JPS5849633A - Crystalline glass having high strength and low expansion - Google Patents

Crystalline glass having high strength and low expansion

Info

Publication number
JPS5849633A
JPS5849633A JP14118781A JP14118781A JPS5849633A JP S5849633 A JPS5849633 A JP S5849633A JP 14118781 A JP14118781 A JP 14118781A JP 14118781 A JP14118781 A JP 14118781A JP S5849633 A JPS5849633 A JP S5849633A
Authority
JP
Japan
Prior art keywords
glass
li2o
crystals
crystallized glass
mechanical strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14118781A
Other languages
Japanese (ja)
Inventor
Masakazu Umetsu
梅津 理和
Norio Kobayashi
紀男 小林
Hisakuni Ito
寿国 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Ishizuka Glass Co Ltd
Original Assignee
Toyota Motor Corp
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Ishizuka Glass Co Ltd filed Critical Toyota Motor Corp
Priority to JP14118781A priority Critical patent/JPS5849633A/en
Publication of JPS5849633A publication Critical patent/JPS5849633A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled glass having low thermal expansion and high mechanical strength, and useful as an industrial material, by heat-treating a glass material composed of specific amounts of SiO2, Al2O3, Li2O, TiO2, F and As2O3. CONSTITUTION:The objective glass is prepared by heat-treatment of a glass material composed of 50-73(wt)% SiO2, 12-35% Al2O3, 2-10% Li2O, 0.1-6% TiO2, 0.1-6% F, and 0.05-8% As2O3, wherein SiO2+Al2O3+Li2O+TiO2+F+ As2O3 is >=90%, SiO2+Al2O3+Li2O is >=81%, and the content of Na2O, K2O, CaO, MgO and B2O3 is <=5% and that of PbO, ZnO, BaO, SrO and P2O5 is <=3%. The crystalline glass obtained by this process has a thermal expansion coefficient of <=25X10<-7>/ deg.C between 50 and 500 deg.C, can be cut, machined or ground without loss of the mechanical strength, and has excellent heat resistance and thermal-shock resistance.

Description

【発明の詳細な説明】 本発明は、殊に機械的強度が大きくかつ低熱膨張性を有
する結晶化ガラスに関する。更に詳述すれば、工業材料
として有利に使用できる高い機械的強度を有する結晶化
ガラスに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a crystallized glass having high mechanical strength and low thermal expansion. More specifically, the present invention relates to crystallized glass having high mechanical strength that can be advantageously used as an industrial material.

従来、約30X10””“(F)O〜500°0)以下
の熱膨張係数を有する低熱膨張性結晶化ガラスは8i0
□タイ 甲ト若しくはそわらを主成分とする構成からなることは
よく知られている。係る結晶化ガラスの機械的強度殊に
曲げ強度は、はぼ2000〜3000kg/cd程度の
範囲内に限られていた。一方、別異の結晶構造の結晶化
ガラスで、高い機械的強度例えば曲げ強度で5ooo〜
60001cg/m前後の値を呈するものも開発されて
いるか、熱膨張gF敵が70〜80XlO”’。
Conventionally, low thermal expansion crystallized glass having a coefficient of thermal expansion of approximately 30
□It is well known that the main component is Thai koto or sowara. The mechanical strength, particularly the bending strength, of such crystallized glass has been limited to approximately 2,000 to 3,000 kg/cd. On the other hand, it is a crystallized glass with a different crystal structure, and has high mechanical strength such as bending strength of 500~
Products with a value of around 60,001 cg/m have also been developed, or have a thermal expansion gF of 70 to 80XlO"'.

