JPS5849626A - Denitration apparatus of uranyl nitrate and/or plutonium nitrate - Google Patents

Denitration apparatus of uranyl nitrate and/or plutonium nitrate

Info

Publication number
JPS5849626A
JPS5849626A JP14595981A JP14595981A JPS5849626A JP S5849626 A JPS5849626 A JP S5849626A JP 14595981 A JP14595981 A JP 14595981A JP 14595981 A JP14595981 A JP 14595981A JP S5849626 A JPS5849626 A JP S5849626A
Authority
JP
Japan
Prior art keywords
nitrate
fluidized bed
fluidized layer
spray nozzle
plutonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14595981A
Other languages
Japanese (ja)
Other versions
JPS6050730B2 (en
Inventor
Akira Tanaka
皓 田中
Toshio Onoshita
小野下 敏雄
Katsuyuki Tanaka
克幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP14595981A priority Critical patent/JPS6050730B2/en
Publication of JPS5849626A publication Critical patent/JPS5849626A/en
Publication of JPS6050730B2 publication Critical patent/JPS6050730B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To carry out the thermal decomposition and denitration of uranyl nitrate and/or plutonium nitrate, continuously, stably, uniformly throughout the width of the fluidized layer, by attaching a spray nozzle to the wall of the denitration apparatus at the width side of the flat-type fluidized layer making a specific angle between the nozzle and direction of the thickness of the fluidized layer. CONSTITUTION:A spray nozzle 4 is attached slantly facing upward to the wall of a denitration apparatus at the width size of the flat-type fluidized layer making an angle theta between the nozzle and the perpendicular axis along the direction of the thickness of the fluidized layer to satisfy the formula (lw is thickness of the fluidized layer; ls is the depth of the fluidized layer impregnated with the sprayed material). UO3 and/or PuO2 are introduced into the apparatus through the seed hopper 7, and a flat-type fluidized layer 3 is formed by the fluidizing gas blasted through the wind box 1 and the straightening vanes 2. A solution of uranyl nitrate and/or plutonium nitrate 12 is sprayed together with spraying gas 11 into the fluidized layer 3 through the nozzle 4 to effect the thermal decomposition and denitration of the nitrate, and the produced UO3 and PuO2 particles are exhausted through the overflow pipe 6. The generated gas is sent to the off-gas treating system 13 via the solid-gas separation filter 5.

Description

【発明の詳細な説明】 ・本発明はj質霧ノズルを有する平板型流動層を用いて
硝酸ウラニルまたは/および硝酸プルトニウムを熱分解
脱硝し、該流動層の幅の長さに関係なく連続的に安定し
て三酸化ウランまたは/および二酸化プルトニウム’に
’J&造する硝酸ウラニルまたは/および硝酸プルトニ
ウムの脱硝装置に関する。
Detailed description of the invention - The present invention denitrates uranyl nitrate and/or plutonium nitrate by thermal denitrification using a flat plate fluidized bed having a J-type mist nozzle, and continuously denitrates uranyl nitrate and/or plutonium nitrate regardless of the width of the fluidized bed. The present invention relates to a denitrification device for uranyl nitrate and/or plutonium nitrate, which is stably converted into uranium trioxide or/and plutonium dioxide.

本発明は硝酸ウラニルまたは/および硝酸プルトニウム
の脱硝に関するものであるが、以下、記述の簡略化のた
めまず硝酸ウラニルのみを対象とした場合について述べ
る。
The present invention relates to the denitrification of uranyl nitrate and/or plutonium nitrate, but in order to simplify the description, the case where only uranyl nitrate is targeted will be described below.

多くの天然力フッ化ウラン転換工場では溶媒抽出法など
で精製硝酸ウラニル溶液が得られ、これを濃縮後、熱分
解により脱硝して三酸化ウランを得る。また、原子力発
電所の使用済燃料再処理工場では核分裂生成物およびプ
ルトニウムと分離されたウランが硝酸ウラニル溶液とし
て得られ、これを熱分解により脱硝して三酸化ウランを
得る。
At many natural uranium fluoride conversion plants, purified uranyl nitrate solutions are obtained using solvent extraction methods, which are concentrated and then denitrified by thermal decomposition to obtain uranium trioxide. Furthermore, in spent fuel reprocessing plants at nuclear power plants, uranium is separated from fission products and plutonium and is obtained as a uranyl nitrate solution, which is denitrified by thermal decomposition to obtain uranium trioxide.

