JPS5849689A - Production unit for crystal substrate - Google Patents

Production unit for crystal substrate

Info

Publication number
JPS5849689A
JPS5849689A JP56145808A JP14580881A JPS5849689A JP S5849689 A JPS5849689 A JP S5849689A JP 56145808 A JP56145808 A JP 56145808A JP 14580881 A JP14580881 A JP 14580881A JP S5849689 A JPS5849689 A JP S5849689A
Authority
JP
Japan
Prior art keywords
crystal
melt
channel
heater
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56145808A
Other languages
Japanese (ja)
Other versions
JPS5914438B2 (en
Inventor
Yoshinaru Abe
阿部 昌匠
Toshiro Matsui
松井 都四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56145808A priority Critical patent/JPS5914438B2/en
Publication of JPS5849689A publication Critical patent/JPS5849689A/en
Publication of JPS5914438B2 publication Critical patent/JPS5914438B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/34Edge-defined film-fed crystal-growth using dies or slits

Abstract

PURPOSE:The titled device for pulling up a wide ribbonlike crystal, wherein a crystal melt is fed from pockets attached to the both ends of a bridge-shaped heater having wetting properties to the crystal melt to a channel set on the top of the heater and a seed crystal is brought into contact with the melt. CONSTITUTION:The die 11 is heated by applying electricity, a solid raw material consisting of Si powder is fed to the pockets 15a and 15b at its both ends, melted, and a crystal melt is prepared. The crystal melt is made to flow in the channel 14 by the wetting properties of the die 11, and the channel 14 is filled with it. In this state, a seed crystal is brought into contact with the crystal melt at the top channel part 14 of the bridge part 13, the seed crystal is pulled up at a fixed speed, and a crystal is grown under the seed crystal. In growing crystal, its size is restricted by the top size of the channel 14, consequently a ribbonlike crystal is prepared. Therefore the desired wide ribbonlike crystal substrate can be easily made by lengthening the channel 14.

Description

【発明の詳細な説明】 本発明は太陽電池用の半導体基板を製造するに有用な結
晶基板の製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a crystal substrate manufacturing apparatus useful for manufacturing semiconductor substrates for solar cells.

近時、太陽電池の需要が増加しておシ、この太陽電池の
基板となる幅の広い帯状結晶基板を安価に製造すること
が望まれている。しかしてこの種の帯状結晶基板は、従
来一般に第1図に示す装置によって製造されている。こ
の装置は、加熱ヒータ1によシ加熱される石英ルッ4?
2内にシリコン融液3を収容し、この融液3に下部を浸
漬し、且つ所定のスリットを形成して対向配置された一
対のキャピラリーダイ4a 、 4bの上記スリットを
介して止弁する□前記融液3に図示し々い種子結晶をな
じませ、これを所定の温度条件、および所定の速度で引
上げることによって帯状の結晶基板5を得るものである
。この装置によって製造される結晶基板5の幅は、原理
的には前記キャピラリーダイ4a、4bの先端幅によっ
て規制される。
Recently, the demand for solar cells has increased, and it is desired to inexpensively manufacture wide band-shaped crystal substrates that serve as substrates for solar cells. However, this type of band-shaped crystal substrate has conventionally been generally manufactured using the apparatus shown in FIG. This device consists of 4 pieces of quartz heated by a heater 1.
A silicon melt 3 is accommodated in the silicon melt 3, the lower part is immersed in this melt 3, and a predetermined slit is formed to stop the valve through the slit of a pair of capillary dies 4a and 4b arranged facing each other. A belt-shaped crystal substrate 5 is obtained by blending seed crystals as shown in the figure into the melt 3 and pulling the seed crystals under predetermined temperature conditions and at a predetermined speed. The width of the crystal substrate 5 manufactured by this apparatus is, in principle, regulated by the width of the tips of the capillary dies 4a, 4b.

ところが、上記要求に対して帯状結晶基板5の幅を拡げ
るには、ダイ4a、4bの幅を拡げることが必要となシ
、これに従って大径の石英ルッデ2が必要となシ、装置
が大形化する。また加熱ヒータ1による加熱容量も増や
さなければならず、その消費電力が増大する。この結束
、帯状結晶基板5の製造価格が高くなシ、太陽碓池製造
における工業化の点で問題があった。
However, in order to widen the width of the band-shaped crystal substrate 5 to meet the above requirements, it is necessary to widen the widths of the dies 4a and 4b, a large-diameter quartz rug 2 is required, and the equipment is large. Take shape. Furthermore, the heating capacity of the heater 1 must also be increased, which increases its power consumption. There were problems in terms of this bundling, the high production cost of the band-shaped crystal substrate 5, and the industrialization of Taiyo Usuiike production.

