbon is gasified. Indicates that it is linear.

さらに、炭素ガス化速度は圧力によっては認め得るほど変化しなかった。これに 対比し、矛3表に示した生成物組成は圧力に依存し実質的に変化した。圧力がl 気圧から?4気圧に上ると、メタン濃度は3倍となり、−酸化炭素濃度は半分に 減少し、水素濃度は約33チから約ダ3%に減少し、二酸化炭素濃度は約−/チ から約37チに増加した。Furthermore, the carbon gasification rate did not change appreciably with pressure. to this In contrast, the product composition shown in Table 3 varied substantially depending on pressure. pressure is l From atmospheric pressure? When the pressure rises to 4 atmospheres, the methane concentration triples and the carbon oxide concentration is halved. The hydrogen concentration decreased from about 33% to about 3%, and the carbon dioxide concentration decreased from about -/%. It increased from 37 cm to 37 cm.

牙1図は本発明の水蒸気ガス化工程に入る炭素に富んだ状態と本発明の水蒸気ガ ス化工程から生じる炭素の乏しい状態との間で、本新規炭素質物質を何回もサイ クルできることを示す。Figure 1 shows the carbon-rich state entering the steam gasification process of the present invention and the steam gas of the present invention. This new carbonaceous material can be recycled many times between carbon-poor conditions resulting from the oxidation process. Show that you can do it.

一酸化炭素約gs%と水素約i3%からなるガス混合物からttsoC′C,i 気圧で炭素を析出することによって、炭素約90%とコバルト約q%からなる炭 素質物質の試料/gをつくった。その炭素含量の約xis%がガス化するまで、 この炭素質物質を550℃、7気圧で水蒸気ガス化した。ついで残留物を析出反 応に戻し、炭素含量が前ガス化水準に達するまで析出を再び始めた。炭素析出お よび水蒸気ガス化のこのサイクルを9回くり返し、19図に示したデータを得た 。2グ図は水蒸気ガス化速度は/サイクルから他のサイクルへと著しくは変化し なかったことを示している。From a gas mixture consisting of about gs% carbon monoxide and about i3% hydrogen, ttsoC′C,i By precipitating carbon under atmospheric pressure, charcoal consisting of approximately 90% carbon and approximately q% cobalt is produced. Samples/g of prime material were prepared. until about xis% of its carbon content is gasified. This carbonaceous material was steam-gasified at 550° C. and 7 atm. Then the residue is precipitated out and precipitation was started again until the carbon content reached the pre-gasification level. Carbon precipitation This cycle of water and steam gasification was repeated nine times, and the data shown in Figure 19 was obtained. . The graph shows that the steam gasification rate does not change significantly from one cycle to another. It shows that there was no.

水蒸気を存在炭素1モル当り約へ〇モル/時間の速度で約SSO℃で約l気圧で 反応に供給するとき、7時間当り存在炭素1モル当り少なくとも約0.2モルの ガス化炭素の速度で、本発明のコバルトベースの炭素質物質′ま水蒸気と低温で 容易に反応し、水素、炭素酸化物、メタンからなるガス混合物を商業上魅力ある 量で生成することを、次の実施例は示す。water vapor per mole of carbon present at a rate of about When fed to the reaction, at least about 0.2 moles per mole of carbon present per 7 hours. At the rate of gasification of carbon, the cobalt-based carbonaceous material of the present invention’ can be combined with water vapor at low temperatures. Easily reacts and makes gas mixtures consisting of hydrogen, carbon oxides, and methane commercially attractive The following examples show that it is produced in amounts.

14 水平管反応器に還元した酸化コバルト粉末0.5gを入れ、−酸化炭素g3%と 水素lS%からなるガス混合物−〇〇標準匡/分の流をttho℃で/気圧で反 応器に送った。炭素質物質3.3gが生成する捷で、この操作を続けた。14 0.5 g of reduced cobalt oxide powder was placed in a horizontal tube reactor, and -3% of carbon oxide g was added. A gas mixture consisting of 1S% hydrogen - 〇〇 standard cubic meters/minute flow is reacted at ttho °C/atm. Sent to Oki. This operation was continued until 3.3 g of carbonaceous material was produced.

生成炭素質物質を除去し、この炭素質物質は炭素量g7%、コ・ぐルト約/−擺 、水素的7%からなることを決定した。この物質を三つの7g試料に分け、各試 料を小さな垂直の固定床反応器に入れ、試料は石英ウールゾラグの間につるした 。水蒸気ガス化工程ぢゆう反応器温度を制御した管状炉に反応器を入れた。水蒸 気を反応器に/気圧で20−g 漂準印/分の速度で送り、牙/実験中s、2s oCに保った。生成する乾燥生成物ガスの容積を湿式ガスメーターで測定し、ガ スクロマトグラフィーによって混合物の組成を決めだ。未反応水蒸気を凝縮し、 定期的に秤量した。さらにがスが生成しなくなるまで各実験を続けた。これらの 実験をさらKu回、1度は550℃で、7度は乙00°Cでくり返した。牙q、 s、b表はこの実験で得た化ガス組成、生成物ガス容積、時間の関数としてのガ ス化炭素の累積・や−セント、平均炭素収支を示す。The produced carbonaceous material is removed, and this carbonaceous material has a carbon content of 7%, approximately , was determined to consist of 7% hydrogen. Divide this material into three 7g samples and The sample was placed in a small vertical fixed bed reactor, and the sample was suspended between quartz wool Zorags. . During the steam gasification process, the reactor was placed in a tube furnace with controlled reactor temperature. water vapor Send air to the reactor at a rate of 20-g drift mark/min at atmospheric pressure, fang/s during the experiment, 2s. It was kept at oC. Measure the volume of dry product gas produced with a wet gas meter and The composition of the mixture was determined by chromatography. Condenses unreacted water vapor, Weighed regularly. Each experiment was continued until no more gas was produced. these The experiment was repeated Ku times, once at 550°C and 7 times at 00°C. Fang q, Tables s and b show the gas composition, product gas volume, and gas as a function of time obtained in this experiment. It shows the cumulative amount of carbon sulfide and the average carbon budget.

牙6図は各温度における時間の関数としてのガス化炭素うのゾロットである。Figure 6 shows the plot of gasified carbon as a function of time at each temperature.

