JPS5849603A - Purification of coke oven gas - Google Patents

Purification of coke oven gas

Info

Publication number
JPS5849603A
JPS5849603A JP14778181A JP14778181A JPS5849603A JP S5849603 A JPS5849603 A JP S5849603A JP 14778181 A JP14778181 A JP 14778181A JP 14778181 A JP14778181 A JP 14778181A JP S5849603 A JPS5849603 A JP S5849603A
Authority
JP
Japan
Prior art keywords
gas
coke oven
oven gas
pressure
hydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14778181A
Other languages
Japanese (ja)
Other versions
JPS619243B2 (en
Inventor
Masami Takeuchi
正己 武内
Ritsuo Tanihata
谷端 律男
Yuzo Suzuki
雄三 鈴木
Hiromasa Ariga
有賀 博政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd, Mitsubishi Kakoki Kaisha Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP14778181A priority Critical patent/JPS5849603A/en
Publication of JPS5849603A publication Critical patent/JPS5849603A/en
Publication of JPS619243B2 publication Critical patent/JPS619243B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)

Abstract

PURPOSE:In the production of hydrogen gas through the molecular sieve process, the procedure for forming gummy substances and removing them, that for extracting aromatic substances and removing them, and that for hydrogenating molecular oxygen and olefins and removing them are sequentially connected to obtain high-purity hydrogen gas. CONSTITUTION:Coke-oven gas F is introduced into the pressurizing process 1 where it is pressurized over 8 atmospheric pressure and gummy substances are formed, as the gas temperature rises. The gummy substances are removed by washing in the degumming process 2. The gas is introduced into the aromatics extraction process where trace amounts of aromatics such as BTX fractions and tars in the gas are removed by use of an aromatics extracting oil. The resultant gas is introduced into the hydrogenation process 4 where molecular oxygen and olefins are hydrogenated in the presence of a catalyst and removed. The coke oven gas, resultantly free from impurities, is introduced into the molecular sieve process 5.

Description

【発明の詳細な説明】 本発明はコークス炉ガスからの高純度の水素ガスの製造
法に関し、さらに詳しくはコークス炉ガスから高純度の
水素ガスをモレキュラーシーブ法で製造するに際しての
前処理としての精製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high-purity hydrogen gas from coke oven gas, and more specifically to a method for producing high-purity hydrogen gas from coke oven gas by a molecular sieve method. Regarding purification methods.

高純度の水素ガスは油脂の水添、過酸化水素の製造、半
導体の製造、及び有機・無機化合物の水添及び還元用等
として化学工業の多くの分野で利用されている。一方、
石炭乾留にょシコークス炉ガスは多量に発生し、かつ該
ガス中には水素ガスが60係近く含まれているのでもし
この水素ガス分を経済的な方法で回収できれば化学工業
上、非常に有益といえる。
High-purity hydrogen gas is used in many fields of the chemical industry, such as hydrogenation of oils and fats, production of hydrogen peroxide, production of semiconductors, and hydrogenation and reduction of organic and inorganic compounds. on the other hand,
Coal carbonization coke oven gas is generated in large quantities and contains nearly 60% hydrogen gas, so if this hydrogen gas could be recovered in an economical way, it would be extremely beneficial for the chemical industry. It can be said.

従来コークス炉ガスから水素ガスを製造する方法として
は、アンモニア及びメタノール合成用の水素カス用とし
て深冷分離法が用いられているがこの方法は比較的大容
量(数万Nm5A)の水素ガスの製造法としては適して
いても設備費が嵩むこと、ガスの圧縮機用の電力費が高
くなること等のため、前記の高純度水素ガスの利用分野
における中程度の容量(数千N rn ”/H)には適
してはいない。
Conventionally, as a method for producing hydrogen gas from coke oven gas, a cryogenic separation method has been used as a hydrogen residue for ammonia and methanol synthesis, but this method requires relatively large volumes (tens of thousands of Nm5A) of hydrogen gas. Although it is suitable as a production method, the equipment cost is high, the electricity cost for the gas compressor is high, etc., so the medium capacity (several thousand N rn ” /H) is not suitable.