本発明はこのような事情を考慮してなされたもので、そ
の目的とするところは、太陽電池用の基板として最適な
幅広の帯状結晶基板を安価に量産性良く製造することの
できる実用性の高い結晶基板の製造装置を提供すること
にある。
The present invention has been made in consideration of these circumstances, and its purpose is to provide a practical method for manufacturing a wide band-shaped crystal substrate, which is ideal as a substrate for solar cells, at low cost and with good mass production. An object of the present invention is to provide a manufacturing apparatus for a highly crystalline substrate.

本発明の概要は結晶融液にぬれ性を有する橋型形状の加
熱ヒータの上面に溝を設けると共に、この溝に連通して
前記加熱ヒータの両端に設けたボケ、トから固体原料を
溶融して々る結晶融液を供給し、上記溝よシ種子結晶に
なじませた融液を引上げることによって、ここに幅広の
帯状結晶基板を育成させて上述した目的を効呆的に達成
したものである。
The outline of the present invention is to provide a groove on the upper surface of a bridge-shaped heater that has wettability to the crystal melt, and to melt the solid raw material through grooves that communicate with the groove and are provided at both ends of the heater. By supplying a crystalline melt and pulling up the melt that has been adapted to the seed crystals in the groove, a wide band-shaped crystal substrate is grown there, thereby effectively achieving the above-mentioned purpose. It is.

以下、図面を参照して本発明の一実施例につき説明する
Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第2図は実施例装置の概略構成を示す要部斜視図であシ
、第3図(、)〜(c)はその装部構成要素であるダイ
の構造を示す図である。
FIG. 2 is a perspective view of a main part showing a schematic structure of the apparatus according to the embodiment, and FIGS. 3(a) to (c) are views showing the structure of a die which is a component of the mounting part.

シリコン融液にぬれ性を有する材料、例えばカーがンで
形成されたダイ11は両端に平板部12a、12bを有
し、これらの平板部12a。
The die 11 is made of a material that is wettable with silicon melt, such as carton, and has flat plate portions 12a and 12b at both ends.

12bをブリッジ状の橋体部13にて結合した概略構造
を有する。即ち、橋体部13は棒状体の両端をそれぞれ
下方向に曲折した如き形状で、その曲折片の各下端に前
記平板部12 a、72 bを直角に一体的に設けた構
造となっている。そして、上記棒状体の長手方向側面上
部は、その上面との間に鋭角を為すように斜面を形成し
ている。これらの斜面の頂部となる棒状体の上面に溝1
4か所定の幅および深さで設けられている。そして、こ
の溝14は前記曲折片の壁面に沿って前記平板部12g
、12bにそれぞれ設けられた結晶融液のチャージポケ
ッl−15a 。
It has a general structure in which two parts 12b are connected by a bridge body part 13. That is, the bridge body portion 13 has a shape similar to that of a rod-shaped body with both ends bent downward, and the flat plate portions 12 a and 72 b are integrally provided at right angles to the lower ends of the bent pieces. . The upper part of the longitudinal side surface of the rod-shaped body forms an inclined surface forming an acute angle with the upper surface thereof. A groove 1 is formed on the top surface of the rod-shaped body that is the top of these slopes.
There are four predetermined widths and depths. This groove 14 is formed along the wall surface of the bent piece in the flat plate part 12g.
, 12b are provided with crystal melt charge pockets 1-15a, respectively.

15bに連設されている。チャージポケット15h、1
5bは各平板部12h、12bの前記橋体部13の増刊
は上面にそれぞれ設けられたものであって、後述するよ
うに原料供給管16a、16bよ如供給される固体原料
、例えばシリコン粉体を溶融し、これを蓄えるものであ
る。しかして、前記平板部12a 、12bにはそれぞ
れねじ孔17a 、17bが設けられて1このねじ17
a 、 17bを挿通するねじ18&。
15b. Charge pocket 15h, 1
Reference numeral 5b denotes a supplementary edition of the bridge body portion 13 of each of the flat plate portions 12h and 12b, which is provided on the upper surface of each flat plate portion 12h. It melts and stores it. The flat plate portions 12a and 12b are provided with screw holes 17a and 17b, respectively.
a, screw 18 & inserted through 17b.