λ・6図の線の傾斜により示される炭素ガス化速度は、試料中のほとんどすべて の炭素がガス化するまで、はとんど一定であった。主として平衡的理由から、ガ ス化速度は温度と共にわずかに増加した。反応温度が増すと、反応器に供給した 水蒸気1モル当りガス化した炭素量は平衡に上昇した。、t−7表及び牙7図は これらの実験がほぼ平衡条件で行なわれていることを示す。牙7表に示した実験 はSSOでで、牙7図に示した実験は乙θθ℃で行なった。The carbon gasification rate, indicated by the slope of the line in the λ・6 diagram, is almost all in the sample. remained almost constant until the carbon gasified. Primarily for equilibrium reasons, Ga The oxidation rate increased slightly with temperature. As the reaction temperature increases, the amount of water fed to the reactor increases. The amount of carbon gasified per mole of water vapor increased to equilibrium. , t-7 table and fang 7 diagram are This shows that these experiments were conducted under near-equilibrium conditions. Experiments shown in Table 7 was at SSO, and the experiment shown in Figure 7 was conducted at θθ°C.

牙乙図に示した線の傾斜から、使った温度、圧力、水蒸気供給速度の条件での総 炭素ガス化速度を得た。たとえば、!;5θ℃では、もとの炭素の23%が7時 間でガス化し、炭素ガス化速度は反応器中のはじめの炭素1モル当り7時間当り ガス化炭素0..2g モルであったことを意味する。From the slope of the line shown in the diagram, the total The carbon gasification rate was obtained. for example,! ; At 5θ℃, 23% of the original carbon is 7 o'clock The carbon gasification rate is 7 hours per mole of initial carbon in the reactor. Gasified carbon 0. .. It means that it was 2g mole.

8 20 牙り表 SSO℃ での測定水蒸気−炭素反応生先物と平衡計算値との比較 (gq%C−73%Co) り5θ℃ での 330℃ での 平衡組成 ・ 測 定 (乾燥基準) (乾燥基準) H242,9% 52.2% Co 3(1,8係 27.5% CH4]4.9% 9.2% Co 11.3% 11.1% この実験における水蒸気供給速度は、反応器にはじめに入れた炭素1モル当り水 蒸気0.’/32 モル/時間であった。8 20 Comparison of measured steam-carbon reaction raw materials and equilibrium calculated values at SSO°C (gq%C-73%Co) At 330℃ at 5θ℃ Equilibrium composition/measurement (Dry standard) (Dry standard) H242.9% 52.2% Co 3 (1st and 8th section 27.5% CH4] 4.9% 9.2% Co 11.3% 11.1% The water vapor feed rate in this experiment was determined by the amount of water per mole of carbon initially introduced into the reactor. Steam 0. '/32 mol/hour.

本発明の方法は平衡条件近くで操作するから、牙g図に示すように、総炭素ガス 化速度は主として水蒸気供給速度の関数である。この場合、AOOccでの水蒸 気利用は実験を通して平衡に近い。Since the method of the present invention operates near equilibrium conditions, the total carbon gas The conversion rate is primarily a function of the steam supply rate. In this case, water vapor in AOOcc Air utilization is close to equilibrium throughout the experiment.

牙9図は、石炭からメタン、捷たは他の合成天然ガス、および電力を製造するだ めの本新規方法の好ましい具体化の利点の幾つかを示すブロック線図である。Fang9 plans to produce methane, raw or other synthetic natural gas, and electricity from coal. 1 is a block diagram illustrating some of the advantages of a preferred implementation of the novel method; FIG.

矛を図において、源1からの石炭は通路2を通り石炭がス化および精製帯域3に 進む。ここで、石炭は窒素、−酸化炭素、二酸化炭素のガス状混合物に変換され 、混合物の灰分、硫黄、水含量は既知の方法て受け入れられる水準才で減らされ る。本発明の方法の/利点は、石炭を酸素の代りに空気と反応させることによっ て合成天然ガスをつくれるととである1、他の合成ガス製造法と違って、本発明 の方法はかなりの量の窒素と二酸化炭素とを含む原料と相容性である。ついで冷 却清浄生成物ガスは通路4を通り炭素析出帯域5に行き、そこで7種捷たはそれ 以上の鉄族金属開始剤上に析出させることによって炭素質物質を生成さす。望む ときは燃料ガスの若干は通路6を通り直接電力発生帯域7に行くことができ、空 気と燃焼してベース負荷および(捷たは)ピーク電力を発生する。枯かつした燃 料ガスは通路8を通り同様に電力に変換のため帯域7に行く。In the diagram, coal from source 1 passes through passage 2 and coal goes to sulfurization and refining zone 3. move on. Here, coal is converted into a gaseous mixture of nitrogen, carbon oxides and carbon dioxide. The ash, sulfur and water contents of the mixture are reduced to acceptable levels by known methods. Ru. An advantage of the method of the invention is that by reacting the coal with air instead of oxygen, 1. Unlike other synthetic gas production methods, the present invention The process is compatible with feedstocks containing significant amounts of nitrogen and carbon dioxide. Then cool The purified product gas passes through passage 4 to carbon deposition zone 5 where it is separated or A carbonaceous material is produced by precipitation on the above iron group metal initiator. wish At this time, some of the fuel gas can go directly to the power generation zone 7 through the passage 6, and the It burns with air to generate base load and peak power. dried up fire The feed gas passes through passage 8 to zone 7 for conversion into electrical power as well.

触媒活性な炭素に富んだ炭素質物質は、通路9を通って水蒸気との反応のため水 蒸気ガス化帯域10に行き、望むような一酸化炭素、二酸化炭素、水素、メタン 、捷たは他の軽質炭化水素を生成する。本水蒸気ガス化法では、炭素質物質のほ とんどすべての燃焼熱をメタンまたは水素に変換できる。The catalytically active carbon-rich carbonaceous material passes through passage 9 into water for reaction with water vapor. Go to steam gasification zone 10 and produce carbon monoxide, carbon dioxide, hydrogen, methane as desired. , produce slag or other light hydrocarbons. In this steam gasification method, most of the carbonaceous materials are Almost all of the heat of combustion can be converted into methane or hydrogen.