硝酸ウラニルの熱分解法としてはポット法、攪拌床法、
マイクロ波加熱法、流動層法等があるが、流動層法が最
も効率のよい方法として広く実用化されつつある。
Thermal decomposition methods for uranyl nitrate include the pot method, stirred bed method,
There are microwave heating methods, fluidized bed methods, etc., but the fluidized bed method is being put into practical use as the most efficient method.

硝酸ウラニルの脱硝に使用される流動層は主として円筒
型の流動層であるが、この円筒型の流動層は臨界管理上
の観点から、その最大許容直径に限度があるので、単位
基数当りの処理能力は制限されることになる。
The fluidized bed used for denitrification of uranyl nitrate is mainly a cylindrical fluidized bed, but from the viewpoint of criticality control, there is a limit to the maximum allowable diameter of the cylindrical fluidized bed. Capabilities will be limited.

そのために、流動層の厚さは同じく臨界管理上の制限を
受けるが、流動層の幅方向の長さの拡大が可能である平
板型流動層が単位基数当りの処理能力を増大させること
ができるという面から、硝酸ウラニルを脱硝するための
流動層として注目されつつある。
For this reason, the thickness of the fluidized bed is also subject to criticality control restrictions, but a flat plate fluidized bed that allows the length of the fluidized bed in the width direction to be expanded can increase the throughput per unit base. From this point of view, it is attracting attention as a fluidized bed for denitrifying uranyl nitrate.

一般に平板型流動層反応装置に噴霧ノズルを取付ける場
合、噴霧ノズルは平板型流動層の幅方向の断面図、すな
わち、平板型流動l−反応装置の横断面を模式的に示し
た第1図において、矢印XまたはY′あるいは両者の方
向に対して水平になるように取り付けるのが普通である
Generally, when a spray nozzle is attached to a flat plate type fluidized bed reactor, the spray nozzle is installed in a cross-sectional view in the width direction of the flat plate type fluidized bed, that is, in FIG. , is normally mounted horizontally to the direction of arrows X, Y', or both.

また、平板型流動層を使用して脱硝反応を行なわせる場
合でも、特に使用済核燃料の再処理脱硝のように微濃縮
ウラン等を取り扱う場合には、臨界管理上の観点から流
動層の厚さが制限される。
In addition, even if a flat plate fluidized bed is used to perform the denitrification reaction, the thickness of the fluidized bed must be determined from the viewpoint of criticality control, especially when handling slightly enriched uranium, etc., such as in the reprocessing and denitration of spent nuclear fuel. is limited.

その場合の最大許容厚さは原料物質のウラン濃縮度で決
まり、たとえば濃縮度4%のウランの場合最大許容厚さ
は10Crn程度となり、濃縮度に反比例する。一方、
通常採用される反応剤(原料物質)の噴霧条件では噴霧
ノズルから噴霧される噴霧体(反応剤および噴霧用気体
)の(Af、動層内への到達深度は数cm〜10数mの
範囲であるので、噴霧ノズルを平板型流動層の厚さ方向
、すなわち第1図の矢印YまたはY′の方向に水平に取
付けた場合にはこの噴霧ノズルから噴霧された噴霧体は
装置の反対側の壁面に到達しあるいは反対側の壁面より
はねかえって、装置の反対側の壁面上あるいは噴霧ノズ
ル(その周辺壁面を含む)上に付着し、そこでケーキン
グをひき起こし、操業中止をもたらす原因となる。
In that case, the maximum allowable thickness is determined by the uranium enrichment of the raw material; for example, in the case of 4% enriched uranium, the maximum allowable thickness is about 10 Crn, and is inversely proportional to the enrichment. on the other hand,
Under the normally adopted spraying conditions for the reactant (raw material), the depth of the spray (Af) that the spray body (reactant and spray gas) sprayed from the spray nozzle reaches into the moving bed is in the range of several cm to several tens of meters. Therefore, if the spray nozzle is installed horizontally in the thickness direction of the flat plate fluidized bed, that is, in the direction of arrow Y or Y' in Fig. 1, the spray body sprayed from this spray nozzle will be directed to the opposite side of the device. Reaching the wall or bouncing off the opposite wall and depositing on the opposite wall of the equipment or on the spray nozzle (including its surrounding walls), causing caking and resulting in the suspension of operations. .

