JPS5849565Y2 - Metal-ceramic traveling wave tube - Google Patents

Metal-ceramic traveling wave tube

Info

Publication number
JPS5849565Y2
JPS5849565Y2 JP1976138664U JP13866476U JPS5849565Y2 JP S5849565 Y2 JPS5849565 Y2 JP S5849565Y2 JP 1976138664 U JP1976138664 U JP 1976138664U JP 13866476 U JP13866476 U JP 13866476U JP S5849565 Y2 JPS5849565 Y2 JP S5849565Y2
Authority
JP
Japan
Prior art keywords
tube
metal
traveling wave
ceramic
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1976138664U
Other languages
Japanese (ja)
Other versions
JPS5356760U (en
Inventor
俊雄 山口
俊一 木村
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP1976138664U priority Critical patent/JPS5849565Y2/en
Publication of JPS5356760U publication Critical patent/JPS5356760U/ja
Application granted granted Critical
Publication of JPS5849565Y2 publication Critical patent/JPS5849565Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Microwave Tubes (AREA)

Description

【考案の詳細な説明】 本考案は外囲容器が金属とセラミック部品から構成され
たメタルセラミック形進行波管の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a metal-ceramic traveling wave tube whose outer envelope is composed of metal and ceramic parts.

進行波管には広帯域、高利得、高能率という特徴がある
ためマイクロ波通信装置の増幅管として広く使用されて
いる。
Traveling wave tubes are widely used as amplifier tubes in microwave communication equipment because of their characteristics of wide band, high gain, and high efficiency.

第1図は従来行なわれている入出力回路が同軸結合形の
メタルセラミック形進行波管の1例を断面図で示したも
のである。
FIG. 1 is a cross-sectional view of an example of a conventional metal-ceramic traveling wave tube in which the input/output circuit is coaxially coupled.

以下第1図に基ずいて従来形の進行波管を説明する。A conventional traveling wave tube will be explained below based on FIG.

管球1は主に電子ビームを発射する電子銃11、前記電
子ビームを高周波と作用させる遅波回路12及び電子ビ
ームを捕獲するコレクタ13から構成され、遅波回路1
2は管球1の真空外囲容器の一部を形成する細長い金属
性の外周管14の内側に遅波回路支持棒15と共に収納
されている。
The tube 1 mainly consists of an electron gun 11 that emits an electron beam, a slow wave circuit 12 that interacts the electron beam with a high frequency, and a collector 13 that captures the electron beam.
2 is housed together with a slow-wave circuit support rod 15 inside an elongated metallic outer tube 14 that forms a part of the vacuum envelope of the bulb 1 .

周期磁界装置31は円筒状の永久磁石と磁極片を交互に
組合せて構成され、電子ビーム集束のため管球と同軸的
に配設される。
The periodic magnetic field device 31 is constructed by alternately combining cylindrical permanent magnets and magnetic pole pieces, and is arranged coaxially with the tube for electron beam focusing.

高周波入力は外周管14の端部に取付けられた入力同軸
回路16から遅波回路12に伝達され、電子ビームと相
互作用を行ない遅波回路12上を伝播するにつれて増幅
され、高周波出力として出力同軸回路17から取り出さ
れる。
The high frequency input is transmitted from the input coaxial circuit 16 attached to the end of the outer tube 14 to the slow wave circuit 12, interacts with the electron beam, is amplified as it propagates on the slow wave circuit 12, and is output as a high frequency output from the coaxial It is taken out from the circuit 17.

電子銃11はアノード、ウェネルト、カソードの各電極
を含み、それぞれの電極にはセラミック部品18で互い
に絶縁された高圧リード線21を通じて、またコレクタ
13には、高圧リード線22を通じて外部電源(図示せ
ず)から高電圧が供給され、遅波回路には接地電位とさ
れる。
The electron gun 11 includes an anode, a Wehnelt electrode, and a cathode electrode, each of which is connected to an external power source (not shown) through a high-voltage lead wire 21 insulated from each other by a ceramic component 18, and to the collector 13 through a high-voltage lead wire 22. A high voltage is supplied from 1), and the slow wave circuit is set to ground potential.