才9図に概要を示したプロセス工程にしたがって、−酸化炭素/水素含有燃料が スからはじめの燃焼熱の約23〜約Sθ%を炭素の形でとり出すことができ、つ いで枯かつした燃料ガスをエネルギー源として使って電力を発生し、または動力 品位水蒸気を製造できる。本発明の新規炭素質物質に具体化されるとり出された 炭素を水蒸気ガス化して、炭素の約’IQ〜約goesを水素、炭素酸化物、メ タン、他の軽質炭化水素に変換できる。水蒸気ガス化からの炭素に乏しい炭素物 質を使って、上記燃料ガスのような一酸化炭素/水素ガス混合物からさらに炭素 析出によって、炭素枯かつ炭素質物質を炭素に富ませることができる。According to the process steps outlined in Figure 9, -carbon oxide/hydrogen-containing fuel is Approximately 23% to approximately Sθ% of the initial combustion heat can be extracted from the gas in the form of carbon. The fuel gas that is depleted in the process is used as an energy source to generate electricity or power Can produce high quality steam. The extracted carbonaceous material embodied in the novel carbonaceous material of the present invention Carbon is steam-gasified to convert approximately ’IQ to approximately goes of carbon into hydrogen, carbon oxides, and metals. Tan, which can be converted to other light hydrocarbons. Carbon poor carbon products from steam gasification further carbon from a carbon monoxide/hydrogen gas mixture such as the fuel gas above. The precipitation can deplete carbon and enrich the carbonaceous material with carbon.

牙70図は流動床条件下水蒸気による本炭素質物質のガス化のための反応器の7 具体化を示す。Figure 70 shows a reactor for gasification of carbonaceous materials with steam under fluidized bed conditions. Indicates embodiment.

オlO図で、本炭素質物質は通路102を通り高い長さ対直径比を有する反応器 101に入り、流動化条件で下方に通路102を通り反応器101の底へ進む。In the diagram, the carbonaceous material passes through passage 102 into a reactor having a high length-to-diameter ratio. 101 and proceed downwardly through passage 102 to the bottom of reactor 101 under fluidized conditions.

過熱水蒸気が通路103を通り反応器101に入り、上方に進んで降下する炭素 質物質と接触する。熱燃焼ガスが炭素質物質とけ別の管で反応器101に入り、 通路103を通って進み、水蒸気と炭素質物質との反応に必要な熱を供給する。Superheated steam enters the reactor 101 through the passage 103 and proceeds upwards, causing carbon to fall. contact with a substance. The hot combustion gas enters the reactor 101 in a separate tube from the carbonaceous material, It passes through passage 103 and provides the heat necessary for the reaction of the water vapor with the carbonaceous material.

熱反応器帯域(A)で生成した一酸化炭素、水素、メタン、他のガスは冷却器帯 域(B)を通し上方に進み、ここでは移行メタン化反応が起るが、さらに炭素は ガス化しない。生成物ガスは通路105で反応器101を出、冷却装置106で 冷却され、ついで・ぐソゲハウス107を通過し、ここで未反応炭素は反応器1 01に戻すために捕獲される。メタンに富んだガスはバッグ・・ウス107から 通路108を通り、二酸化炭素除去および他の通常のポリッシング工程へと進む 。Carbon monoxide, hydrogen, methane and other gases produced in the thermal reactor zone (A) are transferred to the cooler zone. Proceeding upward through zone (B), where a transitional methanation reaction occurs, further carbon is Does not gasify. Product gas exits reactor 101 in passage 105 and is cooled in cooling device 106. The unreacted carbon is then cooled and passed through the Gusoge House 107, where the unreacted carbon is transferred to the reactor 1. Captured to return to 01. Methane-rich gas comes from Bag Us 107 Passage 108 leads to carbon dioxide removal and other conventional polishing steps. .

鉄族金属成分に富んだ物質は通路108を通り、底で反応器101を出るが、望 むときは炭素析出反応器に戻すことができる。Materials rich in iron group metal components pass through passage 108 and exit reactor 101 at the bottom, but not as desired. When needed, it can be returned to the carbon precipitation reactor.

オフ7図は!;!;OcC′、 200psig での水蒸気−炭素平衡を仮定 し、本炭素質物質をメタンに変換するための物質と熱の均衡した系のブロック線 図を示す。Off figure 7! ;! ; Assuming water vapor-carbon equilibrium at OcC', 200 psig and the block line of a system with a balance of matter and heat to convert this carbonaceous material into methane. Show the diagram.

オ//図で、炭素質物質は貯蔵帯域201から通路202を通り反応器203に 進む。水蒸気は通路204で反応器203に入り、メタン、−酸化炭素、水素、 他のガス生成のため炭素質物質と接触する。このガス混合物は通路205を通り 反応器帯域を出、過熱器206を通過し、ついで通路207を通り帯域208に 行き、ここで二酸化炭素と水が除去される。帯域208から、生成物ガスは通路 209を通りポリッシングメタン化器210に進み、そこから生成物メタンガス は通路211を通り出る。In the figure, carbonaceous material passes from storage zone 201 through passage 202 to reactor 203. move on. Water vapor enters reactor 203 in passage 204, containing methane, carbon oxide, hydrogen, Contact with carbonaceous materials for the production of other gases. This gas mixture passes through passage 205 Exiting the reactor zone, passing through superheater 206 and then through passage 207 to zone 208 carbon dioxide and water are removed here. From zone 208, the product gas passes through 209 to a polishing methanator 210 from where the product methane gas exits through passage 211.

通路205の生成物ガスの着干は通路212を通り取り出され、通路214で添 加される空気と共に放射メイラ213に送られ、ついで通路214を通り管で間 接的に反応器203に送られて追加の熱を供給する。このガスは通路222を通 り反応器203を去り、過熱器218、メイラ219を通過する。Product gas in passage 205 is removed through passage 212 and added in passage 214. It is sent to the radiant mailer 213 along with the added air, and then passes through the passage 214 and is separated by a pipe. Directly to reactor 203 to provide additional heat. This gas passes through passage 222. It leaves the reactor 203 and passes through a superheater 218 and a mailer 219.