(50〜500℃)前後若しくは七ね以上であって、順
熱性若しくは耐熱衝撃性に劣っていた。したがって、係
る結晶化ガラスは高温度で高負荷が要求される例えば工
業材料用としては不向きな素材となっている。このよう
な実態の中で、その後 高い曲は強度を有する低熱膨張
性結晶化ガラスが開発され、例えば特公昭45−355
5.特公昭45−4870゜特公昭46−5835.特
公昭4fl−42918等の各公報にて提案されたが、
これらの結晶化ガラスは、いずれも、内部結晶物と表面
結晶物とが相異する構造を有し、各々の結晶物の熱膨張
4XN数の相違から生ずる表面圧縮応力により′高い機
械的強度殊得ているものである。したがって、これらの
結晶化ガラスは切断、切削、研磨等の加工により圧縮応
力が解放されると、前記強度を維持できなくなるという
致命的な欠陥を有しているので、前記加工を必須とする
工業材料用素材と、して、特に高機械的強度を必要とす
るものへの使用はほとんど不可能であった。
(50 to 500°C) or more than 7 degrees Celsius, and the thermal stability or thermal shock resistance was poor. Therefore, such crystallized glass is an unsuitable material for, for example, industrial materials that require high temperatures and high loads. Under these circumstances, low thermal expansion crystallized glass with high strength was developed, for example,
5. Special Publication Showa 45-4870° Special Publication Showa 46-5835. It was proposed in various publications such as Special Publication No. 4fl-42918,
All of these crystallized glasses have structures in which internal crystals and surface crystals are different, and have a high mechanical strength due to the surface compressive stress caused by the difference in thermal expansion 4XN number of each crystal. That's what you're getting. Therefore, these crystallized glasses have a fatal flaw in that they cannot maintain their strength when compressive stress is released through processing such as cutting, cutting, polishing, etc. It has been almost impossible to use it for materials that require particularly high mechanical strength.

本発明者らは これらの実態を鑑み、工業材料用として
採用しつる、切断、切削、研磨等の2次加工を経ても、
機械的強度がほとんど低下しない素材を提供すべく鋭意
研究を重ねた結果、高機械的強度が表面圧縮応力によら
ず、結晶物本来の強度に基づく新規な高強度低膨張性結
晶化ガラスを見い出した。すなわち、本発明は特許第8
54465号(特公昭5l−22926)明、111I
書に記載されるICとム5203の相乗効果に着目し 
それらの併存と結晶核形成剤との組合せが特定ガラス体
において核形成の微細化及び多量化そしてそれに基づき
微細結晶の生成をなすとの知見に基づく。
In view of these realities, the inventors of the present invention have adopted these materials as industrial materials, even after undergoing secondary processing such as cutting, cutting, polishing, etc.
As a result of extensive research in order to provide a material with almost no decrease in mechanical strength, we discovered a new high-strength, low-expansion crystallized glass whose high mechanical strength is based on the inherent strength of the crystalline material, not due to surface compressive stress. Ta. That is, the present invention is disclosed in Patent No. 8.
No. 54465 (Special Publication No. 5l-22926) Ming, 111I
Focusing on the synergistic effect of IC and Mu5203 described in the book,
It is based on the knowledge that the combination of their coexistence and a crystal nucleating agent results in finer and more abundant nucleation in a specific glass body, and based on this, the generation of fine crystals.

本発明の目的は、aoxlo ”e (50〜500℃
)を越えない熱膨張係数を有する結晶化ガラスで4うて
、切断、切削、研磨等の2次加工を経ても、機械的強度
が低下せず、依然として高い機械的強度を維持する高強
度低膨張性結晶化ガラス全提供することである。
The purpose of the present invention is to obtain aoxlo ``e (50-500℃
), the mechanical strength does not decrease even after secondary processing such as cutting, cutting, polishing, etc., and still maintains high mechanical strength. Expandable crystallized glass is a total offering.

前記目的を達成するに必要な本発明の要旨は重量%で8
i0250〜73%、ム120,12〜85%、 Li
2O2〜lO%、 Tie20.1〜6%及びFo、1
〜6%、18□030.05〜8%を必須成分とするガ
ラス体を熱処理することにより得られる結晶化ガラスに
存する。得られる結晶化ガラスにおいて、その強度増大
に最も大きく寄与するものは、上記成分にあっては殊に
Fと0203の併存と結晶核形成剤T i 02との組
合せであり、構造にあってはそれによって生成するL 
i20・ム1203・48i02結晶の多量かつ緻密な
存在である。
The gist of the present invention necessary to achieve the above object is 8% by weight.
i0250~73%, Mu120,12~85%, Li
2O2~1O%, Tie20.1~6% and Fo, 1
6%, 18□030.05 to 8% as essential components. In the obtained crystallized glass, what contributes most to the increase in strength is the above components, especially the coexistence of F and 0203, and the combination of the crystal nucleating agent T i 02, and the structure. L generated thereby
There is a large amount and dense presence of i20・mu1203・48i02 crystals.