また、流動層において、整流器よりの流動化気体は最初
は細かい気泡となって流動層内全上昇するが、上昇途上
において別の気泡と合体し、段々と成長し、比較的大き
い気泡となって、流動層内全上昇する。さらに、また流
動層内における流動化気体の線速度が大きすぎたり、流
動層高さが高すぎたりした場合にはスラツキングを起こ
すことはよく知られた現象である。このように、流動層
内において気泡が成長したり、またはスラツキングが起
きたりした場合、流動層の一部に無粉体空間(空原部〕
が生ずる。従って、平板型流動層反応装置において、幅
方向の壁面に流動層の厚さ方向に垂直に噴霧ノズルを設
けた場合、上記空隙部が発生し、噴1!j体の噴霧軌跡
全通過する時には噴霧体の反対側の壁面への到達は特に
著しくなる。
In addition, in a fluidized bed, the fluidized gas from the rectifier initially becomes fine bubbles and rises all the way up in the fluidized bed, but on the way up, it coalesces with other bubbles and gradually grows, becoming relatively large bubbles. , the total rise in the fluidized bed. Furthermore, it is a well-known phenomenon that slackening occurs if the linear velocity of the fluidizing gas in the fluidized bed is too high or the height of the fluidized bed is too high. In this way, if air bubbles grow or slugging occurs in the fluidized bed, a powder-free space (empty area) will be created in a part of the fluidized bed.
occurs. Therefore, in a flat plate type fluidized bed reactor, when a spray nozzle is provided on the wall surface in the width direction perpendicular to the thickness direction of the fluidized bed, the above-mentioned voids are generated and the spray 1! When the spray passes through the entire trajectory of the spray body, the reach of the wall surface on the opposite side of the spray body becomes particularly significant.

しかるに、硝酸ウラニルを熱分解脱硝する平板型流動層
反応装置では、通常第1図に示す矢印XまたはY′のご
とく、装置aの幅方向に向けて噴霧ノズルを取り付ける
が、流動層の幅の長さが大きくなった場合にはこの方法
では流動層の幅方向の粒子の混合性が悪くなり、安定し
た製品三酸化ウラン全得ることができなくなるという問
題点が生ずる。
However, in a flat plate fluidized bed reactor for thermally denitrifying uranyl nitrate, the spray nozzle is usually installed in the width direction of the device a, as shown by the arrows X or Y' shown in FIG. When the length becomes large, this method poses a problem in that the mixing properties of the particles in the width direction of the fluidized bed deteriorate, making it impossible to obtain a stable product of uranium trioxide.