また高純度の水素ガスの回収法としてはパラジウム拡散
法があるが、該方法はパラジウムのコストが高いこと、
製品水素ガスの圧力降下が大きいこと等のため中容量(
数百NmV′H)には向いていてもやはシ前記用途の如
き中容量程度には不向である。現在中容量程度の水素ガ
ス製造用として用いられている方法に減圧再生式のモレ
キュラーシーブ法がある。この方法は処理する水素カス
を含む混合ガス中の除去すべき各成分に適した吸着剤の
混合物によシ水素以外の成分を加圧下で選択吸着除去し
高純度の水素ガスを得る方法で吸着剤の再生は単に減圧
下で行うため必要ユーティリティが少く省エネ的方法で
あるため最近多く採用されている方法である。
In addition, there is a palladium diffusion method as a recovery method for high-purity hydrogen gas, but this method has the high cost of palladium;
Medium capacity (
Even though it is suitable for several hundred NmV'H), it is no longer suitable for medium capacity applications such as those mentioned above. One of the methods currently used for producing medium-capacity hydrogen gas is the reduced pressure regeneration type molecular sieve method. In this method, components other than hydrogen are selectively adsorbed and removed under pressure using a mixture of adsorbents suitable for each component to be removed in a mixed gas containing hydrogen residue to be treated, thereby obtaining high-purity hydrogen gas. Since the regeneration of the agent is simply carried out under reduced pressure, it requires few utilities and is an energy-saving method, so it is a method that has been widely adopted recently.

しかしながらこのモレキュラーシーブ法で用いられてい
る吸着剤は有機物及び無機物の各種の吸着剤の混合体で
あるため有機高分子化合物、極性の高い化合物等により
被毒され易く場合によっては再生困難になる。従ってモ
レキュラーシーブ法で処理するガス中にはこれらの有害
成分が含有されてないことが望ましい。
However, since the adsorbent used in this molecular sieve method is a mixture of various organic and inorganic adsorbents, it is easily poisoned by organic polymer compounds, highly polar compounds, etc., and in some cases becomes difficult to regenerate. Therefore, it is desirable that the gas treated by the molecular sieve method does not contain these harmful components.

しかしながらコークス炉ガス中には当然水素以外の他の
多くの成分が含有されている。すなわち、一般に製鉄所
、コークス工場、都市ガス工場等で得られるコークス炉
ガスはコークス炉を出た後冷却、タール除去、アンモニ
ア回収、軽油回収、ナフタリン除去、硫化水素除去等の
多くの工程を経て精製されているので各種の不純物は除
去されているが、それでもBTX分(ベンゼン、トルエ
ン、キシレンで代表される成分)並びにタール分等の芳
香族物質、ガム質物質並びにダスト等の微粒子物質及び
オレフィン炭化水素類が相邑量含有されている(本発明
でいうコークス炉ガスとは以上のガスを意味する)。こ
れらの成分はいずれもモレキュラーシーブ法の吸着剤の
吸着能力を劣イヒさせる有害成分であり、前もって許容
濃度以下迄除去する必要がある。
However, coke oven gas naturally contains many components other than hydrogen. In other words, after leaving the coke oven, coke oven gas obtained from steel plants, coke plants, city gas plants, etc., undergoes many processes such as cooling, tar removal, ammonia recovery, light oil recovery, naphthalene removal, and hydrogen sulfide removal. Since it is purified, various impurities are removed, but it still contains BTX components (components represented by benzene, toluene, and xylene), aromatic substances such as tar, gummy substances, fine particulate substances such as dust, and olefins. It contains a considerable amount of hydrocarbons (coke oven gas in the present invention means the above gases). All of these components are harmful components that impair the adsorption ability of the adsorbent used in the molecular sieve method, and must be removed in advance to below a permissible concentration.

さらに他の重要を問題はコークス炉ガス中には酸素が0
.2〜10%含まれておシ、現在工業化されているモレ
キュラーシーブ法用の吸着剤にょっては酸素分を水素ガ
スから選択吸着除去するのは困難であり、従って製品水
素ガスの所要純度がこの酸素によって達成されない場合
は伺等かの方法でこの酸素分を事前に除去する必要があ
る。
Another important problem is that there is no oxygen in the coke oven gas.
.. However, it is difficult to selectively adsorb and remove oxygen from hydrogen gas using currently industrialized adsorbents for the molecular sieve method, and therefore the required purity of the product hydrogen gas is low. If this cannot be achieved with this oxygen, it is necessary to remove this oxygen in advance using a method such as a method.