更に詳述すれば、前記特許第85446fi号明細書に
は、L i20 8 i 0□系又はL輸0− A I
203−8 i 02系のガラスにおいてFと八8゜0
3の組合せが核形成剤としてはたらき、Li2O・28
 I02結晶の析出起点となるべ8− 極めて多量な結晶核となる旨が記載されているが本発明
はとのFとA m203の組合せがLL、O−A 12
03−8i20系のガラスにおいてLi、0・Li2O
3・48i02結晶の析出のために作用する核形成剤T
iO□による結晶核の生成に関し、その核の微細化及び
多量化に大きく寄与するとの知見に基づく。特定された
l−120−ムt2o3− sto、系ガラス体が一定
の熱処理を受けることによって第1段階でFとムI2O
3との相乗効果を受けて微細かつ多量のTiO□(ルチ
/L/)結晶核が生成し、かつ 当該核を起点としてL
i2O・ム1203・48i0□結晶の析出が開始され
、第2段階で前記結晶の成長が進む。しかしながら、核
が極めて多量であるところから結晶の成長が相互に干渉
(〜、一定限度内でその成長が微細結晶のまま停止し、
全体としてガラス体は極めて?&細かつ多量なl−12
0・ム1203・48 i 02結晶を主成分とする結
晶化ガラスに変質するのである。このように析出したL
i2O・ム璽20.・48IO□結晶体は微細結晶を緻
密に結合した安定な結晶構造状態にあるので、結晶相互
の結合強度が大きく、外力負荷が大きくなったとしても
4− 内部応力の発生が少なく結晶間のズレ等結晶構造欠陥の
発生がほとんどなく、結晶化ガラス体の機械的強度の維
持及び増大につながる。更にLi2O・Al□0.・4
8i02の結晶自体が約−2,4XlO”’0(25〜
600°0)の熱膨張係数を有するので、実際上マトリ
ックスガラスと14tI記結晶を含有する結晶化ガラス
体において、前記結晶を40%以上含有する結晶化ガラ
スでは、約25X10 ”’O(50〜500°0)以
内の熱膨張係数を得ることができる。前記結晶の含有量
が多いほど、結晶化ガラス体の熱膨張係数は小さくなる
傾向にある。
More specifically, the specification of the Patent No. 85446fi describes the L i20 8 i 0 □ series or the L i 0- A I
203-8 i In 02 series glass, F and 88°0
The combination of 3 acts as a nucleating agent, Li2O.28
Becomes the starting point for precipitation of I02 crystals 8-Although it is described that it becomes an extremely large number of crystal nuclei, the present invention is based on the combination of F and A m203 with LL, O-A 12
Li, 0.Li2O in 03-8i20 series glass
Nucleating agent T acting for the precipitation of 3.48i02 crystals
This is based on the knowledge that iO□ greatly contributes to the miniaturization and increase in the number of crystal nuclei in the generation of crystal nuclei. The identified l-120-mu t2o3-sto, system glass body is subjected to a certain heat treatment to convert F and mu I2O in the first step.
Due to the synergistic effect with 3, fine and large amounts of TiO□ (ruti/L/) crystal nuclei are generated, and L starts from the nuclei.
Precipitation of i2O.mu1203.48i0□ crystals begins, and the growth of the crystals progresses in the second stage. However, due to the extremely large number of nuclei, the growth of crystals interferes with each other (~, within a certain limit, the growth stops as a fine crystal,
Overall, the glass body is extremely good. & fine and large amount of l-12
It transforms into crystallized glass whose main component is 0.mu1203.48 i 02 crystals. L precipitated in this way
i2O Muji 20. -48IO Almost no homocrystal structure defects occur, which leads to maintaining and increasing the mechanical strength of the crystallized glass body. Furthermore, Li2O・Al□0.・4
The crystal itself of 8i02 is approximately -2,4XlO"'0 (25~
600°0), so in practice, in a crystallized glass body containing a matrix glass and 14tI crystals, a crystallized glass containing 40% or more of the above crystals has a thermal expansion coefficient of approximately 25 A thermal expansion coefficient within 500°0) can be obtained.The larger the content of the crystals, the smaller the thermal expansion coefficient of the crystallized glass body tends to be.