進行波管の総合能率改善のためコレクタ13の電圧を遅
波回路電圧より低下させるのが一般的であり、コレクタ
13は普通円筒状セラミック19で遅波回路12から絶
縁されている。
In order to improve the overall efficiency of the traveling wave tube, it is common to lower the voltage at the collector 13 below the slow wave circuit voltage, and the collector 13 is usually insulated from the slow wave circuit 12 by a cylindrical ceramic 19.

コレクタ13の周囲にはコレクタ冷却用として、中間に
絶縁板23を有する放熱ブロック24が取りつけられ、
周期磁界装置31を含めて管球1は金属ケース32内に
収納される。
A heat dissipation block 24 having an insulating plate 23 in the middle is attached around the collector 13 for cooling the collector.
The tube 1 including the periodic magnetic field device 31 is housed in a metal case 32.

管球1、磁界集束装置31、放熱ブロック24の相互の
位置ずれを防止するため、また、これらを金属ケース3
2内に機械的に安定に保持するため、金属ケース32内
のすきまには注入孔33から樹脂などからなる固形剤3
4が充填される。
In order to prevent the tube 1, the magnetic field focusing device 31, and the heat dissipation block 24 from being misaligned with each other, the metal case 3
2, a solid agent 3 made of resin or the like is inserted into the gap in the metal case 32 through an injection hole 33.
4 is filled.

注入孔33は固形剤34が固化した後金属蓋(図示せず
)などで封止される。
After the solid agent 34 is solidified, the injection hole 33 is sealed with a metal lid (not shown) or the like.

近年、進行波管を増幅管として使用する通信装置の設計
上、特に高利得で高能率の進行波管が要望されるように
なったが、第1図に示した従来の構造で高利得で高能率
を達成しようとすれば次のような火気があった。
In recent years, there has been a demand for traveling wave tubes with particularly high gain and high efficiency in the design of communication equipment that uses traveling wave tubes as amplifier tubes. If we tried to achieve high efficiency, we would encounter the following problems.

すなわち、進行波管の利得を高くしかつ安定に動作させ
るには進行波管の出力側から漏洩する漏洩高周波電力が
遅波回路12の入力端へ帰還しないようにする必要があ
るが、第1図の構造では、増幅された高周波出力の一部
が外周管14の出力端内部を通り円筒状セラミック19
から漏洩し、金属ケース32と周期磁界装置31間の径
路41を伝送し、セラミック部品18から管球1内に入
り、外周管14の入力端内部を通り、遅波回路12の入
力端に帰還し、進行波管の動作を不安定にしたり、高周
波特性を劣化させたり、時には自己発振を起したりする
不都合がある。
That is, in order to increase the gain of the traveling wave tube and operate it stably, it is necessary to prevent the leakage high frequency power leaking from the output side of the traveling wave tube from returning to the input end of the slow wave circuit 12. In the structure shown in the figure, a part of the amplified high-frequency output passes through the output end of the outer tube 14 and passes through the cylindrical ceramic 19.
It leaks from the metal case 32 and is transmitted through the path 41 between the periodic magnetic field device 31, enters the bulb 1 from the ceramic component 18, passes inside the input end of the outer tube 14, and returns to the input end of the slow wave circuit 12. However, there are disadvantages such as making the operation of the traveling wave tube unstable, deteriorating the high frequency characteristics, and sometimes causing self-oscillation.

また、円筒状セラミック19から漏洩し、金属ケース3
2と周期磁界装置31間の径路41を伝送する高周波電
力の一部は径路42を通り高圧リード線24.25を介
して外部へ不要電波として放射され、マイクロ波通信装
置内の他の機器へ悪影響を与える欠点もあつtも特に高
能率の進行波管を得るには、コレクタ電圧を遅波回路の
電圧より極端に低下させる必要があり、このためには、
円筒状セラミック19の絶縁を十分とるため、円筒状セ
ラミック19の寸法長を長くしなければならず、円筒状
セラミック19からの漏洩高周波電力が増大し、上記の
欠点が顕著に発生するおそれがあった。
In addition, leakage from the cylindrical ceramic 19 occurs and the metal case 3
A part of the high-frequency power transmitted through the path 41 between the periodic magnetic field device 31 and the periodic magnetic field device 31 passes through the path 42 and is radiated to the outside as unnecessary radio waves via the high-voltage lead wires 24 and 25, and is transmitted to other devices in the microwave communication device. In order to obtain a particularly highly efficient traveling wave tube, it is necessary to lower the collector voltage to an extremely lower level than the voltage of the slow wave circuit.
In order to ensure sufficient insulation of the cylindrical ceramic 19, the dimensional length of the cylindrical ceramic 19 must be increased, which increases the leakage high frequency power from the cylindrical ceramic 19, and there is a possibility that the above-mentioned drawbacks will occur significantly. Ta.