本発明は以上の問題を解決するためになされたものであ
り、コークス炉ガスを利用してモレキュラーシーブ法に
よυ高純度の水素ガスを製造するにあたり、必要なコー
クス炉ガス中の有害成分又は不純物の除去に関し最も適
切な方法を提供するものである。
The present invention has been made to solve the above problems, and when producing high-purity hydrogen gas by the molecular sieve method using coke oven gas, it is possible to eliminate harmful components or It provides the most appropriate method for removing impurities.

以下本発明の構成を図面に系統図を示して説明する。The configuration of the present invention will be explained below by showing a system diagram in the drawings.

図において、(1)は昇圧工程、(2)は脱ガム工程、
(3)は脱芳香族工程、(4)は水添工程、(5)はモ
レキュラーシーブ工程であって、太い矢印(F)は、処
理されるべきコークス炉ガスの流れを、矢印(P)は製
品水素ガスを、矢印■けパージガスを示す。
In the figure, (1) is a pressure increase process, (2) is a degumming process,
(3) is a dearomatization process, (4) is a hydrogenation process, and (5) is a molecular sieve process, where the thick arrow (F) indicates the flow of coke oven gas to be treated, and the arrow (P) The mark indicates the product hydrogen gas, and the arrow ■ indicates the purge gas.

本発明は、上記各工程が図面に示す順序で配置されるこ
とにもつとも特徴があり、仁のような配置によりコーク
ス炉ガスを前処理することによってもっとも効果的にコ
ークス炉ガス中の水素が分離されるのである。
The present invention is characterized in that the above steps are arranged in the order shown in the drawings, and hydrogen in the coke oven gas is most effectively separated by pre-treating the coke oven gas in a row-like arrangement. It will be done.

すなわち、本発明方法においては、全工程を高圧下に保
持すべく、最初に昇圧程(1)が配置されてのち、該昇
圧工程(1)におけるコークス炉ガスの昇温を有効に利
用すると共に後続装置及び配管中でのガム状物質生成に
よるトラブルを防ぐための脱ガム工程(2)が設けられ
、さらに脱ガム工程(2)後にコークス炉ガス中に末だ
微量存在するBTX分及びタール分等の芳香族物質を除
去すべく脱芳香族工程(3)が配置される。このような
工程を経過して次の水添工程における塔槽内の充填物中
で目詰を起こさせる不純物が取り除かれた後のカス中か
ら触媒の助けを借りて酸素を除去するための水添工程(
4)が次に配置される。最後にモレキュラーシーブ工程
(5)が配置され、水添工程(4)から供給されるガス
から製品水素ガス(P)が分離導出される。
That is, in the method of the present invention, in order to maintain the entire process under high pressure, the pressure increasing step (1) is first arranged, and then the temperature increase of the coke oven gas in the pressure increasing step (1) is effectively utilized. A degumming step (2) is provided to prevent troubles due to the formation of gummy substances in subsequent equipment and piping, and furthermore, after the degumming step (2), trace amounts of BTX and tar present in the coke oven gas are removed. A dearomatization step (3) is arranged to remove aromatic substances such as. Water is used to remove oxygen with the help of a catalyst from the residue after this process has gone through and the impurities that cause clogging in the packing in the column tank in the next hydrogenation process have been removed. Addition process (
4) is placed next. Finally, a molecular sieve step (5) is arranged to separate and extract product hydrogen gas (P) from the gas supplied from the hydrogenation step (4).

而して、上記全工程は高圧下で運転され、最後にモレキ
ュラーシーブ工程(5) fcよって水素を分離するも
のであるから、上記5つの工程中最初の工程である昇圧
工程(1)及び最後の工程であるモレキュラーシープ工
程(5)は、この順序で固定せざるを得ないが、それら
の中間にある脱ガム工程(2)、脱芳香族工程(3)及
び水添工程(4)(以下これらを総称して中間工程とい
う)については、いくつかの配列方法が考えられる。
All of the above steps are operated under high pressure, and the last step is the molecular sieve step (5) to separate hydrogen by FC, so the pressure increase step (1), which is the first step, and the last The molecular sheep process (5), which is the process of Regarding these steps (hereinafter collectively referred to as intermediate steps), several arrangement methods can be considered.