本発明は上記の従来の平板型流動層の幅方向に噴霧ノズ
ルを取り付けた平板型流動層反応装置gの問題点を解決
し、平板型流動層の幅方向の長さに関係なく、硝酸ウラ
ニルまたは/および硝酸プルトニウムの熱分解脱硝を連
続的に安定して行なうことのできる硝酸ウラニルまたは
/および硝酸プルトニウムの脱硝装置を提供するもので
、その要旨とするところは、噴霧ノズルを有する平板型
流動層を用いて硝酸ウラニルまたは/および硝酸プルト
ニウム溶液を熱分′wlにより脱硝し、連続的に三酸化
ウランまたは/および二酸化プルトニウム全製造する硝
酸ウラニルまたは/および硝酸プルトニウムの脱硝装置
において、該噴霧ノズル全上記平板型流動層の幅方向の
装置壁面VC該流動層の厚さ方向に対して次の条件を満
たす角度θで取りθ≧cos ’ (形w /−e t
r )ここに、影 :#、動層の厚さ 沼  :噴霧体の到達深度 付けたこと全特徴とする硝酸ウラニルまたは/および硝
酸プルトニウムの脱硝装置、にある。
The present invention solves the problems of the above-mentioned conventional flat plate fluidized bed reactor g in which the spray nozzle is attached in the width direction of the flat plate fluidized bed, and the uranium nitrate The present invention provides a denitrification device for uranyl nitrate and/or plutonium nitrate that can continuously and stably perform pyrolytic denitrification of plutonium nitrate. In a uranyl nitrate or/and plutonium nitrate denitrification device that denitrates a uranyl nitrate or/and plutonium nitrate solution using a layer using a thermal component to continuously produce uranium trioxide or/and plutonium dioxide, the spray nozzle The device wall surface VC in the width direction of the flat plate type fluidized bed is set at an angle θ that satisfies the following condition with respect to the thickness direction of the fluidized bed.
r) Here, there is a uranyl nitrate or/and plutonium nitrate denitrification device, which is characterized by: shadow: #, thickness of the moving layer: depth reached by the spray.

本発明において、平板型流動層の幅方向の装置壁面に取
り付けられた噴霧ノズルの該装置壁面における該流動層
の厚さ方向の垂直!I!11]K対する角度θは次の条
件 θ≧cOS−’ Ce w /136 >ここに、−e
3w:流動層の厚さ βB:噴霧体の到達深度 を満たすものであり、この取付角度θは該噴霧ノズルか
ら噴霧された硝酸ウラニルと噴霧用気体とよりなる噴霧
体が装置の反対側壁面に到達しないようにするための角
度範囲全示すものである。
In the present invention, the spray nozzle attached to the device wall in the width direction of the flat fluidized bed is perpendicular to the thickness direction of the fluidized bed on the device wall. I! 11] The angle θ with respect to K satisfies the following condition θ≧cOS−' Ce w /136 >Here, −e
3w: thickness of the fluidized bed βB: satisfies the depth reached by the spray body, and this mounting angle θ is such that the spray body consisting of uranyl nitrate and spray gas sprayed from the spray nozzle reaches the opposite wall surface of the device. It shows the full range of angles to avoid reaching.

上記平板型流動層の厚さは臨界管理上の岐点から決定さ
れ、たとえば軽水炉用燃料に使用される濃縮度4%のウ
ランの場合、安全率等を考慮すると、実際上8cm程度
になる。(流動層の厚さは計算できるが、濃縮度と厚さ
の関係について管理曲線ができており、通常はこの曲線
から前記の厚さを求めるc、) また、上記噴霧体の到達深度は、通常採用される反応剤
の噴霧条件、たとえば現在市販されている噴霧ノズルを
使用し、最適操作条件を加味した場合では通常1017
71程度になる。
The thickness of the flat plate fluidized bed is determined based on criticality control considerations, and for example, in the case of 4% enriched uranium used as fuel for light water reactors, it is actually about 8 cm when safety factors are taken into account. (The thickness of the fluidized bed can be calculated, but there is a control curve for the relationship between concentration and thickness, and the thickness is usually determined from this curve.) Also, the depth reached by the spray is: Generally, 1017 mL of spraying conditions are used for the reactant, for example, when a currently commercially available spray nozzle is used and optimum operating conditions are taken into consideration.
It will be around 71.

従って、普通の操業条件では!、中8cm、−13B中
10cmとなるから、 θ≧cos−’(8/10)= 36.8゜もちろん、
流動層の厚さを薄くする場合には当然取付角度θの最低
値は大きくなる。
Therefore, under normal operating conditions! , 8 cm in -13B, 10 cm in -13B, so θ≧cos-' (8/10) = 36.8° Of course,
Naturally, when the thickness of the fluidized bed is made thinner, the minimum value of the mounting angle θ becomes larger.