浄書(内容に変更なし) Fig、1 ガス化次素Z 反応口う間2分 Fig、 3 時間、8 コバルトに富んf′す相 Fig、 3 反凡時間2分 がス化しt;もとσ戻急裏 Fig、 7 曲間、8 Fig、 8 Fig、 9 1.10 1] 特許庁長官 殿 3 補正をする者 事件との関係 出願人 名 称 ティアールダブリュー インコーホレーテッド4 代理人 パ ・ 補正命令の“付 昭和57年12月、2/臼A国際調査報告 In+amauya+ aeolbau。−H−82100310!!11FI eATlo110F 5LIaJ区eT MATTER+ll m軒enl c lamllcsllu+ +ymWh mealt、 ma−can alll  ’1111111111 Inum畠−eal P−1Ckmmtmkn O P口w b ham Hamonal Oaa−mtlaa and Il’C NT、 CL、3COIG 31100; Cl0J 3100; Cl0K  1100□、S、 CL、 252/191.4B/197R=−denSll leffilC1alllllRυ*ak+nwl+252/191.373  585/733U、6. 48/197R,203 423/439,459 0ecuIII4nulla11シ鴎tchwiaun+廿laa&l1mmu mOmu+matu+m+olhaEde++ILIVI@−ロIlCIImn uarmlaclvdedr+mFbldiSaanhad+コeuMiNTI IGONsION霞KOToII!IIUJV^NT■Y”1C11a++6f lalQ6cwmeL11wHhlRdlcamm1wj@SIN@N1m1# 、611h@Ml+Tan1Mmm191MIIIlblt+mMIlIC1m 1mN6.1lUS、 A、 2,686,819 Published 17  August 1954. 17−46Johnson US、 A、 4,134,907 Published 16 Januar y 1979 1−16Stephens US、 A、 4,211,669 Published8 July 198 0. 1−16akman US、 A、 4,242JO3Published 30 Decerrhe r 1 1−46Rab。Engraving (no changes to the content) Fig, 1 Gasified next element Z 2 minutes reaction time Fig, 3 time, 8 Cobalt-rich f′ phase Fig, 3 Rebellion time 2 minutes It turned into a s; the original σ returned to the back Fig, 7 Between songs, 8 Fig, 8 Fig, 9 1.10 1] Commissioner of the Patent Office 3 Person making the amendment Relationship to the case: Applicant Name T.R.W. Incoholated 4 Agent Pa ・ Amendment order dated December 2, 1982/Usu A international search report In+amauya+aeolbau. -H-82100310! ! 11FI eATlo110F 5LIaJ ward eT MATTER+ll m enl c lamllcsllu+ +ymWh metalt, ma-can allll '1111111111 Inum Hatake-eal P-1Ckmtmkn O P mouth w b ham Hamonal Oaa-mtlaa and Il’C NT, CL, 3COIG 31100; Cl0J 3100; Cl0K 1100□, S, CL, 252/191.4B/197R=-denSll reffilC1allllllRυ*ak+nwl+252/191.373 585/733U, 6. 48/197R, 203 423/439,459 0ecuIII4nulla11shigutchwiaun+廿laa&l1mmu mOmu+matu+m+olhaEde++ILIVI@-RoIlCIImn uarmlaclvdedr+mFbldiSaanhad+koeuMiNTI IGONsION Kasumi KOToII! IIUJV^NT■Y”1C11a++6f lalQ6cwmeL11wHhlRdlcamm1wj@SIN@N1m1# , 611h@Ml+Tan1Mmm191MIIIlblt+mMIlIC1m 1mN6.1lUS, A, 2,686,819 Published 17 August 1954. 17-46 Johnson US, A, 4,134,907 Published 16 January y 1979 1-16Stephens US, A, 4,211,669 Published 8 July 198 0. 1-16akman US, A, 4,242JO3Published 30 Decerrhe r 1 1-46Rab.

uS、 A、 4,242,104 Published 30 Deceyb er l 1−46rostuS, A, 4,242,104 Published 30 Deceyb er   1-46lost

Claims (1)