従来、この種の不都合を取り除く方法として、コレクタ
13の近傍に絶縁板を用いて高周波に対するノ9バスコ
ンデンサを形成し、漏洩高周波電力をバイパスさせて入
力側への帰還を阻止する方法(特公昭44−20651
)が知られている。
Conventionally, as a method to eliminate this kind of inconvenience, a method was proposed in which an insulating plate was used near the collector 13 to form a high-frequency bus capacitor to bypass the leaked high-frequency power and prevent it from returning to the input side. 44-20651
)It has been known.

しかし、十分なコンデンサ容量を得るためには、遅波回
路とコレクタとを絶縁する作用も併せもつ絶縁板を相当
うずくしなければならず、コレクタ、遅波回路間の電位
差が大きい場合スパークが起りやすい。
However, in order to obtain sufficient capacitor capacity, the insulating plate, which also has the function of insulating the slow-wave circuit and the collector, must be considerably stiffened, and if the potential difference between the collector and the slow-wave circuit is large, sparks may occur. Cheap.

そのため、十分なマイクロ波減衰量を得るのが難しく、
高利得且つ高能率進行波管には不向きであった。
Therefore, it is difficult to obtain sufficient microwave attenuation.
It was unsuitable for high gain and high efficiency traveling wave tubes.

したがって本考案の目的は、従来形進行波管の上記の欠
点を簡単な構造で取り除き、高周波電力の不要帰還によ
る自己発振及び、特性劣化等を有効に阻止し進行波管の
外部への不要電波の放射を防止したメタルセラミック形
進行波管を提供することにある。
Therefore, the purpose of the present invention is to eliminate the above-mentioned drawbacks of conventional traveling wave tubes with a simple structure, effectively prevent self-oscillation caused by unnecessary feedback of high-frequency power, characteristic deterioration, etc., and prevent unnecessary radio waves from flowing outside the traveling wave tube. An object of the present invention is to provide a metal-ceramic traveling wave tube that prevents radiation of radiation.

以下第2図に基ずいて本考案の実施例の説明を行なう。An embodiment of the present invention will be explained below based on FIG.

第1図と同一あるいは相当部分には同符号を用いている
The same reference numerals are used for the same or corresponding parts as in FIG. 1.

管球1は従来形と全く同様に外周容器内に電子銃部11
、遅波回路12、コレクタ13等を含むものであり、管
球1には電子ビーム集束のための周期磁界装置31及び
コレクタ冷却用の放熱ブロック24が配設される。
The tube 1 has an electron gun section 11 inside the outer container, just like the conventional type.
, a slow wave circuit 12, a collector 13, etc., and the tube 1 is provided with a periodic magnetic field device 31 for electron beam focusing and a heat radiation block 24 for cooling the collector.

外周管14の出力側端部とコレクタ13間に介在する円
筒状セラミック19は、遅波回路12とコレクタ13間
の電位差に十分耐えるような長さに選定される。
The cylindrical ceramic 19 interposed between the output side end of the outer tube 14 and the collector 13 is selected to have a length that can sufficiently withstand the potential difference between the slow wave circuit 12 and the collector 13.

本考案では、円筒状の永久磁石と磁極片から構成された
周期磁界装置31の外周面上に非磁性体の金属板状の電
波遮蔽体35.36.37が前記遮蔽体35,36.3
7の内外周を各々周期磁界装置31の外面及び金属ケー
ス32の内面に接して固形剤34間に介在させるように
して配設される。
In the present invention, radio wave shielding bodies 35, 36.37 in the form of non-magnetic metal plates are placed on the outer peripheral surface of the periodic magnetic field device 31 composed of a cylindrical permanent magnet and magnetic pole pieces.
The inner and outer circumferences of the solid agent 7 are in contact with the outer surface of the periodic magnetic field device 31 and the inner surface of the metal case 32, respectively, and are interposed between the solid agents 34.