一方、取付角度θの上限値については流動層における反
応機構上特に制約する必要はないが、保守性等経験的観
点から70〜75°位が適当である。
On the other hand, the upper limit of the mounting angle θ does not need to be particularly limited in view of the reaction mechanism in the fluidized bed, but from an empirical viewpoint such as maintainability, a value of about 70 to 75° is appropriate.

次に、本発明を図面によって説明する。Next, the present invention will be explained with reference to the drawings.

第2図は本発明の一実施例の噴霧ノズルを含む流動層の
厚さ方向の縦断面図、第3図は第2図の実施例の一部断
面を含む正面図である。
FIG. 2 is a longitudinal sectional view in the thickness direction of a fluidized bed including a spray nozzle according to an embodiment of the present invention, and FIG. 3 is a front view including a partial cross section of the embodiment of FIG.

本実施例は硝酸ウラニルを脱硝対象とする場合である。In this example, uranyl nitrate is the object of denitrification.

図において、噴霧ノズル4は平板型流動層の幅方向の装
置壁面に流動層3の厚さ方向の垂直軸に対して角度θを
なして上向き斜めに取り付けられている。この取付角度
θは上述したように、噴霧ノズル4より噴霧される硝酸
ウラニルと噴霧用気体とよりなる噴霧体が装置の反対側
壁面に到達しないようにした角度である。
In the figure, the spray nozzle 4 is attached to the wall surface of the apparatus in the width direction of the flat fluidized bed at an angle θ with respect to the vertical axis in the thickness direction of the fluidized bed 3, diagonally upward. As described above, this mounting angle θ is an angle that prevents the spray body consisting of uranyl nitrate and spray gas sprayed from the spray nozzle 4 from reaching the opposite wall surface of the device.

流動化気体10はウィンドボックス1から整流器2を通
って流動層3内に吹き込まれ、一方硝酸つラニル、容液
12は噴霧用気体11とともに噴霧ノズル4から流動層
3内に噴霧される。流動層3は三酸化ウラン粒子、流動
化気体、噴霧用気体、反応生成気体で構成されている。
Fluidizing gas 10 is blown from wind box 1 through rectifier 2 into fluidized bed 3, while triranyl nitrate liquid 12 is sprayed together with atomizing gas 11 from spray nozzle 4 into fluidized bed 3. The fluidized bed 3 is composed of uranium trioxide particles, fluidizing gas, atomizing gas, and reaction product gas.

運転開始時には流動層形成のための三酸化ウラン粒子は
三酸化ウランシードホッパー7から供給される。生成さ
れた三酸化ウラン粒子9は溢流・u6から連続的に排出
されて製品受槽(図示されず)に送られる。ガスは固気
分離フイルタ−5で同伴した微細な三酸化ウラン粒子全
分離してオフガス処理系13に送られる。8は抜出管で
ある。
At the start of operation, uranium trioxide particles for forming a fluidized bed are supplied from the uranium trioxide seed hopper 7. The generated uranium trioxide particles 9 are continuously discharged from the overflow u6 and sent to a product receiving tank (not shown). The gas is sent to an off-gas treatment system 13 after all fine uranium trioxide particles entrained therein are separated by a solid-gas separation filter 5 . 8 is an extraction tube.

本発明装置の噴霧ノズルとしては、特別のノズルを必要
とすることなく、市販のノズルを使用することができる
。市販のノズルを平板型流動層反応装置の幅方向の壁面
に流動層の厚さ方向に取り付ける場合には、噴霧体は装
置の反対側の壁面に容易に到達し、直ちにケーキングを
発生させ、操業中止をひき起こすことは明らかであるが
、第2図に示すように、このような市販の噴霧ノズル4
を装置の幅方向の壁面に流動層の厚さ方向の垂IK軸に
対しである角度、たとえば、装置厚さ8mの内金には約
50°以上の角度で取り付けることによって、噴霧ノズ
ル4から噴霧された噴霧体の装置の反対側の壁面方向へ
の到達距ffl’に約2倍以上に伸長させることができ
るので、該噴霧体が装置の反対側壁面に到達するのを防
止し、それによって硝酸ウラニルの脱硝をケーキングを
発生させることなく、連続的に安定して行なうことを可
能とするものである。
As the spray nozzle of the apparatus of the present invention, a commercially available nozzle can be used without requiring a special nozzle. When a commercially available nozzle is attached to the wall in the width direction of a flat plate type fluidized bed reactor in the thickness direction of the fluidized bed, the spray easily reaches the wall on the opposite side of the device, immediately causing caking and disrupting operation. Although it is obvious that it will cause discontinuation, such a commercially available spray nozzle 4, as shown in FIG.
from the spray nozzle 4 by attaching it to the wall surface in the width direction of the device at an angle to the vertical IK axis in the thickness direction of the fluidized bed, for example, at an angle of about 50° or more to the inner metal of the device with a thickness of 8 m. Since the distance ffl' of the sprayed atomized body toward the wall on the opposite side of the device can be extended by about twice or more, the atomized body can be prevented from reaching the wall on the opposite side of the device, and This makes it possible to denitrate uranyl nitrate continuously and stably without causing caking.