【特許請求の範囲】 (1)約SS〜約9g重量%の童の炭素と、約θ、a〜約/重量%の量の水素と 、ニッケル、コバルト、ニッケル合金、コバルト合金からなる群から選ばれた少 なくとも7つの鉄族金属成分とからなり、 ただし当該鉄族金属成分は約30重量%以下の鉄を含んでいる、 ことからなる炭素質物質。 (2)炭素約9s〜約99.9重量%と水素約θ、/〜約7重量%と残りはニッ ケル、コバルト、ニッケル合金、コバルト合金からなる群から選ばれる鉄族金属 成分を含んでいる主相と、 ニッケル、コバルト、ニッケル合金、コバルト合金からなる群から選ばれ、鉄が 当該鉄族金属成分の約30重量%以下を構成している、少なくとも1つの鉄族金 属成分の少なくとも50重量%と、炭素とよりなる小塊からなっている当該主相 に分散した少相、 とからなる炭素質物質。 (3)炭素、水素、およびニッケル、コノクルト、ニッケル合金、コバルト合金 からなる群から選ばれる少なくとも7つの鉄族金属成分からなり、当該鉄族金属 成分が約30重量−以下の鉄を含んでおり、当該鉄族金属成分が炭素ぢゆうに分 散しておりかつ炭素と密接に連合しておりしかも炭素に少なくとも一部分結合し ており、当該炭素質物質中に存在する炭素1モル当り約LOモル/時間の速度で 水蒸気を当該ガス化に供給する場合、当該炭素が約550℃、約1気圧で当該炭 素質物質中に存在する炭素1モル当り少なくとも約0.2モル/時間の水蒸気ガ ス化速度を有する炭素質物質。 (4) 鉄族金属成分がニッケルである請求の範囲(1)または(2)または( 3)の炭素質物質。 (5)鉄族金属成分がコバルトである請求の範囲(1)または(2)または(3 )の炭素質物質。 (6) 当該炭素質物質中の鉄族金属成分が約10重量%以下の鉄を含んでいる 請求の範囲(1)または(2)または(3)の炭素質物質。 (7)鉄族金属成分が当該炭素質物質の約5〜約25重量係を構成する請求の範 囲(1)または(2)または(3)の炭素質物質。 (8) 鉄族金属開始剤の存在で一酸化炭素と水素からなるガス混合物から炭素 を析出することによって形成した請求の範囲filまたFi(2+または(3) の炭素質物質。 (9) 当該炭素析出を約300〜約700℃の範囲の温度で少なくとも約1気 圧の圧力で実施する請求の範囲(8)の炭素質物質。 III 当該炭素析出が少なくとも約550℃で、コバルトの存在で、少なくと も1気圧の圧力で行なわれる請求の範囲(8)の炭素質物質。 Uυ 当該析出が約500℃以下の温度で、ニッケルの存在で、少なくとも約1 気圧の圧力で行なわれる請求の範囲(8)の炭素質物質。 a2 当該鉄族金属開始剤を担持する請求の範囲(8)の炭素質物質。 a3 当該物質が繊維状であシ、ガス吸着により測定し炭素質物質1y−当シ約 100〜約300m2 の範囲の全表面積を有する請求の範囲+11または(2 )または(3)の炭素質物質。 α4 さらに当該物質の担体を含んでいる請求の範囲(すの炭素質物質。 αS さらに当該物質の担体を含んでいる請求の範囲(2)の炭素質物質。 αe さらに当該物質の担体を含んでいる請求の範囲(3)の炭素質物質。 αη 請求の範囲(1)または(2ンまたは(3)またはIまたはa9またはα eの炭素質物質と、当該炭素質物質中の炭素の少なくとも若干をガス化するのに 十分な量の水蒸気とを少なくとも約1気圧の圧力で約550〜約700℃の範囲 の温度で反応させることからなる方法。 (119ガス化生成物と当該炭素質物質とを約400〜約500℃の範囲の温度 で少なくとも約1気圧の圧力でさらに接触させることからなる請求の範囲αηの 方法。 a9 鉄族金属成分がニッケルである請求の範囲αηの方法。 ■ 鉄族金属成分がコバルトである請求の範囲的の方法。 (2υ 鉄族金属成分がニッケルである請求の範囲filの方法。 ■ 鉄族金属成分がコバルトである請求の範囲08の方法。 (至)当該鉄族金属成分が約10重量%以下の鉄を含んでいる請求の範囲(ロ) の方法。 (ハ) 当該鉄族金属成分が約10重量%以下の鉄を含んでいる請求の範囲0秒 の方法。 (2) 供給水蒸気対ガス化炭素のモル比が約6以下である請求の範囲的または (1秒の方法。。 (至)供給水蒸気対ガス化炭素のモル比が少なくとも約3である請求の範囲a’ ;hまたは08の方法。 勾 炭素約95〜約99.9重量係と水素約0.1〜約1重量%と残勺のニッケ ル、コバルト、ニッケル合金、コバルト合金からなる群から選ばれる鉄族金属成 分とを含んでいる主相と、 鉄が当該鉄族金属成分の、約30重量%以下を構成しておシ、ニッケル、コバル ト、ニッケル合金、コバルト合金からなる群から選ばれる少なくとも1つの鉄族 金属成分の少なくとも50重量%と、炭素とよりなる小塊からなっている主相に 分散した少相とからなる炭素質物質を、供給水蒸気対ガス化炭素の比が熱力学平 衡に必要な量を越える水蒸気と約1〜約10気圧の範囲の圧力で約550〜約7 00℃の範囲の温度で接触させることからなる方法。 (至)水蒸気ガス化生成物と当該炭素質物質とを約500〜約550℃の範囲の 温度で、約1〜約10気圧の範囲の圧力でさらに接触させることからなる請求の 範囲(ロ)の方法。 四 鉄族金属成分がコバルトである請求の範囲@または(至)の方法。 (7)当該炭素質物質の鉄族金属成分が約10重量−以下の鉄を含んでいる請求 の範囲(ロ)または(至)の方法。 Gl) 水蒸気対ガス化炭素のモル比が約3よシ大きい請求の範囲@または(至 )の方法。 ロ 一酸化炭素と水素とからなるガス流から当該鉄族金属成分を含む開始剤の存 在で炭素を析出することによって当該炭素質物質を製造し、当該炭素析出が約5 50〜約700℃の範囲の温度で少なくとも約1気圧の圧力で行なわれる請求の 範囲@または(至)の方法。 (至)炭素質物質を供給水蒸気対ガス化炭素の比が実質上熱力学平衡に必要な量 である水蒸気と、約10〜約100気圧の範囲の圧力で、約550〜約700℃ の範囲の温度で接触させることからなシ、 当該炭素質物質が炭素約95〜約99.9重量係と水素約0.1〜約1重量%と 残りがニッケル、コバルト、ニッケル合金、コバルト合金からなる群から選ばれ る鉄族金属成分とからなる主相と、 鉄が当該鉄族金属成分の約30重量−以下を構成しておシ、ニッケル、コバルト 、ニッケル合金、コバルト合金からなる群から選ばれる少なくとも1つの鉄族金 属成分の少なくとも50重量%と、炭素とよシなる小塊からなっている当該主相 に分散した少相とを 含んでいる方法。 (至)水蒸気ガス化生成物と当該炭素質物質とを約500〜約550℃の範囲の 温度で約10〜約100気圧の範囲の圧力でさらに接触させることからなる請求 の範囲Qの方法。 (ト) 鉄族金属成分がニッケルである請求の範囲33または(ロ)の方法。 (7) 当該炭素質物質中の鉄族金属成分が約10重量%以下の鉄を含んでいる 請求の範囲33または□の方法。 On 供給水蒸気対ガス化炭素のモル比が約3以下である請求の範囲(至)また は(ロ)の方法。 ■ −酸化炭°素と水素とからなるガス流から当該鉄族金属成分を含む開始剤の 存在で炭素を析出することによって当該炭素質物質を製造し、当該炭素析出が約 400〜約525℃の範囲の温度で約1〜約100気圧の範囲の圧力で行なわれ る請求の範囲33または(至)の方法。 (至) ニッケル、コバルト、ニッケル合金、ニア 、、+1 ルF合金からな る群から選ばれる少なくとも1つの鉄族金属開始剤を一酸化炭素と水素からなる 燃料ガスと接触させて当該燃料ガスのはじめの燃焼熱の約25〜約50%を炭素 の形で含んでいる炭素質物質を形成し、当該炭素質物質は約55〜約98重量% の量の炭素および約0. 1〜約1重量%の量の水素およびニッケル、コバルト 、二ツケル合金、コバルト合金からなる群から選ばれる少なくとも1つの鉄族金 属成分からなっており、また当該鉄族金属成分は約60重量%以下の鉄を含んで おシ、当該炭素質物質を当該燃料ガスから分離し、はじめの燃焼熱の約50〜約 75チを当該燃料ガス中に残し、当該炭素質物質を約550〜約700℃の範囲 の温度で少なくとも約1気圧の圧力で当該炭素物質中の炭素の約40〜約80チ をガス化するのに十分な量の水蒸気と接触させ、枯かつした燃料ガスをエネルギ ー源として利用して電力を発生させまたは水蒸気を製造することからなる方法。 t4G 水蒸気ガス化で得られる生成物を追加の炭素質物質と約300〜約50 0℃の範囲の温度で少なくとも約1気圧の圧力で接触させる請求の範囲C(lの 方法。 lυ 当該炭素質物質と水蒸気とΩ反応で生成した炭素の乏しい炭素質物質の少 なくとも一部分を、−a化炭素と水素からなるガス状混合物と反応させて、当該 炭素の乏しい炭素質物質上にさらに炭素を析出させる請求の範囲c39または四 の方法。 t43 ニッケル、コバルト、ニッケル合金、コバルト合金からなる群から選ば れる少なくとも1つの鉄族金属開始剤を一酸化炭素と水素からなる燃料ガスと接 触させて当該燃料ガスのはじめの燃焼熱の約25〜約50%を炭素の形で含んで いる炭素質物質を形成し、当該炭素質物質が約55〜約98重量%の量の炭素お よび約0.1〜約1重量%の量の水素およびニッケル、コバルト、ニッケル合金 、コバルト合金からなる群から選ばれる少なくとも1種の鉄族金属成分からなり 、まだ当該鉄族金属成分は約30重量%以下の鉄を含んでおシ、当該炭素質物質 を当該燃料ガスから分離し、はじめの燃焼熱の約50〜約75%を当該燃料ガス 中に残し、当該炭素質物質を約550〜約700℃の範囲の温度で少なくとも約 1気圧の圧力で当該炭素質物質中の炭素の約40〜約80チをガス化するのに必 要な量を越える量の水蒸気と接触させ、枯かつした燃料ガスをエネルギー源とし て利用して電力を発生しまたは水蒸気を製造することからなる方法。 (43水蒸気ガス化で得られる生成物を追加の炭素質物質と約300〜約550 ℃の範囲の温度で少なくとも約1気圧の圧力で接触させる請求の釦13の方法。 1141 当該炭素質物質と水蒸気との反応で生成した炭素の乏しい炭素質物質 の少なくとも一部分を一酸化炭素と水素からなるガス状混合物と反応させて、当 該炭素の乏しい炭素質物質上にさらに炭素を析出させる請求の範囲14シ寸たは 143の方法。 (ハ) 請求の範囲m寸たけ(2)、または(3)、またはθ優またはa9、ま たは11の炭素質物質を約550〜約700℃の範囲の温度で当該炭素質物質中 の炭素の約40〜約80%をガス化するのに十分な量の水蒸気と接触させて、炭 素の乏しい炭素質物質を装造し、当該炭素の乏しい炭素質物質を一酸化炭素と水 素からなるガス状混合物と反応させて当該炭素の乏しい炭素質物質上にさらに炭 素を析出させ、こうして炭素に富んだ炭素質物質を形成することからなる方法。 ■ 当該炭素に富んだ炭素質物質を水蒸気と約550〜約700℃の範囲の温度 でさらに反応させて当該炭素に富んだ炭素質物質中の炭素の約40〜約80%を 特徴とする請求の範囲l!9の方法。[Claims] (1) about SS to about 9 g% by weight of carbon and about θ, a to about /% by weight hydrogen; , nickel, cobalt, nickel alloys, and cobalt alloys. Consisting of at least seven iron group metal components, However, the iron group metal component contains approximately 30% by weight or less of iron; A carbonaceous substance consisting of. (2) Carbon about 9s to about 99.9% by weight and hydrogen about θ, / to about 7% by weight and the rest Ni Iron group metals selected from the group consisting of cobalt, nickel alloys, and cobalt alloys. A main phase containing components, Selected from the group consisting of nickel, cobalt, nickel alloy, cobalt alloy, and iron at least one iron group metal comprising about 30% or less by weight of the iron group metal component; The main phase consists of nodules consisting of at least 50% by weight of the genus component and carbon. Minor phases dispersed in A carbonaceous substance consisting of. (3) Carbon, hydrogen, and nickel, conochrite, nickel alloy, cobalt alloy consisting of at least seven iron group metal components selected from the group consisting of The composition contains approximately 30% by weight or less of iron, and the iron group metal component is easily divided into carbon. dispersed and closely associated with carbon and at least partially bonded to carbon; per