本発明において、特に熱膨張($数約25X10”0(
5O−y500 °O)以下の結晶化ガラス体を得んと
するとき、β・スボジュウメン結晶が40%以上含有す
ることを必要とし、このときガラス成分として8102
十ム1□0.千日20 + TIO□十F + As2
o3の合計が90%以」二有し、その中で8I02+ム
1□03 +Li2Oが81%以上を占めることが必要
である。
In the present invention, especially thermal expansion (approximately 25 x 10"0)
When trying to obtain a crystallized glass body with a crystallization temperature of 5O-y500 °O or less, it is necessary to contain 40% or more of β-subodumene crystals, and in this case, 8102 as a glass component is required.
Ten mu 1□0. Thousand Days 20 + TIO□10F + As2
It is necessary that the total of o3 is 90% or more, of which 8I02+Mu1□03+Li2O accounts for 81% or more.

なお、F + Ag2O3の組合せ作用効果は 殊に第
1段階の熱処理で結晶核の多量形成及び第2段階で結晶
の微細化を相乗的に達成させることにある。
The combined effect of F + Ag2O3 is particularly in synergistically achieving the formation of a large amount of crystal nuclei in the first stage of heat treatment and the miniaturization of crystals in the second stage.

すなわち、核形成補助剤と【7てFのみの添加でも或は
A8゜03 のみの添加でも、その含有量を増大させる
ことによって、前記核の多量形成化、結晶の微細化はあ
る程度図れ得るも、前記目的を達成するためには充分で
ない。
That is, by increasing the content of the nucleation aid [7]F or A8゜03, it is possible to form a large number of nuclei and to make the crystals finer to some extent. , is not sufficient to achieve the above objective.

F成分とAS□03成分とを組合せて添加した結晶化ガ
ラスの曲げ弾度は名々一つを添加しない結晶化ガラスの
それに比し、て約1.5〜2.0倍程大きいということ
が、実験データに基づく第1表及び第2表から理解でき
る。
The bending elasticity of crystallized glass to which a combination of F component and AS□03 component is added is approximately 1.5 to 2.0 times greater than that of crystallized glass to which only one is added. can be understood from Tables 1 and 2 based on experimental data.

第   1   表 (第1表の、4s□03は外分比で示す。)−?− 第    2    表 (第2表の1゛は外分比で示す。) 8− 第1表、第2表から、AM、0.、l Fのそれぞれ一
方を含有I7ない未11成の結晶化7ガブスの曲げ強度
は、それぞれ、20150 kgAA + 1400ゆ
匂程度であるのに対し、A8□03 * k’を含有さ
ぜると機械的強度は飛躍的に増大し、約5000&i+
/−以上の高い曲げ強度を有する結晶化カラスが得られ
ることかわかる。なお、第1表、第2表のデータV1い
ずれも表面を約1 nL″1程研磨1.た加工ずみの試
料を測定1.たもので、試料数n−20の平均値である
。ちなみに未研磨の試料の曲は強度は第1表hkt1が
8820に9/a+l m 3が4800に9/mであ
った。
Table 1 (4s□03 in Table 1 is expressed as an external division ratio.) -? - Table 2 (1' in Table 2 is the external ratio.) 8- From Tables 1 and 2, AM, 0. The flexural strength of unformed crystallized 7gabs containing one of A8□03*k' is approximately 20150 kgAA + 1400 kg, respectively, while the flexural strength of unformed crystallized 7gaves containing one of A8 Mechanical strength increases dramatically to approximately 5000&i+
It can be seen that crystallized glass having a high bending strength of /- or more can be obtained. In addition, both data V1 in Tables 1 and 2 were measured on processed samples whose surfaces had been polished by approximately 1 nL''1, and are the average values for the number of samples (n-20). The strength of the unpolished sample was 8820 hkt1 in Table 1, 9/a+l m 3 4800, and 9/m.