以上において、噴霧ノズルを平板型流動層の幅方向の装
置壁面に該流動層の厚さ方向の垂直軸に対し上向き斜め
に取り付けた場合について述べたが、下向き斜めに取り
付けた場合でも同様な効果が得られる。さらに、第4図
のように、矢印2゜Z’(望ましくは両サイドにおいて
)の方向で水平に噴霧ノズルを取り付けても本発明の目
的を達することができ、またこの場合には平板型流動層
の短所の1つである幅方向の流@層内の粒子の混合性の
悪さをある程度カバーできる。
In the above, we have described the case where the spray nozzle is installed on the device wall in the width direction of a flat plate type fluidized bed, facing upward and obliquely with respect to the vertical axis in the thickness direction of the fluidized bed, but the same effect can be obtained even when the spray nozzle is installed downward and diagonally. is obtained. Furthermore, as shown in FIG. 4, the object of the present invention can also be achieved by installing the spray nozzle horizontally in the direction of arrow 2°Z' (preferably on both sides); One of the shortcomings of the layer, flow in the width direction @ poor mixing of particles within the layer, can be covered to some extent.

以上は脱硝の対象として硝酸りラニル単独の場合である
が、本発明装置は硝酸プルトニウム単独または硝酸ウラ
ニルと硝酸プルトニウムの混合物の脱硝の場合にも適用
できることはもちろんである。
Although the above is a case in which ranyl nitrate alone is denitrated, it goes without saying that the apparatus of the present invention can also be applied to denitrification of plutonium nitrate alone or a mixture of uranyl nitrate and plutonium nitrate.

次に、本発明を実施例によってさらに具体的に説明する
が、本発明はその要旨を越えない限り以下の実施例によ
って限定されるものではない。
Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例 本実施例は第3図および第4図に示す装置を用い、硝酸
ウラニルを脱硝対象とする場合である。
Example In this example, the apparatus shown in FIGS. 3 and 4 is used to denitrify uranyl nitrate.

噴霧ノズル4は流動層30幅方向の装置壁面に流動層3
の厚さ方向の垂直軸に対して50°の上向きがFめに取
り付けられている。
The spray nozzle 4 sprays the fluidized bed 3 on the device wall in the width direction of the fluidized bed 30.
The upward direction of 50° with respect to the vertical axis in the thickness direction is attached to the Fth position.

脱硝条件は次の通りである。噴霧化条件(A/L)は噴
霧用気体11と硝酸ウラニル溶液12の体積比を示す。
The denitrification conditions are as follows. The atomization condition (A/L) indicates the volume ratio of the atomization gas 11 and the uranyl nitrate solution 12.