mole of carbon present in the carbonaceous material at a rate of approximately LO mole/hour. When steam is supplied to the gasification, the carbon is heated at about 550°C and about 1 atm. At least about 0.2 mole/hour of water vapor gas per mole of carbon present in the prime material. Carbonaceous material with a sulfurization rate. (4) Claim (1) or (2) or ( 3) carbonaceous material. (5) Claim (1) or (2) or (3) in which the iron group metal component is cobalt. ) carbonaceous materials. (6) The iron group metal component in the carbonaceous material contains approximately 10% by weight or less of iron. The carbonaceous material according to claim (1) or (2) or (3). (7) Claims in which the iron group metal component constitutes about 5 to about 25 parts by weight of the carbonaceous material. The carbonaceous material of (1) or (2) or (3). (8) Carbon from a gas mixture consisting of carbon monoxide and hydrogen in the presence of an iron group metal initiator Claims fil or Fi(2+ or (3) carbonaceous material. (9) The carbon precipitation is carried out at a temperature in the range of about 300 to about 700°C for at least about 1 atmosphere. The carbonaceous material according to claim (8), which is carried out at a pressure of about 100 ml. III. The carbon precipitation occurs at a temperature of at least about 550°C and in the presence of cobalt. The carbonaceous material according to claim (8), wherein the carbonaceous material is also treated at a pressure of 1 atmosphere. Uυ The precipitation occurs at a temperature of about 500°C or less, in the presence of nickel, at least about 1 The carbonaceous material according to claim (8), which is carried out at atmospheric pressure. a2 The carbonaceous material according to claim (8), which supports the iron group metal initiator. a3 If the substance is fibrous, it is measured by gas adsorption and the carbonaceous substance is Claim +11 or (2) having a total surface area in the range of 100 to about 300 m2 ) or (3) carbonaceous material. α4 Claims further including a carrier for the substance (carbonaceous material). αS The carbonaceous material according to claim (2), further comprising a carrier for the material. αe The carbonaceous material according to claim (3), further comprising a carrier for the material. αη Claim (1) or (2 or (3) or I or a9 or α e carbonaceous material and gasifying at least some of the carbon in the carbonaceous material. a sufficient amount of water vapor at a pressure of at least about 1 atmosphere and a temperature in the range of about 550°C to about 700°C. A method consisting of reacting at a temperature of (119 gasification products and the carbonaceous material at a temperature in the range of about 400 to about 500 °C) further contacting at a pressure of at least about 1 atmosphere. Method. a9 The method according to claim αη, wherein the iron group metal component is nickel. ■ The method as claimed, wherein the iron group metal component is cobalt. (2υ The method according to claim fil, wherein the iron group metal component is nickel. ■ The method according to claim 08, wherein the iron group metal component is cobalt. (2) Claims in which the iron group metal component contains about 10% by weight or less of iron (2) the method of. (c) Claims in which the iron group metal component contains about 10% by weight or less of iron: 0 seconds the method of. (2) The claimed or (1 second method.. (to) Claim a' wherein the molar ratio of feed steam to gasified carbon is at least about 3. ; h or method 08. About 95% to about 99.9% by weight of carbon, about 0.1% to about 1% by weight of hydrogen, and residual nickel iron group metal selected from the group consisting of cobalt, cobalt, nickel alloys, and cobalt alloys. a main phase containing Iron constitutes approximately 30% by weight or less of the iron group metal component, and iron, nickel, and cobal At least one iron group member selected from the group consisting of cobalt alloys, nickel alloys, and cobalt alloys. A main phase consisting of at least 50% by weight of metal components and nodules consisting of carbon. A carbonaceous material consisting of a small dispersed phase is produced when the ratio of feed steam to gasified carbon is thermodynamically balanced. With water vapor in excess of the amount necessary for equilibrium and a pressure in the range of about 1 to about 10 atm. A method comprising contacting at a temperature in the range of 00°C. (To) The steam gasification product and the carbonaceous material are heated at a temperature in the range of about 500 to about 550°C. further contacting at a temperature in the range of about 1 to about 10 atmospheres. Range (b) method. Claims @ or (to) the method, wherein the tetrairon group metal component is cobalt. (7) A claim that the iron group metal component of the carbonaceous material contains about 10 - or less weight of iron. Range (b) or (to) method. Gl) claims where the molar ratio of water vapor to gasified carbon is greater than about 3; )the method of. (b) The presence of the initiator containing the iron group metal component in the gas stream consisting of carbon monoxide and hydrogen. The carbonaceous material is produced by precipitating carbon at The claimed method is carried out at a temperature in the range of 50 to about 700°C and a pressure of at least about 1 atmosphere. Range @ or (to) method. (To) The ratio of steam to gasified carbon supplied to the carbonaceous material is substantially the amount required for thermodynamic equilibrium. about 550 to about 700 degrees Celsius at a pressure in the range of about 10 to about 100 atmospheres. Avoid contact at temperatures in the range of The carbonaceous material contains about 95% to about 99.9% by weight of carbon and about 0.1% to about 1% by weight of hydrogen. The remainder is selected from the group consisting of nickel, cobalt, nickel alloys, and cobalt alloys. a main phase consisting of an iron group metal component; Iron constitutes approximately 30% by weight or less of the iron group metal component, and