18bにて電源の電極端子19a、19bにそれぞれ締
結固定されている。これらの電極端子19a、19bは
、例えば平板部12mから橋体部13、そして平板部1
2bへと所定の電流を通電し、ダイ11を通電加熱する
ものとなっている。つまシ、このダイ11は全体的に1
つの加熱ヒータを形成している。そして、この加熱ヒー
タの上面に前記溝14が、その両端のポケット15m、
15bに連通して設けられた構造となっている。
18b are fastened and fixed to electrode terminals 19a and 19b of the power source, respectively. These electrode terminals 19a, 19b are connected, for example, from the flat plate part 12m to the bridge body part 13, and then to the flat plate part 1.
A predetermined current is passed through the die 2b to heat the die 11. Tsumashi, this die 11 is overall 1
It forms two heaters. The groove 14 is formed on the upper surface of this heater, pockets 15m at both ends thereof,
15b.

かくして、このような構造を有する本装置によれば、ダ
イ11を通電加熱し、その両端のポケッ)15a、15
bにシリコン粉体からなる固体原料を供給すると、同原
料は加熱されて溶融し、結晶融液となる。そして、ダイ
11のぬれ性によシリコン融液は溝14内に浸透し、溝
14内に充満する。この状態において、前記5− 橋体部13の上面溝14部で結晶融液に種子結晶をなじ
ませ、これを所定速度で引上げることによって、上記種
子結晶下に結晶が育成される。
Thus, according to the present device having such a structure, the die 11 is electrically heated and the pockets 15a, 15 at both ends thereof are heated.
When a solid raw material made of silicon powder is supplied to b, the raw material is heated and melted to become a crystalline melt. Then, due to the wettability of the die 11, the silicon melt permeates into the groove 14 and fills the groove 14. In this state, the seed crystal is blended into the crystal melt in the groove 14 on the upper surface of the 5-bridge body part 13, and the seed crystal is pulled up at a predetermined speed, thereby growing a crystal under the seed crystal.

仁の育成結晶は、橋体部1a上面の溝14の大きさによ
って形状規制され、従って帯状結晶となる。これ故、溝
14・・を長くすることに↓シ、とこに所望とする幅広
の帯状結晶基板を簡易に製造することが可能となる。ま
たこの帯状結晶の育成に従って目減シするポケット15
a。
The shape of the grown crystals is regulated by the size of the groove 14 on the upper surface of the bridge body 1a, and therefore becomes a band-shaped crystal. Therefore, by increasing the length of the grooves 14, it becomes possible to easily manufacture a desired wide band-shaped crystal substrate. In addition, the pocket 15 that decreases as this band-shaped crystal grows.
a.

15b内の結晶融液は、同ポヶッ)、15a。The crystal melt in 15b is the same as in 15a.

15bに連続的に固体原料を供給することによって補充
することができる。従って上記帯状結晶を連続的に育成
することが可能となる。
15b can be replenished by continuously feeding solid feedstock. Therefore, it becomes possible to continuously grow the band-shaped crystals.

また本装置は第1図に示した従来装置と異って石英ルッ
?を必要としない。従って、溝14の長さを長くして幅
広い帯状結晶を育成するに踪しても、他の装置構成要素
が大型化することがなく、全体的に装置をコン/4’ク
トに実現できる。しかも、このように溝14を長くした
としても、ダイ1ノを通電加熱する電源容量がさは6− ど増えることがない。まだポケット15a。
Also, unlike the conventional device shown in Figure 1, this device uses quartz lubrication. does not require. Therefore, even if it is difficult to grow a wide band-shaped crystal by increasing the length of the groove 14, the other device components do not become larger, and the overall device can be made compact. Moreover, even if the groove 14 is lengthened in this way, the power supply capacity for heating the die 1 by electricity will not increase by much. Still pocket 15a.

15bがダイ11に即ち加熱ヒータ上に組込まれている
ので、その加熱エネルギーを有効に使用することができ
、省エネルイー化を図シ得る。
Since 15b is incorporated into the die 11, that is, on the heater, the heating energy can be used effectively, resulting in energy savings.

尚、上記帯状結晶の育成に際しては、柚子結晶の引上げ
速度および結晶融液の温度を昼鞘度に管理制御すること
は勿論のことである。
Incidentally, when growing the above-mentioned band-shaped crystals, it goes without saying that the pulling speed of the yuzu crystals and the temperature of the crystal melt should be controlled to the daylight temperature.