反応温贋  285°C 硝酸ウラニル溶液濃度   1200/’U/l゛  
処  理  速  度    20kIPU/hr噴霧
化条件(A/L)  400 流動層高さ    1.5m 流動化気体線速度      30cm/secこの条
件で12時間運転したが、特に操業上の困難はなかった
。運転終了後、反応装置内部を観察したところ、噴霧ノ
ズル4に相当する装置の反対側の壁面および噴霧ノズル
4先端にわずかにケーキングが認められただけであり、
運転中の噴霧ノズルが閉塞する等のトラブルは発生しな
かつta比較例 本比較例は実施例と同じ装置(ただし、この場合の噴霧
ノズルの吹付位置は実施例と同じであるが、取付方向は
平板型流動層の厚さ方向、すなわち取付壁面に対して垂
直方向である)を用いて同条件で硝酸ウラニルの脱硝を
行なった場合である。
Reaction temperature: 285°C Uranyl nitrate solution concentration: 1200/'U/l゛
Processing speed: 20 kIPU/hr Atomization conditions (A/L): 400 Fluidized bed height: 1.5 m Linear velocity of fluidizing gas: 30 cm/sec It was operated under these conditions for 12 hours, but there were no particular operational difficulties. After the operation was completed, when the inside of the reactor was observed, only slight caking was observed on the opposite wall of the device corresponding to the spray nozzle 4 and on the tip of the spray nozzle 4.
Comparative Example This comparative example is the same device as the example (however, the spraying position of the spray nozzle in this case is the same as in the example, but the installation direction is the same as in the example). This is a case where uranyl nitrate was denitrated under the same conditions using the thickness direction of a flat plate type fluidized bed, that is, the direction perpendicular to the mounting wall surface.

その結果、操業開始後、約4時間で噴霧ノズルが閉塞を
し始め、ニードル操作により幾度も復旧させたが、約7
時間後に流動が低下したので運転を中止し1反応装置内
部を観察したところ、噴霧ノズルを中心に反対側の壁面
との間に巨大なケーキングが生じていた。
As a result, the spray nozzle began to become clogged approximately 4 hours after the start of operation, and although the spray nozzle was restored several times by needle operation,
After a period of time, the flow decreased, so the operation was stopped and the inside of the reactor 1 was observed, and a huge caking had occurred between the spray nozzle and the wall on the opposite side.

【図面の簡単な説明】[Brief explanation of drawings]

@1図は平板型流動層反応装置aの壁面にそれぞれ垂1
u方向[取り付けた噴霧ノズルを含む横断面図、第2図
は本発明の一実施例の噴霧ノズルを含む縦断面図、第3
図は第2図の実施例の一部断面を含む正面図、第4図は
平板型流動層反応装置の1福方向の壁面に水平でかつ流
動層の厚さ方向VC対してθの角度をなして渣トめ方向
に1収り付けた噴霧ノズルを含む横断面図である。 図において、 411111+11噴構、オ、、     10e・・
・流動化気体5・・・・固気分離フィルター 11−−
−−噴霧用気体6 am60溢  流  管    1
2Φ・・・イ1肖酸つラニル暦液 (131 13・・・・オフガス処理系 特許出願人 三菱金属株式会社 代 理 人  白  川  義  直 0滲 $40 第2回 □ □二二■ 151− d \0
@1 Figure shows 1 perpendicular to the wall of flat plate fluidized bed reactor a.
u direction [FIG. 2 is a cross-sectional view including the attached spray nozzle, FIG.
The figure is a front view including a partial cross section of the embodiment shown in Fig. 2, and Fig. 4 is a plane parallel to the wall surface in the 1st direction of the flat plate type fluidized bed reactor and at an angle of θ with respect to the thickness direction VC of the fluidized bed. FIG. 2 is a cross-sectional view including one spray nozzle arranged in the sludge direction. In the figure, 411111+11 fume, O,, 10e...
・Fluidization gas 5...Solid gas separation filter 11--
--Atomizing gas 6 am60 overflow pipe 1
2Φ...I1 Shoranil liquid (131 13...Off gas treatment system patent applicant Mitsubishi Metals Corporation Representative Yoshi Shirakawa Nao0滲$40 2nd □ □22■ 151- d\0

Claims (1)