iron, nickel, and cobalt at least one iron group metal selected from the group consisting of , nickel alloy, and cobalt alloy. The main phase consists of at least 50% by weight of the genus component and carbon and fine nodules. with a small phase dispersed in Containing method. (To) The steam gasification product and the carbonaceous material are heated at a temperature in the range of about 500 to about 550°C. further contacting at a temperature and pressure ranging from about 10 to about 100 atmospheres. Range Q method. (g) The method according to claim 33 or (b), wherein the iron group metal component is nickel. (7) The iron group metal component in the carbonaceous material contains approximately 10% by weight or less of iron. The method according to claim 33 or □. On Claims (to) or where the molar ratio of feed steam to gasified carbon is about 3 or less; (b) method. ■ - Initiator containing the iron group metal component is extracted from a gas stream consisting of carbon oxide and hydrogen. The carbonaceous material is produced by precipitating carbon in the presence of carried out at a temperature in the range of 400 to about 525°C and a pressure in the range of about 1 to about 100 atmospheres. Claim 33 or (to) the method. (to) Nickel, cobalt, nickel alloy, near +1 F alloy. at least one iron group metal initiator selected from the group consisting of carbon monoxide and hydrogen; About 25 to about 50% of the initial combustion heat of the fuel gas is converted into carbon by contacting with the fuel gas. form a carbonaceous material containing from about 55 to about 98% by weight. of carbon and about 0. Hydrogen and nickel, cobalt in an amount of 1 to about 1% by weight at least one iron group metal selected from the group consisting of , Futsukeru alloy, and cobalt alloy. The iron group metal component contains less than about 60% by weight of iron. Then, the carbonaceous material is separated from the fuel gas, and the carbonaceous material is separated from the fuel gas, and the carbonaceous material is separated from the fuel gas and 75% of carbonaceous material is left in the fuel gas, and the carbonaceous material is heated to a temperature in the range of about 550 to about 700°C. from about 40 to about 80 carbon in the carbon material at a temperature of at least about 1 atmosphere and a pressure of at least about 1 atmosphere. The depleted fuel gas is converted into energy by contacting it with enough water vapor to gasify it. - a method of generating electricity or producing water vapor by using it as a source. t4G Product obtained from steam gasification with additional carbonaceous material about 300 to about 50% Claim C (l) contacted at a pressure of at least about 1 atmosphere at a temperature in the range of Method. lυ A small amount of carbon-poor carbonaceous material produced by the Ω reaction between the carbonaceous material and water vapor. by reacting at least a portion of it with a gaseous mixture of -a-carbon and hydrogen. Claim c39 or 4, in which carbon is further deposited on a carbon-poor carbonaceous material the method of. t43 Selected from the group consisting of nickel, cobalt, nickel alloy, and cobalt alloy at least one iron group metal initiator in contact with a fuel gas consisting of carbon monoxide and hydrogen. The fuel gas contains about 25 to about 50% of the initial heat of combustion in the form of carbon. forming a carbonaceous material containing from about 55% to about 98% by weight of carbon and carbonaceous material; and hydrogen and nickel, cobalt, nickel alloys in an amount of about 0.1 to about 1% by weight. , at least one iron group metal component selected from the group consisting of cobalt alloys. , the iron group metal component still contains less than about 30% iron by weight, and the carbonaceous material is separated from the fuel gas, and approximately 50 to 75% of the initial combustion heat is transferred to the fuel gas. the carbonaceous material at a temperature in the range of about 550°C to about 700°C. Required to gasify about 40 to about 80 inches of carbon in the carbonaceous material at a pressure of 1 atmosphere. The depleted fuel gas is used as an energy source by contacting with water vapor in an amount exceeding the required amount. A method consisting of using water to generate electricity or produce water vapor. (43) the product obtained from steam gasification with additional carbonaceous material from about 300 to about 550 14. The method of claim 13, wherein the contacting is carried out at a pressure of at least about 1 atmosphere at a temperature in the range of .degree. 1141 Carbon-poor carbonaceous material produced by the reaction between the carbonaceous material and water vapor reacting at least a portion of the hydrogen with a gaseous mixture of carbon monoxide and hydrogen. Claim 14, wherein carbon is further deposited on the carbon-poor carbonaceous material. 143 methods. (c) Claim m dimension (2), or (3), or θ Yu or a9, or or 11 carbonaceous materials in the carbonaceous material at a temperature in the range of about 550 to about 700°C. charcoal by contacting it with sufficient water vapor to gasify about 40% to about 80% of the carbon in the charcoal. The carbon-poor carbonaceous material is treated with carbon monoxide and water. Further carbon is added onto the carbon-poor carbonaceous material by reacting with a gaseous mixture consisting of a method consisting in precipitating out elements and thus forming carbon-rich carbonaceous substances. ■ The carbon-rich carbonaceous material is mixed with water vapor at a temperature in the range of about 550 to about 700℃ Further reaction is performed to remove about 40 to about 80% of the carbon in the carbon-rich carbonaceous material. Characteristic Claims l! 9 ways.
JP57501336A 1981-03-27 1982-03-11 Novel carbonaceous material and method for producing hydrogen and light hydrocarbons from this material Granted JPS58500445A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US24859781A 1981-03-27 1981-03-27
US248597SENL 1981-03-27