しかしながら、上記中間工程において例えば脱芳香族工
程(3)を最初に配置すれば、その後に配置される脱ガ
ム工程(2)において、昇圧工程(1)におけるコーク
ス炉ガスの昇温効果を有効に活用できず、又、水添工程
(4)を最初に配置しても上記と同様であるばかりか、
末だBTX分や、タール分などの芳香族物質が除去され
々い状態で水添工程(4)にガスが供給されることにな
り、水添用触媒に目詰まりを発生させると共に触媒が被
毒され不都合である。
However, if, for example, the dearomatization step (3) is placed first in the intermediate steps, the effect of increasing the temperature of the coke oven gas in the pressure increasing step (1) can be effectively achieved in the degumming step (2), which is placed afterwards. Moreover, even if the hydrogenation step (4) is placed first, it will not only be the same as above, but also
The gas is supplied to the hydrogenation step (4) in a state where the residual BTX content and aromatic substances such as tar have not been completely removed, which causes clogging of the hydrogenation catalyst and causes the catalyst to become exposed. It is poisonous and inconvenient.

そこで、上記中間工程(C於ては、上述の如く、脱ガム
工程(2)を最初に配置し、次に脱芳香族工程(3)を
配置し、これによってコークス炉ガスをあらかじめ清浄
となし、最後に清浄と々つだガスを対象として処理する
水添工程(4)を配置するのが本発明方法であって、こ
の順序で配置することを特徴とする。
Therefore, in the intermediate process (C), as mentioned above, the degumming process (2) is placed first, followed by the dearomatization process (3), thereby purifying the coke oven gas in advance. The method of the present invention is characterized in that the hydrogenation step (4) in which a clean gas is treated at the end is arranged in this order.

以下、上記のように配置された各工程につきさらに詳細
に説明する。
Hereinafter, each step arranged as above will be explained in more detail.

昇圧工程(1)において原料コークス炉ガス(F’)は
往復動式又は遠心圧縮機により昇圧される。昇圧後の圧
力は8気圧以上が望ましく最適には15気圧前後である
。この圧力は後述のモレキュラーシープ工程に於いて吸
着、脱着等の操作に必要な圧力等を考慮して総合的に定
められる。昇圧の際の断熱圧縮効果によりガスの温度は
80°C前後になるので、この温度を利用して次の脱ガ
ム工程(2)にてガム質を除去する。ガム質の生成原因
は明確ではないがガス中のNoが共存する酸素と反応し
てNO2となりコークス炉ガス中に存在する共役二重結
合を持ったジオレフィン類と反応し重合して生成すると
いわれてい゛る。本工程に於いてはN。
In the pressurization step (1), the raw coke oven gas (F') is pressurized by a reciprocating or centrifugal compressor. The pressure after increasing the pressure is desirably 8 atm or higher, and optimally around 15 atm. This pressure is comprehensively determined in consideration of the pressure required for operations such as adsorption and desorption in the molecular sheep process described below. Due to the adiabatic compression effect during pressure increase, the temperature of the gas becomes around 80°C, so this temperature is used to remove gummy substances in the next degumming step (2). The cause of the formation of gum is not clear, but it is said that No in the gas reacts with the coexisting oxygen and becomes NO2, which reacts with diolefins with conjugated double bonds present in coke oven gas and polymerizes. I'm crying. No in this process.

ガム生成の好適条件を整えてやり、積極的にガムを生成
し除去するものである。NOガム生成の律速はNO2生
成段階(No+V′2o2−+Noz )であるといわ
れておシこの反応に好適な温度(80°C前後)と必要
な滞留時間を与えればよい。又、分子数減少の反応であ
るため高圧はど反応に有利である。生成したガムはガス
中に微粒子となって浮遊しているので水あるいは洗浄油
により洗浄、除去する。NOガム生成の反応器は通常の
円筒の空塔でよい。生成したガム質粒子の除去器として
は粒子の除去に好適なラシヒリング等の充填塔がよい。
By setting suitable conditions for gum production, gum is actively produced and removed. It is said that the rate-determining rate of NO gum production is the NO2 production stage (No+V'2o2-+Noz), and it is sufficient to provide a suitable temperature (about 80 DEG C.) and necessary residence time for the reaction. In addition, since the reaction reduces the number of molecules, it is advantageous for high-pressure gas reactions. Since the generated gum is suspended in the gas as fine particles, it is washed and removed with water or cleaning oil. The reactor for NO gum production may be a conventional cylindrical empty column. As a remover for the generated gummy particles, a packed column such as a Raschig ring is suitable for removing particles.