このような構造にすれば、円筒状のセラミック19から
漏洩した高周波電力は電波遮蔽体35,36゜37によ
り阻止され、電子銃側へ漏洩する高周波電力は皆無もし
くは大巾に低減さへ進行波管の動作が不安定となること
はなく自己発振を防止することが出来ると共に進行波管
外部への不要電波の放射が改善される。
With this structure, the high-frequency power leaking from the cylindrical ceramic 19 is blocked by the radio wave shields 35, 36, 37, and the high-frequency power leaking to the electron gun side is eliminated or greatly reduced as a traveling wave. The operation of the tube does not become unstable, self-oscillation can be prevented, and radiation of unnecessary radio waves to the outside of the traveling wave tube is improved.

すなわち、漏洩高周波電力はコレクタ側に最も近い電波
遮蔽体35でコレクタ側へ反射するが、動作周波数が数
GHzと高くなれば前記遮蔽体35の内外周面と周期磁
界装置31の外周面及び金属ケース32の内壁との小さ
なすきまを通して高周波電力の一部が漏洩する。
That is, the leaked high-frequency power is reflected toward the collector side by the radio wave shield 35 closest to the collector side, but when the operating frequency becomes as high as several GHz, the leakage high-frequency power is reflected by the inner and outer peripheral surfaces of the shield member 35, the outer peripheral surface of the periodic magnetic field device 31, and the metal. A portion of the high frequency power leaks through a small gap between the case 32 and the inner wall.

しかし、遮蔽体36、さらには遮蔽体3Tにより漏洩高
周波電力は反射され、径路41を通って電子銃側へ漏洩
する高周波電力は低減される。
However, the leaked high-frequency power is reflected by the shield 36 and further by the shield 3T, and the high-frequency power leaked to the electron gun side through the path 41 is reduced.

電波遮蔽体35.36.37の間隔は動作周波数の波長
をλとした場合λ/4に選定された時最も前記高周波電
力は低減される。
When the interval between the radio wave shields 35, 36, and 37 is selected to be λ/4, where λ is the wavelength of the operating frequency, the high frequency power is reduced most.

もちろん電波遮蔽体35゜36.37の枚数を増せば電
子銃側への漏洩高周波電力の低減は犬となる。
Of course, if the number of radio wave shields 35.degree.

電波遮蔽体35,36゜37の必要枚数は円筒状セラミ
ック19から漏洩する高周波電力及び進行波管の利得な
どの大きさによって変るが、2〜3枚の電波遮蔽体で十
分漏波高周波電力を阻止することが出来る。
The required number of radio wave shields 35, 36 and 37 varies depending on the magnitude of the high frequency power leaking from the cylindrical ceramic 19 and the gain of the traveling wave tube, but two to three radio wave shields are sufficient to prevent leakage high frequency power. It can be prevented.

電波遮蔽体は次のようにして配設するのが実用的である
It is practical to arrange the radio wave shield as follows.

すなわち、金属ケース32のコレクタ先端部に注入孔3
3をあけ、固形剤34が周期磁界装置31の途中まで充
填される。
That is, the injection hole 3 is located at the tip of the collector of the metal case 32.
3, and the solid agent 34 is filled halfway into the periodic magnetic field device 31.

固形剤34は最初は粘性の液体状で一般に数時間放置す
れば固体化する。
The solid agent 34 is initially in a viscous liquid state and generally becomes solid after being left for several hours.

固形剤34が固化した後、固形剤34の表面に導電性が
よい銀粉とエポキシ樹脂を混合した液体状の導電性被膜
が0.1〜0.5mm程度塗布され固化される。
After the solid agent 34 is solidified, a liquid conductive film made of a mixture of highly conductive silver powder and epoxy resin is applied to the surface of the solid agent 34 to a thickness of about 0.1 to 0.5 mm and solidified.

このようにして固形剤34の充填、固化、導電性被膜の
塗布をくりかえせば電波遮蔽体35,36.37が形成
される。
By repeating filling, solidifying, and applying the conductive film with the solid agent 34 in this manner, the radio wave shields 35, 36, and 37 are formed.