本発明において、8i02 +ムt、0. + Li、
O+ TiO2及びF、ム8□03の必須成分を上記の
如く限定したが、その限定理由1次の如くである。
In the present invention, 8i02 +mut, 0. +Li,
The essential components of O+ TiO2, F, and Mu8□03 are limited as described above, and the reason for the limitation is as follows.

8i0□が50%未満である場合、得られる結晶化ガラ
スは化学的耐久性が悪く、又夾雑結晶物の析出が大とな
って所望の機械的強度、低熱膨張性が得られ難くなる。
When 8i0□ is less than 50%, the resulting crystallized glass has poor chemical durability, and precipitation of contaminant crystals becomes large, making it difficult to obtain desired mechanical strength and low thermal expansion.

73%を越える場合、ガラスの溶融性1作業性が悪くか
つ均質な結晶物が得られ雌く、所望の特性が得られない
。したがって、8i0□は50〜73% に限定される
If it exceeds 73%, the meltability and workability of the glass are poor and a homogeneous crystalline product is obtained, making it impossible to obtain the desired properties. Therefore, 8i0□ is limited to 50-73%.

ムl!03が 12%未満である場合、ガラスの液相温
度が高くなり作業性に支障を来たし、又夾雑結晶物の析
出が多くなシ、所望の緒特性が得られ難くなる。35%
を越えるときはガラスが難溶性となり又作業性も悪くな
り そして所望の結晶物が得られない。したがって、A
l2O3は12〜35%に限られる。
Ml! If 0.03 is less than 12%, the liquidus temperature of the glass becomes high, which impedes workability, and the precipitation of contaminant crystals increases, making it difficult to obtain desired properties. 35%
When the temperature exceeds the above range, the glass becomes poorly soluble, workability becomes poor, and the desired crystalline product cannot be obtained. Therefore, A
12O3 is limited to 12-35%.

Li2Oの場合、2〜10%の範囲を逸脱すると、30
XIO”’) (50〜500°0)以下の低膨張性を
有する結晶物が得られない。したがって、Li2Oは2
〜10%の範囲に限られる。
In the case of Li2O, if it deviates from the range of 2 to 10%, 30
It is not possible to obtain a crystalline product having a low expansion property of less than XIO'') (50-500°0).
-10%.

TiO2は前記した如く核形成剤として作用し極めて微
細な結晶の元となる。0.1%未満の場合、F。
As mentioned above, TiO2 acts as a nucleating agent and becomes a source of extremely fine crystals. F if less than 0.1%.

ム8203 の相乗効果を受けても、核形成の絶対量が
イJ、 少亨<、所望する結晶物の量及びその緻密性を欠き、充
分な機械的強度が得られない。7%を越えると、ガラス
の溶融性が悪くなると共に失透が発泡 生じず均質結晶物の多量析出の原因となる。したがって
、TiO□は0.1〜7%の範囲内に限られる。
Even with the synergistic effect of Mu8203, the absolute amount of nucleation is low, the desired amount of crystalline matter and its density are lacking, and sufficient mechanical strength cannot be obtained. If it exceeds 7%, the meltability of the glass deteriorates and devitrification does not occur, causing a large amount of homogeneous crystalline material to precipitate. Therefore, TiO□ is limited to a range of 0.1 to 7%.