ところで、第3図(、)〜(c)に示すダイ11の構造
において、各部の寸法を下記の通シ設定して帯状結晶の
育成を行った。
By the way, in the structure of the die 11 shown in FIGS. 3(a) to 3(c), the dimensions of each part were set as shown below to grow a band-shaped crystal.

a = 140 (悶) 、 b = 30 (m)c
−5(咽)、d=  5(澗) e =  1.5 (mm) 、 f = 0.5 (
mm)g=1.5(調)、θ=300 このような寸法のダイ1ノを通電加熱したところ、その
ものの抵抗と結晶融液を供給したときの抵抗との間に0
.1〜0.040の抵抗値変化が生じることが確認され
た。従って、先ずダイ11を所定温度に十分加熱してお
き、その後ポケット15&、15bにシリコン原料を徐
々に供給しながら上記加熱蓄を変化させて結晶融液温度
を所定値に安定化制御することが望ましい。また結晶の
育成に従って融液量が減ることからシリコン原料を連続
的に供給し、これによって上記温度制御を安定に、且つ
精度良く行わしめることが望ましい。このような制御条
件下で、本装置によシ、幅75欄、長さ101000W
厚さ0、5 ranの非常に良好な太陽電池用の帯状結
晶基板を製造できることが確認された。
a = 140 (agony), b = 30 (m)c
-5 (throat), d = 5 (japanese) e = 1.5 (mm), f = 0.5 (
mm) g = 1.5 (key), θ = 300 When a die with these dimensions was heated with electricity, there was a difference of 0 between the resistance of the die and the resistance when the crystal melt was supplied.
.. It was confirmed that a resistance value change of 1 to 0.040 occurred. Therefore, it is possible to first sufficiently heat the die 11 to a predetermined temperature, and then gradually supply the silicon raw material to the pockets 15&, 15b while changing the heating storage to stabilize the crystal melt temperature at a predetermined value. desirable. Furthermore, since the amount of melt decreases as the crystal grows, it is desirable to continuously supply the silicon raw material, thereby stably and accurately controlling the temperature. Under these control conditions, this device has a width of 75 columns and a length of 101,000 W.
It was confirmed that a very good strip crystal substrate for solar cells with a thickness of 0.5 ran could be manufactured.

以上説明した本装置の特徴を、同じ仕様の帯状結晶を育
成する従来装置と比較したところ、先ず装置構成が簡単
であ)、そのサイズを1/3程度とコン・9クト化する
ことができる。またヒータ加熱電力が1/10程度で良
いと云う結果か得られた。また装置価格の大幅な低減を
図ることができ、結局製造コストの低廉化を図シ得る等
の絶大なる効果を奏する。
Comparing the features of this device explained above with a conventional device for growing band-shaped crystals with the same specifications, we found that first, the device configuration is simple, and the size can be reduced to about 1/3, making it compact. . In addition, the results showed that the heater heating power could be reduced to about 1/10. Furthermore, the cost of the device can be significantly reduced, resulting in tremendous effects such as lower manufacturing costs.

尚、本発明は上記実施例に限定されるものではない。例
えばダイの形状・寸法や溝の深さ等は仕様に応じて定め
ればよいものであシ、要するに本発明はその要旨を逸脱
しない範囲で知々変形して実施することができる。
Note that the present invention is not limited to the above embodiments. For example, the shape and dimensions of the die, the depth of the groove, etc. may be determined according to the specifications, and in short, the present invention can be practiced with various modifications without departing from the gist thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の一例を示す概略構成図、第2図は本
発明の一実施例を示す装置要部の斜視図、第3図(、)
〜(c)は同実施例におけるダイの構成を示す図である
。 J 1 ・・・ダイ、12 a 、 12 b−平板部
、13・・・橋状体、14・・・溝、15.h、15b
・・・チャージポケット、16a、16b・・・原料供
給管、17a、17b・・・ねじ孔、18 a r 1
8 b =・ねじ、19a 、 19b・・・電極端子
。 出願人代理人  弁理士 鈴 江 武 彦9− 1・旨′「庁長官  島[■春樹−殿 1.小件の表示 特願昭56(45808号 2、発明の名称 結晶基板の製造装置 3、補市をする名 事件との関係 特許出願人 (307)  東京芝浦電気株式会社 495−
Fig. 1 is a schematic configuration diagram showing an example of a conventional device, Fig. 2 is a perspective view of the main part of the device showing an embodiment of the present invention, and Fig. 3 (,)
-(c) are diagrams showing the configuration of a die in the same example. J1...Die, 12a, 12b-flat plate portion, 13...Bridge-shaped body, 14...Groove, 15. h, 15b
...Charge pocket, 16a, 16b...Raw material supply pipe, 17a, 17b...Screw hole, 18 a r 1
8 b = Screw, 19a, 19b... Electrode terminal. Applicant's representative Patent attorney Takehiko Suzue 9-1. 'Chief of the Agency Shima [■Haruki-Den. 1. Indication of small matter Patent application No. 1983 (No. 45808 2, title of invention Crystal substrate manufacturing apparatus 3, Relationship with famous cases requiring supplementary market patent applicant (307) Tokyo Shibaura Electric Co., Ltd. 495-