注入孔33は、金属ケース32内のすきま全体に固形剤
34が充填された後、金属蓋(図示せず)などで封止さ
れる。
After the entire gap in the metal case 32 is filled with the solid agent 34, the injection hole 33 is sealed with a metal lid (not shown) or the like.

管球1、磁界集束装置31、放熱ブロック24などは機
械的に安定に保持される。
The tube 1, the magnetic field focusing device 31, the heat radiation block 24, etc. are held mechanically and stably.

上記に述べたような寸法で電波遮蔽体を形成させると、
導電性被膜が固形剤34の表面のみならず周期磁界装置
31の外周面及び金属ケース32の内壁にも十分接着し
電波遮蔽体35,36.37の内外周面のすきまが生じ
る可能性が少なく、電波遮蔽体の枚数を減らすことも出
来る。
When a radio wave shield is formed with the dimensions described above,
The conductive coating is sufficiently adhered not only to the surface of the solid agent 34 but also to the outer circumferential surface of the periodic magnetic field device 31 and the inner wall of the metal case 32, reducing the possibility that gaps will occur between the inner and outer circumferential surfaces of the radio wave shields 35, 36, and 37. , it is also possible to reduce the number of radio wave shields.

実験的に確めたところ、電波遮蔽体を一枚とし、コレク
タ側に最も近い電波遮蔽体35を前記に述べた導電性被
膜で形成させた場合、径路41,42を通って進行波管
の外部へ放射される不要電波は第1図の従来形の場合に
比較して数十dB低減されることが分った。
It has been experimentally confirmed that when the radio wave shield is a single sheet and the radio wave shield 35 closest to the collector side is formed of the conductive film described above, the wave of the traveling wave tube passes through the paths 41 and 42. It has been found that the unnecessary radio waves radiated to the outside are reduced by several tens of dB compared to the conventional type shown in FIG.

上述の実施例では同軸結合形のメタルセラミック形進行
波管について説明したが入出力取出しに導波管を使用し
た導波管結合形のメタルセラミック形進行波管に対して
も本考案は適用出来る。
Although the above embodiment describes a coaxially coupled metal-ceramic traveling wave tube, the present invention can also be applied to a waveguide-coupled metal-ceramic traveling wave tube that uses a waveguide for input/output extraction. .

以上説明した通り、本考案によれば、コレクタ側から電
子銃側への高周波電力の不要帰還が皆無もしくは無視出
来る程度に少なくなり、外部への不要電波の放出を防止
することが出来ると共に進行波管内部に充填される樹脂
などの特性を何らそこなうことなく、高利得高能率進行
波管の制作が容易となる。
As explained above, according to the present invention, the unnecessary return of high-frequency power from the collector side to the electron gun side is eliminated or reduced to a negligible level, making it possible to prevent the emission of unnecessary radio waves to the outside and to prevent the emission of traveling waves. It becomes easy to produce a high-gain, high-efficiency traveling wave tube without damaging the characteristics of the resin filled inside the tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の同軸結合形メタルセラミック形進行波管
の縦断面図、第2図は本考案に係るメタルセラミック形
進行波管の1例の縦断面図である。 図において、1は管球、11は電子銃、12は遅波回路
、13はコレクタ、14は細長い金属性の外周管、18
はセラミック部品、19は円筒状セラミック、24は絶
縁板23を含めたコレクタ冷却用放熱ブロック、31は
電子ビーム集束のための周期磁界装置、32は金属ケー
ス、33は注入孔、34は固形剤、35,36.37は
電波遮蔽体を示す。
FIG. 1 is a longitudinal sectional view of a conventional coaxially coupled metal-ceramic traveling wave tube, and FIG. 2 is a longitudinal sectional view of an example of a metal-ceramic traveling wave tube according to the present invention. In the figure, 1 is a tube, 11 is an electron gun, 12 is a slow wave circuit, 13 is a collector, 14 is an elongated metallic outer tube, 18
19 is a ceramic part, 19 is a cylindrical ceramic, 24 is a heat dissipation block for collector cooling including an insulating plate 23, 31 is a periodic magnetic field device for electron beam focusing, 32 is a metal case, 33 is an injection hole, and 34 is a solid agent. , 35, 36, and 37 indicate radio wave shields.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電子ビームを発生する電子銃と高周波との相互作用が行
なわれる遅波回路とこの遅波回路と円筒状セラミックで
電気的に絶縁されたコレクタとを含む管球と、電子ビー
ムを集束するための周期磁界装置とを金属ケース内に収
納した進行波管において、前記金属ケースと前記周期磁
界装置との間にコレクタ側から電子銃側へ漏洩する高周
波電力を遮断するための複数個の金属板状の電波遮蔽体
を、金属ケースのすきまに充填される固形剤を介在させ
て、金属ケース内壁及び周期磁界装置の外周面に密着し
て進行波管の動作周波数の波長の1/4間隔で周期的に
配設したことを特徴とするメタルセラミック形進行波管
A tube including a slow-wave circuit in which an electron gun that generates an electron beam interacts with a high frequency wave, a collector electrically insulated with a cylindrical ceramic and the slow-wave circuit, and a tube for focusing the electron beam. In a traveling wave tube in which a periodic magnetic field device is housed in a metal case, a plurality of metal plates are provided between the metal case and the periodic magnetic field device for blocking high frequency power leaking from the collector side to the electron gun side. A radio wave shielding body is placed in close contact with the inner wall of the metal case and the outer circumferential surface of the periodic magnetic field device, with a solid agent filled in the gap in the metal case, and the radio wave shield is placed periodically at intervals of 1/4 of the wavelength of the operating frequency of the traveling wave tube. A metal-ceramic traveling wave tube characterized by its unique arrangement.
JP1976138664U 1976-10-15 1976-10-15 Metal-ceramic traveling wave tube Expired JPS5849565Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1976138664U JPS5849565Y2 (en) 1976-10-15 1976-10-15 Metal-ceramic traveling wave tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1976138664U JPS5849565Y2 (en) 1976-10-15 1976-10-15 Metal-ceramic traveling wave tube