Publications (2)

Publication Number Publication Date
JPS58500445A true JPS58500445A (en) 1983-03-24
JPH0463913B2 JPH0463913B2 (en) 1992-10-13

Family

ID=22939799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57501336A Granted JPS58500445A (en) 1981-03-27 1982-03-11 Novel carbonaceous material and method for producing hydrogen and light hydrocarbons from this material

Country Status (10)

Country Link
EP (1) EP0074394A4 (en)
JP (1) JPS58500445A (en)
BR (1) BR8207244A (en)
CA (1) CA1197098A (en)
IL (1) IL65225A (en)
IT (1) IT1191176B (en)
NL (1) NL8220132A (en)
PL (1) PL235658A1 (en)
WO (1) WO1982003380A1 (en)
ZA (1) ZA821679B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266492A (en) * 1985-05-21 1986-11-26 エムア−エン・グ−テホツフヌングスヒユツテ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフトウング Method and apparatus for gasifying carbon-containing fuel

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873214A (en) * 1984-12-24 1989-10-10 Trw Inc. Carbonaceous material for production of hydrogen from low heating value fuel gases
GB8524894D0 (en) * 1985-10-09 1985-11-13 Shell Int Research Producing hydrogen-containing gas
US4756696A (en) * 1985-12-06 1988-07-12 Amp Incorporated Solder joint inspection feature for surface mount connectors
CN102537917A (en) * 2012-02-02 2012-07-04 王海波 Boiler smoke-gas residual-heat recovering device with temperature regulator
CN105419897A (en) * 2015-11-26 2016-03-23 广东拓丰实业有限公司 Combustion-supporting biomass forming fuel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52903A (en) * 1975-06-18 1977-01-06 Battelle Memorial Institute Fuel conversion process
JPS5448806A (en) * 1977-07-21 1979-04-17 Trw Inc Novel carbonaceous matter and method of producing high calorific gas from said matter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2686819A (en) * 1949-09-01 1954-08-17 Kellogg M W Co Synthesis of methane
US4134907A (en) * 1977-07-21 1979-01-16 Hazen Research, Inc. Process for enhancing the fuel value of low BTU gas
US4265868A (en) * 1978-02-08 1981-05-05 Koppers Company, Inc. Production of carbon monoxide by the gasification of carbonaceous materials
US4211669A (en) * 1978-11-09 1980-07-08 Exxon Research & Engineering Co. Process for the production of a chemical synthesis gas from coal
US4242103A (en) * 1979-06-04 1980-12-30 Union Carbide Corporation Cyclic two step process for production of methane from carbon monoxide
US4242104A (en) * 1979-10-09 1980-12-30 Union Carbide Corporation Cyclic process for producing methane with catalyst regeneration
US4284416A (en) * 1979-12-14 1981-08-18 Exxon Research & Engineering Co. Integrated coal drying and steam gasification process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52903A (en) * 1975-06-18 1977-01-06 Battelle Memorial Institute Fuel conversion process
JPS5448806A (en) * 1977-07-21 1979-04-17 Trw Inc Novel carbonaceous matter and method of producing high calorific gas from said matter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61266492A (en) * 1985-05-21 1986-11-26 エムア−エン・グ−テホツフヌングスヒユツテ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフトウング Method and apparatus for gasifying carbon-containing fuel

Also Published As

Publication number Publication date
IL65225A0 (en) 1982-05-31
BR8207244A (en) 1983-03-01
CA1197098A (en) 1985-11-26
EP0074394A1 (en) 1983-03-23
EP0074394A4 (en) 1984-04-04
PL235658A1 (en) 1982-11-08
IL65225A (en) 1985-09-29
IT1191176B (en) 1988-02-24
ZA821679B (en) 1983-01-26
JPH0463913B2 (en) 1992-10-13
WO1982003380A1 (en) 1982-10-14
NL8220132A (en) 1983-02-01
IT8267385A0 (en) 1982-03-26

Similar Documents

Publication Publication Date Title
US4710483A (en) Novel carbonaceous material and process for producing a high BTU gas from this material
US3615300A (en) Hydrogen production by reaction of carbon with steam and oxygen
EP0283171B1 (en) Production of fuel gas
AU612810B2 (en) Igcc process with combined methanol synthesis/water gas shift for methanol and electric power production
ES437703A1 (en) Production of methane-rich gas
Ekström et al. Catalytic conversion of tars, carbon black and methane from pyrolysis/gasification of biomass
JPH09510178A (en) Method for producing hydrogen and carbon oxides from dimethyl ether
US4642125A (en) Carbonaceous material and methods for making hydrogen and light hydrocarbons from such materials
JPS58500445A (en) Novel carbonaceous material and method for producing hydrogen and light hydrocarbons from this material
GB1503506A (en) Combustible gases
Gilliland et al. Reactivity of deposited carbon
JPH0229111B2 (en)
KR20140080661A (en) Apparatus and method for producing higher calorific synthetic natural gas
EP0126961A2 (en) Gasification process for ammonia production
US3615299A (en) Hydrogen production by reaction of carbon with steam or steam and oxygen
ES433277A1 (en) Production of methane-rich gas stream
Baker et al. Catalysis of gas-phase reactions in steam gasification of biomass
JP3975271B2 (en) Biomass gasification method and catalyst used therefor
JP4663104B2 (en) Syngas production by autothermal reforming
US4873214A (en) Carbonaceous material for production of hydrogen from low heating value fuel gases
GB2046779A (en) Process for gasification of ethanol
Suyambazhahan Experimental study of coconut shell fluidized bed gasification for production of fuel gas for end-use applications
KR101875857B1 (en) Method for preparing high caloric synthetic natural gas
US2522468A (en) Production of synthesis gas
JPS6020436B2 (en) Synthesis gas production method