Claims (1)

【特許請求の範囲】[Claims] 結晶融液にぬれ性を有する橋型形状の加熱ヒータと、こ
の加熱ヒータを通電加熱する手段と、供給された固体原
料を溶融して前記結晶融液として蓄える前記加熱ヒータ
の両端に設けられたポケットと、前記加熱ヒータの上面
と上記ポケットとに連通して設けられた溝と、この溝を
介して上記ポケットから前記加熱ヒータの上面に導ひか
れた前記結晶融液に種子結晶をなじませて引上げる手段
とを具備したことを特徴とする結晶基板の製造装置。
a bridge-shaped heater that has wettability to the crystal melt; a means for heating the heater with electricity; and a heater provided at both ends of the heater for melting the supplied solid raw material and storing it as the crystal melt. a pocket, a groove provided in communication with the upper surface of the heater and the pocket; and a seed crystal is blended into the crystal melt guided from the pocket to the upper surface of the heater through the groove. 1. An apparatus for producing a crystal substrate, comprising a pulling means.
JP56145808A 1981-09-16 1981-09-16 Crystal substrate manufacturing equipment Expired JPS5914438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56145808A JPS5914438B2 (en) 1981-09-16 1981-09-16 Crystal substrate manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56145808A JPS5914438B2 (en) 1981-09-16 1981-09-16 Crystal substrate manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS5849689A true JPS5849689A (en) 1983-03-23
JPS5914438B2 JPS5914438B2 (en) 1984-04-04

Family

ID=15393614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56145808A Expired JPS5914438B2 (en) 1981-09-16 1981-09-16 Crystal substrate manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS5914438B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100644A1 (en) * 2004-04-15 2005-10-27 Faculdade De Ciências Da Universidade De Lisboa Method for the growth of semiconductor ribbons

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100644A1 (en) * 2004-04-15 2005-10-27 Faculdade De Ciências Da Universidade De Lisboa Method for the growth of semiconductor ribbons
JP2007532464A (en) * 2004-04-15 2007-11-15 ファクルダデ デ シエンシアス ダ ユニベルシダデ デ リスボア Method for growing a semiconductor ribbon
US7799131B2 (en) 2004-04-15 2010-09-21 Faculdade De Ciencias Da Universidade De Lisboa Method for the growth of semiconductor ribbons

Also Published As

Publication number Publication date
JPS5914438B2 (en) 1984-04-04

Similar Documents

Publication Publication Date Title
US4661200A (en) String stabilized ribbon growth
DE2633961C2 (en) Method of pulling a thin ribbon of single crystal semiconductor
EP0140565B1 (en) Method for growing multicomponent compound semiconductor crystals
US4022652A (en) Method of growing multiple monocrystalline layers
GB2135595A (en) String stabilised crystal growth
US4000030A (en) Method for drawing a monocrystal from a melt formed about a wettable projection
CN107075715B (en) Apparatus, method and system for controlling thickness of a crystalline sheet grown in a melt
JPS5849689A (en) Production unit for crystal substrate
JP3002479B2 (en) Solar cell manufacturing method
US3977934A (en) Silicon manufacture
US4157373A (en) Apparatus for the production of ribbon shaped crystals
JPH0139998B2 (en)
US4469552A (en) Process and apparatus for growing a crystal ribbon
US4267010A (en) Guidance mechanism
NL8000851A (en) METHOD AND APPARATUS FOR MANUFACTURING CRYSTALS
US4119744A (en) Method of manufacturing semiconductor devices in which a layer of semiconductor material is provided on a substrate
DE4140555C2 (en)
US3413098A (en) Process for varying the width of sheets of web material
JPS6251918B2 (en)
US4125425A (en) Method of manufacturing flat tapes of crystalline silicon from a silicon melt by drawing a seed crystal of silicon from the melt flowing down the faces of a knife shaped heated element
JPS6329742Y2 (en)
Suzuki et al. Growth of polycrystalline silicon sheet by Hoxan cast ribbon process
CA1116985A (en) Capillary die
JPS6111916B2 (en)
EP0908958B1 (en) In-situ diffusion of dopant impurities during dendritic web growth of silicon crystal ribbon