カム質を除去され、洗浄水と接触して温度の下ったコー
クス炉ガスは次いで脱芳香族工程(3)に入る。脱芳香
族工程に於いては高圧を利用してクレオソート油等の吸
収油によりコークス炉ガス中のBTX分及びタール分等
の芳香族分を効率よく除去する。
The coke oven gas from which the cam matter has been removed and whose temperature has been lowered by contact with the wash water then enters the dearomatization step (3). In the dealomatization step, aromatic components such as BTX and tar in coke oven gas are efficiently removed by absorbing oil such as creosote oil using high pressure.

ガス中の不純物を溶剤を用いて吸収除去する場合、操作
圧力が高い程平衡的に有利であシそれだけ吸収塔を出る
ガス中の不純物の濃度は少なくなるし又、ガス中の被吸
収成分の分圧が高いため物質移動のドライビングフォー
スも大になるので吸収操作も容易になる利点がある。吸
収塔の構造はトレイ塔でもよいが好適には接触面積の多
い充填塔が望ましい。吸収塔を出る吸収油は別に設けた
再生塔においてスチームストリッピングその他によシ再
生し循環使用する。前記の製鉄所等におけるコークス炉
ガスの精製は一般に大気圧で行なわれているのに対して
この工程の圧力は高いので気液平衡の関係から逆比例し
て吸収塔を出る芳香族分の濃度を低くできる利点があシ
実際には数分の−になる。従って操作圧力はこの点も考
慮して決定する必要がある。脱芳香族工程を出たガスは
次いで水添工程(4)に入る。
When impurities in a gas are absorbed and removed using a solvent, the higher the operating pressure is, the more advantageous it is in terms of equilibrium.The higher the operating pressure, the lower the concentration of impurities in the gas leaving the absorption tower. Since the partial pressure is high, the driving force for mass transfer is also large, which has the advantage of facilitating absorption operations. The structure of the absorption tower may be a tray tower, but preferably a packed tower with a large contact area. The absorbed oil leaving the absorption tower is regenerated by steam stripping or other means in a separately provided regeneration tower and recycled for use. The purification of coke oven gas in the aforementioned steel mills is generally carried out at atmospheric pressure, but since the pressure in this process is high, the concentration of aromatic components leaving the absorption tower is inversely proportional to the relationship of vapor-liquid equilibrium. It has the advantage of being able to lower the value, which is actually several minutes lower. Therefore, the operating pressure must be determined taking this point into consideration. The gas leaving the dearomatization step then enters the hydrogenation step (4).

コークス炉ガス中に酸素ガスがあった場合現在工業化さ
れているモレキュラーシープ法の吸M 剤によっては該
酸素分を水素ガスより選択吸着することは困難である。
When oxygen gas is present in the coke oven gas, it is difficult to adsorb the oxygen component selectively over hydrogen gas, depending on the M absorbent of the currently industrialized molecular sheep method.

従ってあらかじめ該酸素分を除去する必要がある。酸素
分の除去法として触媒の存在下で水素添加して水として
除去する方法が知られている。従来酸素用の水添触媒と
しては白金、パラジウム等の貴金属触媒が知られている
かコークス炉ガスの様に硫黄化合物を含む場合はこれら
の触媒は硫黄によシ被毒し活性が低下するので適さない
。本発明においては各種の触媒を検討した結果従来主に
水添脱硫用として用いられているニッケルーモリブデン
系触媒が時に秀れていることを見出しΔ、。硫化水素等
の硫黄化t↑r1を数10P P m含むコークス炉カ
スを本触媒を用いてテストしたが約4ケ月経過後でも脱
酸素の水添反応の活性低下を示さなかったし、又コーク
ス炉ガス中に含有される一酸化炭素及び炭酸ガスが共存
する水素ガスとメタネーション反応(CO+3H2→C
H,+H20゜CO2+4H2→CH4+2H,、O)
を起して異常発熱する現象も示さなかった。この理由に
つ−ては明確では々いがニッケルーモリブデン系触媒は
硫化により水添反応に対する活性は高まシ、逆にメタネ
ーション反応に対する活性は抑制されるためと推察され
る。
Therefore, it is necessary to remove the oxygen component in advance. A known method for removing oxygen is to perform hydrogenation in the presence of a catalyst and remove it as water. Conventionally, noble metal catalysts such as platinum and palladium are known as hydrogenation catalysts for oxygen, but these catalysts are not suitable for cases containing sulfur compounds such as coke oven gas because they are poisoned by sulfur and their activity decreases. do not have. In the present invention, as a result of examining various catalysts, it was found that nickel-molybdenum catalysts, which have conventionally been mainly used for hydrodesulfurization, are sometimes superior. Coke oven scum containing several tens of P P m of sulfurized t↑r1 such as hydrogen sulfide was tested using this catalyst, but even after about 4 months, there was no decrease in the activity of the deoxidizing hydrogenation reaction, and coke Carbon monoxide and carbon dioxide contained in the furnace gas coexist with hydrogen gas and methanation reaction (CO+3H2→C
H, +H20゜CO2+4H2→CH4+2H,,O)
There was no phenomenon of abnormal heat generation. The reason for this is not clear, but it is presumed that the sulfidation of the nickel-molybdenum catalyst increases the activity for the hydrogenation reaction, while conversely the activity for the methanation reaction is suppressed.