Fはム8□03の存在下でT + 02の核形成を補助
し、結晶核の多量析出に必要である。0.1%未満の場
合は、^5203との組合せであってもTiO□核形成
の補助が不十分で、充分な量の結晶核が得られない。6
%を越えるとガラス解融時炉材の損傷を著(−くシそし
て溶融部からFの揮散が著しくなるためガラスが不均質
になると共に均質な結晶の析出を妨げる。したがって、
Fは0.1〜6%の範囲内に限られる。
F assists the nucleation of T + 02 in the presence of Mu8□03 and is necessary for the precipitation of a large amount of crystal nuclei. If it is less than 0.1%, even in combination with ^5203, support for TiO□ nucleation is insufficient and a sufficient amount of crystal nuclei cannot be obtained. 6
If it exceeds %, damage to the furnace material during glass melting will occur, and the volatilization of F from the molten zone will become significant, making the glass non-uniform and preventing the precipitation of homogeneous crystals.
F is limited within the range of 0.1 to 6%.

一方、A8□03は)゛と共に核形成剤T i 02の
核形成を補助し、その結晶核及び所望結晶の多量形成に
欠かせない。更に、結晶化のための熱処理時の若干のF
揮散によって起る内部結晶物と表面結晶物との相違析出
を妨ぐ効果がある。0.05%未満のときは充分な量の
Fが存在していても、充分な量のTiO□結晶核の形成
を補助し難く、前記目的を達成するような緻密な微結晶
体を得ることができない。
On the other hand, A8□03 assists the nucleation of the nucleating agent T i 02 together with ) and is indispensable for the formation of crystal nuclei and a large amount of desired crystals. Furthermore, some F during heat treatment for crystallization
It has the effect of preventing differential precipitation of internal crystalline substances and surface crystalline substances caused by volatilization. When it is less than 0.05%, even if a sufficient amount of F is present, it is difficult to support the formation of a sufficient amount of TiO□ crystal nuclei, thereby obtaining a dense microcrystalline body that achieves the above objective. I can't.

8%を越えると、結晶物が脆弱化する。したがって、A
s□03は0.05〜8%に限られる。
If it exceeds 8%, the crystalline material becomes brittle. Therefore, A
s□03 is limited to 0.05 to 8%.

前記8i0□十ム1203 +Li2O+ TiO2+
F+ム8□03の合計が90%未満のとき若しくはf3
 i 02+ム1203 + L i20の合計が81
%未満のとき、マトリックスガラス。
Said 8i0□1203 +Li2O+ TiO2+
When the total of F+mu8□03 is less than 90% or f3
The total of i 02 + mu 1203 + L i20 is 81
When less than %, matrix glass.

夾雑結晶物の占める割合が大きくなって所望とするβ・
スボジュウメンの微結晶の割合が少なくなるので、十分
な低膨張性が得られ難くなる。したがって、殊に20X
IO””(50〜500’0)以下の熱膨張係数を有す
る結晶化ガラスを得んとするときは、8 i 02+ム
1,03+ Li、O+ TiO2+ F+ム5203
の合計を93%以上、その中で8102+^1203 
+ Li2Oが86%以上占めていることが必要となる
The proportion of contaminant crystals increases and the desired β-
Since the proportion of microcrystals of subodumene decreases, it becomes difficult to obtain a sufficiently low expansion property. Therefore, especially 20X
When trying to obtain crystallized glass having a coefficient of thermal expansion of IO"" (50 to 500'0) or less, 8 i 02 + Mu 1,03 + Li, O + TiO2 + F + Mu 5203
The total of 93% or more, of which 8102+^1203
+ Li2O must account for 86% or more.

なお、その他のNa2O、[20、Pbo 、ZnO+
 B aO,8r0゜0&OI MFol B2O3,
I′20.等の1種又は2種以上を本発明の特性に大な
る変化を与えない程度、たとえばtm*、0.n2o1
0aO+ MIO* B2O3については5%以下Pb
Q+ ZnO+ Ba1t 8r()t P2O6につ
いては3%以下添加しても差支えない。これらの成分は
ガラスの溶融性1作業性の向上等のために使用されるも
のであるが、一定量以上の含有はマトリックスガラスの
含有量増加、夾雑結晶物の生成・増大等によって次に本
発明に基づ〈実施例を記載する。
In addition, other Na2O, [20, Pbo, ZnO+
B aO,8r0゜0&OI MFol B2O3,
I'20. etc., to an extent that does not significantly change the characteristics of the present invention, for example, tm*, 0. n2o1
0aO+ MIO* 5% or less Pb for B2O3
Q+ ZnO+ Ba1t 8r()t P2O6 may be added in an amount of 3% or less. These components are used to improve the meltability and workability of glass, but if they are included in a certain amount or more, they may cause problems such as an increase in the content of matrix glass and the formation and increase of contaminant crystals. Examples based on the invention will be described.