【特許請求の範囲】 ill  噴霧ノズルを有する平板型流動層を用いて硝
酸ウラニルまたは/および硝酸プルトニウムd液を熱分
解により脱硝し、連続的に三酸化ウランまたは/および
二酸化プルトニウムヲ製造する硝酸ウラニルまたば/お
よび硝酸プルトニウムの脱硝装置において、該噴霧ノズ
ルを上記平板型流動層の幅方向の装置g壁面に該流動層
の厚さ方向VC対して次の条件を満たす角度θで取り付
けたことを特θ≧嘱−’(Jl?W/、8B) ここに、IW:流動層の厚さ 、、e8 :噴霧体の到達深度 徴とする硝酸ウラニルまたは/および硝酸プルトニウム
の脱硝装置。
[Scope of Claims] ill Uranyl nitrate in which uranyl nitrate or/and plutonium nitrate d solution is denitrified by thermal decomposition using a flat plate fluidized bed having a spray nozzle to continuously produce uranium trioxide or/and plutonium dioxide. Furthermore, in a plutonium nitrate denitrification device, the spray nozzle is attached to the wall surface of the device g in the width direction of the flat plate type fluidized bed at an angle θ that satisfies the following condition with respect to the thickness direction VC of the fluidized bed. Characteristic θ≧嘱−′ (Jl?W/, 8B) where IW: thickness of the fluidized bed, e8: denitrification device for uranyl nitrate or/and plutonium nitrate, where the depth of reach of the spray body is a characteristic.
JP14595981A 1981-09-16 1981-09-16 Denitration equipment for uranyl nitrate and/or plutonium nitrate Expired JPS6050730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14595981A JPS6050730B2 (en) 1981-09-16 1981-09-16 Denitration equipment for uranyl nitrate and/or plutonium nitrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14595981A JPS6050730B2 (en) 1981-09-16 1981-09-16 Denitration equipment for uranyl nitrate and/or plutonium nitrate

Publications (2)

Publication Number Publication Date
JPS5849626A true JPS5849626A (en) 1983-03-23
JPS6050730B2 JPS6050730B2 (en) 1985-11-09

Family

ID=15396977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14595981A Expired JPS6050730B2 (en) 1981-09-16 1981-09-16 Denitration equipment for uranyl nitrate and/or plutonium nitrate

Country Status (1)

Country Link
JP (1) JPS6050730B2 (en)

Also Published As

Publication number Publication date
JPS6050730B2 (en) 1985-11-09

Similar Documents

Publication Publication Date Title
US4017253A (en) Fluidized-bed calciner with combustion nozzle and shroud
US4590047A (en) Method for desulfurizing combustion gases
WO1982000779A1 (en) Fluidized bed-type heating reactor
CN103611487B (en) Impinging stream reactor
US3101258A (en) Spray calcination reactor
JPS61287421A (en) Method and apparatus for forming separable solid compound from flue gas by reacting of gasrous sulfur compound of fluegas
US4152287A (en) Method for calcining radioactive wastes
JPS6116501B2 (en)
EP0047624B1 (en) Reactor and method for preparing uranium trioxide and/or plutonium oxide
JPH0721556B2 (en) Method for melting and solidifying glass of radioactive waste liquid with suppressed formation of gaseous ruthenium
JPS5849626A (en) Denitration apparatus of uranyl nitrate and/or plutonium nitrate
PL143671B1 (en) Process for generating gaseous mixture of ammonia and isocyanic acid and apparatus therefor
US4285830A (en) Method and apparatus for reconditioning waste solutions of the nuclear industry which contain ammonium nitrate
US4755138A (en) Fluidized bed calciner apparatus
JPS6115731B2 (en)
JPS5939375B2 (en) Method for producing uranium trioxide from uranyl nitrate
JPS6031766B2 (en) Denitration equipment for uranyl nitrate and/or plutonium nitrate
JPS6051560A (en) Spray nozzle
GB1083907A (en) Process for the manufacture of phosphorous acid
JPS623095B2 (en)
JPH06218270A (en) Vertical type fluidized bed catalyst reactor
JPS5670228A (en) Powder/particles circulation device
JPS6035287B2 (en) Denitration equipment for uranyl nitrate and/or plutonium nitrate
JPS6144811B2 (en)
JPS5849627A (en) Denitration apparatus of uranyl nitrate and/or plutonium nitrate