反応温度は比較的低い温度でも活性を示し反応器入口温
度で150〜250°Cの範囲で充分である。但し反応
器出口温度は酸素及び一部オレフイン類の水添反応熱に
より上昇し02等の濃度によっては4000C前後にな
る場合もある。反応器の構造としては通常の円筒ドラム
型でよく特別の構造は不要である。但し反応器出口ガス
温度は前記の様に相当高くなるので熱交換器を設け、反
応器を出る高温ガスを用いて反応器入口ガスを必要温度
迄予熱すれば熱経済的に有利である。
The reaction temperature shows activity even at relatively low temperatures, and a reactor inlet temperature in the range of 150 to 250°C is sufficient. However, the reactor outlet temperature rises due to the heat of hydrogenation reaction of oxygen and some olefins, and may reach around 4000C depending on the concentration of 02 and the like. The structure of the reactor may be a normal cylindrical drum type and no special structure is required. However, since the temperature of the gas at the reactor outlet becomes considerably high as mentioned above, it is thermoeconomically advantageous to provide a heat exchanger and preheat the reactor inlet gas to the required temperature using the high temperature gas exiting the reactor.

以上の水添工程は酸素分を除去する以外にコークス炉ガ
ス中には微量ではあるがオレフィン炭化水素及び有機硫
黄化合物が含有されているので、水添工程を通すことに
よシこれらをそれぞれ飽和炭化水素に転換すればモレキ
ュラーシープ工程の負荷を軽減できる利点がある。水添
工程を出るコース炉ガスは次いでモレキュラーシープ工
程に入る。モレキュラーシープ工程においては望ましく
は9気圧以上の圧力下においてコークス炉ガス中のメタ
ン、−酸化炭素、炭酸ガス及びその他の不純物は各種の
吸着剤により選択吸着して除去され、水素ガスは吸着剤
の層を通過する。吸着剤の充填されている槽は複数個か
らなっておシ、ある槽が吸着操作中は別の一槽は減圧五
で再生中又他の一槽は再生後のオンスドリーム前の準備
として製品水素ガスで加圧中という具合に各種を配管、
切換弁及び制御計器等によりサイクリックに運転できる
システムになって込る。このモレキュラーシープ工程を
出る製品水素カスの純度は原料のコークス炉ガスの組成
にもよるが99%から99.999%迄可能である。モ
レキュラーシープ工程から副生ずるパージガスにはメタ
ン、−酸化炭素等の不純物以外に吸着槽の切換操作、再
生操作等により、水素ガスが混入するのでこの分だけ回
収損失となるが、このパージガスは燃料等に利用できる
In addition to removing oxygen, the hydrogenation process described above also removes olefin hydrocarbons and organic sulfur compounds, which are present in coke oven gas in small amounts. Converting to hydrocarbons has the advantage of reducing the load on the molecular sheep process. The coarse furnace gas leaving the hydrogenation step then enters the molecular sheep step. In the molecular sheep process, methane, carbon oxide, carbon dioxide, and other impurities in the coke oven gas are selectively adsorbed and removed by various adsorbents, preferably under a pressure of 9 atmospheres or higher, and hydrogen gas is removed by the adsorbents. Pass through the layers. There are multiple tanks filled with adsorbent, and while one tank is in the process of adsorption, another tank is being regenerated under reduced pressure, and the other tank is used to store the product after regeneration in preparation for Ounce Dream. Piping various things such as pressurizing with hydrogen gas,
The system is designed to operate cyclically using switching valves and control instruments. The purity of the product hydrogen gas leaving this molecular sheep process can range from 99% to 99.999%, depending on the composition of the raw coke oven gas. In addition to impurities such as methane and carbon oxide, the purge gas produced as a by-product from the molecular sheep process also contains hydrogen gas due to adsorption tank switching operations, regeneration operations, etc., resulting in a recovery loss. Available for