第    3    表 ように原料調合したバッチを1500〜1600°Cで
3〜6時間浴融した後、直径約61″1.長さ約i o
o7F−nLの丸棒を成形した。このガラス棒を電気炉
中で500/分捗年の加熱速度で昇温し、約800°C
の温度で1.5時間保持し、その後約1050°Cまで
360/分の加熱速度で昇温し、その温度で約2時間保
持することによってガラスを結晶体に変質させ、その後
炉外に取出し放冷した。そして得られた結晶化ガラス棒
の表面を約1?lL−削し、各々の曲げ強度及び熱膨張
係数を測定した。なお、第3表の測定値は試料数n=2
0本による平均値を示す。
After bath-melting a batch of raw materials prepared as shown in Table 3 at 1500 to 1600°C for 3 to 6 hours, a diameter of about 61″1.
A round bar of o7F-nL was molded. This glass rod was heated at a heating rate of 500/min in an electric furnace to approximately 800°C.
The glass was maintained at a temperature of It was left to cool. The surface of the obtained crystallized glass rod is approximately 1? The flexural strength and thermal expansion coefficient of each sample were measured. Note that the measured values in Table 3 are based on the number of samples n = 2.
The average value based on 0 lines is shown.

以上 詳述した如く、本発明は従来の結晶化ガラスには
ない切断、切削、研磨等の2次加工をしても、機械面強
度の低下を来たさないかつ1−ぐれた耐熱性、耐熱衝撃
性を保持する結晶化ガラスであり、前記緒特性が年々高
度な水準で要求される工業材料用素材として正に適合す
るものである。
As described in detail above, the present invention has 1- excellent heat resistance, which does not cause a decrease in mechanical surface strength even when subjected to secondary processing such as cutting, cutting, and polishing, which is not available in conventional crystallized glass; It is a crystallized glass that maintains thermal shock resistance, and is perfectly suited as a material for industrial materials, where the above-mentioned properties are required at increasingly higher levels year after year.

その他、結晶の緻密性、微細性によって、結晶化ガラス
の表面の硬度は2次加工の有無にかかわらず、ビッカー
ス硬度(3009荷重)で約700に9//″1以」二
を維持するので、前記機械一部品、電子部品等の工業相
料のみならず、建築材判、装飾用素材。
In addition, depending on the density and fineness of the crystals, the surface hardness of crystallized glass maintains a Vickers hardness (3009 load) of approximately 700 to 9//"1"2 regardless of whether or not it undergoes secondary processing. , as well as industrial materials such as mechanical parts and electronic parts, as well as building materials and decorative materials.

日用品材料等その用途は極めて広範である。Its uses are extremely wide, including materials for daily necessities.

特許出願人 石塚硝子株式会社Patent applicant: Ishizuka Glass Co., Ltd.

Claims (1)