Publications (2)

Publication Number Publication Date
JPS5356760U JPS5356760U (en) 1978-05-15
JPS5849565Y2 true JPS5849565Y2 (en) 1983-11-11

Family

ID=28747432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1976138664U Expired JPS5849565Y2 (en) 1976-10-15 1976-10-15 Metal-ceramic traveling wave tube

Country Status (1)

Country Link
JP (1) JPS5849565Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4514104Y1 (en) * 1967-02-06 1970-06-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4514104Y1 (en) * 1967-02-06 1970-06-15

Also Published As

Publication number Publication date
JPS5356760U (en) 1978-05-15

Similar Documents

Publication Publication Date Title
US4751429A (en) High power microwave generator
US2410054A (en) Electron discharge apparatus
EP0264127B1 (en) Magnetron device
CA2267710C (en) Low impedance grid-anode interaction region for an inductive output amplifier
US2800605A (en) Traveling wave electron discharge devices
US4158791A (en) Helix traveling wave tubes with resonant loss
US3876901A (en) Microwave beam tube having an improved fluid cooled main body
US3346766A (en) Microwave cold cathode magnetron with internal magnet
US2800603A (en) Traveling wave electron discharge devices
JPS5849565Y2 (en) Metal-ceramic traveling wave tube
US3748513A (en) High frequency beam tube having an r.f. shielded and insulated collector
EP0753878A1 (en) Linear electron beam tubes arrangements
US3376463A (en) Crossed field microwave tube having toroidal helical slow wave structure formed by a plurality of spaced slots
US3293478A (en) Traveling wave tube with longitudinal recess
US3436588A (en) Electrostatically focused klystron having cavities with common wall structures and reentrant focusing lens housings
US3391299A (en) High stability traveling wave tube
US4370596A (en) Slow-wave filter for electron discharge device
US3707647A (en) High frequency vacuum tube energy coupler
US3483420A (en) Klystron amplifier employing helical distributed field buncher resonators and a coupled cavity extended interaction output resonator
US2735033A (en) Traveling wave tube
US3448325A (en) Linear beam tube having a beam collector cooled by radiation through an infrared window
US2809328A (en) Magnetron amplifiers
US3702413A (en) Shielded meander line slow wave circuit and tubes using same
US3270240A (en) Extended interaction resonant electric discharge system
US2633556A (en) Millimeter wave generator