以上説明したように本発明によればコークス炉Jjス中
の有害成分及び不純物を効率よく除去でき高純度の水素
ガスを製造できるので化学工業上その効果は極めて大き
い。
As explained above, according to the present invention, harmful components and impurities in coke oven Jj gas can be efficiently removed and high-purity hydrogen gas can be produced, which is extremely effective in the chemical industry.

実施例 第1図に示す構成の装置によりコークス炉ガスを処理し
たところ次の結果を得た。
EXAMPLE When coke oven gas was treated using the apparatus shown in FIG. 1, the following results were obtained.

水    素 552v%  55.2Vチ  534
v%  999酸    素  l、Q  tt   
  l、Q tt      −−一酸化炭素 76t
t   7,5 n   8.l //   −炭酸カ
ス 2.0 //   2.0 /l   2,1 t
t   −窒    素  4.2  tt    4
.2  tt    4.5 tt    O,1メ 
  タ   ン  27.OII     27.0 
1/     28.7  /l      −C2)
!4/C’2H62始//   、2.’ll//  
フ々9〃   −Cs Ha/Cs Ha   O,3
A−1/   0.3/lt  −10,3tt   
 −B’I’X分5o#” 10iVN101VN’Y
’  −重質芳香族分 200  tt−一一 注1)上記水添工程の触媒には市販のニッケルーモリブ
デン触媒を用いた。
Hydrogen 552v% 55.2Vchi 534
v% 999 oxygen l, Q tt
l, Q tt --carbon monoxide 76t
t 7,5 n 8. l // -carbonate scum 2.0 // 2.0 /l 2.1 t
t-nitrogen 4.2 tt 4
.. 2 tt 4.5 tt O, 1 me
Tan 27. OII 27.0
1/28.7/l -C2)
! 4/C'2H62 start//, 2. 'll//
Fufu9〃 -Cs Ha/Cs Ha O,3
A-1/ 0.3/lt -10,3tt
-B'I'X minute 5o#"10iVN101VN'Y
-Heavy aromatic content 200 tt-11 Note 1) A commercially available nickel-molybdenum catalyst was used as the catalyst in the hydrogenation step.

2)系の圧力分布は昇圧後で15気圧、モレキュラーシ
ープ工程で14気圧であった。
2) The pressure distribution of the system was 15 atm after pressurization and 14 atm during the molecular sheep process.

3)水添塔入口ガス中には硫化水素及び有機硫黄化合物
が約130 mg/Nm”含有していたが100 om
間運転経過後も水添塔出口の残存酸素は検出されなかっ
た。
3) Hydrogen sulfide and organic sulfur compounds were contained in the hydrogenation tower inlet gas at approximately 130 mg/Nm", but 100 um"
No residual oxygen was detected at the outlet of the hydrogenation tower even after several hours of operation.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示す系統図である。 1・・・昇圧工程、2・・・脱ガス工程、3・・・脱芳
香族工程、4・・・水添工程、5・・・モI/キュラー
シープ工程、F・・・原料コークス炉ガス、P・・・製
品水素カス、W・・・パージガス。 特許出願人  関西熱化学株式会社 〃    三菱化工機株式会社 代理人弁理士 木 村 芳 男 S CL     − 13−
The drawing is a system diagram showing one embodiment of the present invention. 1... Pressure increase process, 2... Degassing process, 3... Dearomatization process, 4... Hydrogenation process, 5... Mo I / Curar Sheep process, F... Raw material coke oven Gas, P...product hydrogen scum, W...purge gas. Patent applicant Kansai Thermal Chemical Co., Ltd. Mitsubishi Kakoki Co., Ltd. Representative Patent Attorney Yoshio Kimura S CL - 13-

Claims (2)