【特許請求の範囲】 l)重量%で8i0250〜73%、ムt、o312〜
35%+Li2O2〜lO%、 TiO□0.1〜6%
及びFo、1〜6%。 ム@2030.05〜8%を必須成分とするガラス体を
熱処理することにより得られる高強度低膨張性結晶化ガ
ラス。 2 ) 8 i 02十ム1203 + L120 +
 ’rto□+F+ム11203の合計が90%以上で
あって、その中で8i0.+ム1203 + Li2O
が81%以上を占めている特許請求の範囲第1項記載の
高強度低膨張性結晶化ガラス。
[Claims] l) 8i0250~73% in weight%, Mut, o312~
35%+Li2O2~lO%, TiO□0.1~6%
and Fo, 1-6%. A high-strength, low-expansion crystallized glass obtained by heat-treating a glass body containing 0.05 to 8% of Mu@2030 as an essential component. 2) 8 i 020m 1203 + L120 +
'rto□+F+mu11203 total is 90% or more, and 8i0. +Mu1203 +Li2O
81% or more of the high-strength, low-expansion crystallized glass according to claim 1.
JP14118781A 1981-09-08 1981-09-08 Crystalline glass having high strength and low expansion Pending JPS5849633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14118781A JPS5849633A (en) 1981-09-08 1981-09-08 Crystalline glass having high strength and low expansion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14118781A JPS5849633A (en) 1981-09-08 1981-09-08 Crystalline glass having high strength and low expansion

Publications (1)

Publication Number Publication Date
JPS5849633A true JPS5849633A (en) 1983-03-23

Family

ID=15286178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14118781A Pending JPS5849633A (en) 1981-09-08 1981-09-08 Crystalline glass having high strength and low expansion

Country Status (1)

Country Link
JP (1) JPS5849633A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895767A (en) * 1994-03-15 1999-04-20 Kabushiki Kaisha Ohara Crystallized glass and method for manufacturing the same
JP2004075441A (en) * 2002-08-14 2004-03-11 Huzhou Daikyo Hari Seihin Yugenkoshi Lithium oxide-alumina-silica-based crystalline glass and crystallized glass, and method of manufacturing the crystalline glass and the crystallized glass
JP2009280487A (en) * 2008-05-21 2009-12-03 Samsung Electro Mech Co Ltd Glass composition, glass fiber, insulation layer for printed circuit substrate, and printed circuit substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895767A (en) * 1994-03-15 1999-04-20 Kabushiki Kaisha Ohara Crystallized glass and method for manufacturing the same
JP2004075441A (en) * 2002-08-14 2004-03-11 Huzhou Daikyo Hari Seihin Yugenkoshi Lithium oxide-alumina-silica-based crystalline glass and crystallized glass, and method of manufacturing the crystalline glass and the crystallized glass
JP2009280487A (en) * 2008-05-21 2009-12-03 Samsung Electro Mech Co Ltd Glass composition, glass fiber, insulation layer for printed circuit substrate, and printed circuit substrate

Similar Documents

Publication Publication Date Title
TWI796316B (en) crystallized glass
US6124223A (en) β-quartz-based glass-ceramics
JP3107304B1 (en) Glass ceramics for optical filters and optical filters
US3804646A (en) Very high elastic moduli glasses
US4925814A (en) Ultraviolet transmitting glasses for EPROM windows
US3146114A (en) Method of making semicrystalline ceramic bodies and the composition thereof
JP2882995B2 (en) Crystallized glass, crystallized glass substrate for magnetic disk, and method for producing crystallized glass
JPH0255243A (en) Transparent crystallized color glass having low expansion coefficient
US3145114A (en) Process for increasing the index of refraction of glass and an article made thereby
JPS5849633A (en) Crystalline glass having high strength and low expansion
JPH01126239A (en) Glass substrate for electronic equipment
JP7460947B2 (en) Crystallized glass, crystallized glass, and method for producing crystallized glass
US3926602A (en) Glass-ceramic articles with reflective surfaces
US3180742A (en) Elevated temperature resistant ceramic structural adhesives
JPS63210039A (en) Production of crystallized glass for substrate
US4111708A (en) Machinable glasses
US4575493A (en) Low expansion, multiband transmitting glasses and glass-ceramics
JPS5849634A (en) Crystalline glass having high strength and low expansion
JP2019527189A (en) Canoite glass ceramic
JPS5849635A (en) Crystalline glass having high strength and low expansion
US3769047A (en) Method of depressing the liquidus temperature of lanthanum aluminogermanate glasses, and the glasses produced
JPS60264345A (en) Glass composition for fiber
US3883358A (en) Copper aluminoborate glasses
JPH0264037A (en) Glass of small thermoelasticity
JPH04292435A (en) Optical glass