【特許請求の範囲】[Claims] (1)  =l −クスF カスカラモレキュラーシー
プ法を利用して高純度水素ガスを製造する方法に於て、
コークス炉ガスを8気圧以上に昇圧する工程、昇圧後、
昇圧時のガス温度の上昇を利用してガム質物質を形成さ
せ該ガム質物質を洗浄除去する工程、芳香族成分を吸収
油によシ吸収除去する工程、ならびに触媒の存在下で酸
素及びオレフィン類等を水添除去する工程を該順序に結
合したことを特徴とするコークス炉ガスの精製法。
(1) = l -xF In a method for producing high-purity hydrogen gas using the Cascara molecular sheep method,
The process of increasing the pressure of coke oven gas to 8 atmospheres or more, after increasing the pressure,
A process of forming a gummy substance using the increase in gas temperature during pressure increase and washing and removing the gummy substance, a process of absorbing and removing aromatic components by absorbing oil, and a process of removing oxygen and olefins in the presence of a catalyst. 1. A method for purifying coke oven gas, characterized in that the steps of hydrogenating and removing compounds, etc., are combined in said order.
(2)水添触媒としてニッケルーモリブデン触媒を用い
る特許請求の範囲第1項記載のコークス炉ガスの精製法
(2) A method for purifying coke oven gas according to claim 1, which uses a nickel-molybdenum catalyst as a hydrogenation catalyst.
JP14778181A 1981-09-21 1981-09-21 Purification of coke oven gas Granted JPS5849603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14778181A JPS5849603A (en) 1981-09-21 1981-09-21 Purification of coke oven gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14778181A JPS5849603A (en) 1981-09-21 1981-09-21 Purification of coke oven gas

Publications (2)

Publication Number Publication Date
JPS5849603A true JPS5849603A (en) 1983-03-23
JPS619243B2 JPS619243B2 (en) 1986-03-20

Family

ID=15438039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14778181A Granted JPS5849603A (en) 1981-09-21 1981-09-21 Purification of coke oven gas

Country Status (1)

Country Link
JP (1) JPS5849603A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734194A (en) * 1980-08-07 1982-02-24 Jgc Corp Purification of coke oven gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734194A (en) * 1980-08-07 1982-02-24 Jgc Corp Purification of coke oven gas

Also Published As

Publication number Publication date
JPS619243B2 (en) 1986-03-20

Similar Documents

Publication Publication Date Title
EP2760783B1 (en) System and method for syngas clean-up
KR101501815B1 (en) Method and apparatus for separating blast furnace gas
JP5139082B2 (en) Two-stage hydrotreating of distillates with improved hydrogen management
JP5139078B2 (en) Improved hydrogen management for hydrotreaters
JP5662162B2 (en) Contaminant removal from gas streams
JP5638600B2 (en) Syngas production method
KR101443060B1 (en) Process for removal of metal carbonyls from a synthesis gas stream
JP5139079B2 (en) Hydrogenation process with improved hydrogen management
JPS5849604A (en) Purification of coke oven gas
JPH04234487A (en) Method for removal of mercury from vapor cracking equipment
JPS5891003A (en) Cog refining method intended for production of pure hydrogen by psa method
US10661224B2 (en) Process for the purifying of a raw gas stream containing mainly C1-C5 hydrocarbons and carbon dioxide, and impurities of organic and inorganic sulfur compounds, halogenated and non-halogenated volatile organic compounds and oxygen
JP2005509016A (en) Method for producing methanol using a catalyst and apparatus for carrying out the method
Docekal Hydrogen production from hydrocarbons
EP1345693B1 (en) Regeneration method of heterogeneous catalysts and adsorbents
JPS5849603A (en) Purification of coke oven gas
JPS58190801A (en) Method for recovering high purity hydrogen from coke oven gas
JPS6310693A (en) Method of separating and recovering olefins from low boiling gas formed as by-product in catalytic cracker
RU2760125C1 (en) Method for purifying hydrocarbon gases from n2o
JP2519998B2 (en) Method for producing hydrogen from hydrocarbons
JPS6145679B2 (en)
JPH0446001A (en) Method for recovering high purity hydrogen from waste gas
US9957452B2 (en) Method and device for treating a synthesis gas from a biomass gasification step
CN112759503A (en) Dry gas pretreatment system and method
JP2011116595A (en) Method and apparatus for producing reformed gas