JPS5849485B2 - graphite sintering method - Google Patents

graphite sintering method

Info

Publication number
JPS5849485B2
JPS5849485B2 JP54048824A JP4882479A JPS5849485B2 JP S5849485 B2 JPS5849485 B2 JP S5849485B2 JP 54048824 A JP54048824 A JP 54048824A JP 4882479 A JP4882479 A JP 4882479A JP S5849485 B2 JPS5849485 B2 JP S5849485B2
Authority
JP
Japan
Prior art keywords
sintering
graphite
sintered
sintering method
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54048824A
Other languages
Japanese (ja)
Other versions
JPS55140709A (en
Inventor
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP54048824A priority Critical patent/JPS5849485B2/en
Priority to US06/138,448 priority patent/US4414028A/en
Priority to GB8011883A priority patent/GB2051134B/en
Priority to IT48402/80A priority patent/IT1128651B/en
Priority to DE19803013943 priority patent/DE3013943A1/en
Priority to FR8008222A priority patent/FR2453701A1/en
Publication of JPS55140709A publication Critical patent/JPS55140709A/en
Publication of JPS5849485B2 publication Critical patent/JPS5849485B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は高密度、高強度のグラファイト(炭素)を焼結
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for sintering high density, high strength graphite (carbon).

従来、焼結してグラファイトを作るのに、石油コークス
、ピッチコークス、無煙炭、カーポンプラック、その他
を骨材とし、これにピッチを混合し、ピッチの軟化点以
上の温度で捏合し、戒形し、しかる後仮焼成、本焼成を
行なうが、従来のこのような焼結に利用する固定炭素の
少ない軟化点の低い粘結剤のピッチは揮発分が多いので
、焼結体には多くの気孔を含み、そのため高密度、高強
度に焼結できなかった。
Conventionally, to make graphite by sintering, petroleum coke, pitch coke, anthracite, carpon crack, and other aggregates are used as aggregates, pitch is mixed with this, and the mixture is kneaded at a temperature above the softening point of pitch. After that, preliminary sintering and main sintering are performed, but since the pitch of a binder with a low softening point and low fixed carbon, which is used in conventional sintering, has a high volatile content, the sintered body contains a lot of volatile matter. It contains pores and therefore cannot be sintered to high density and high strength.

焼結密度を上げる方法としてはピッチの再度の加圧含浸
及び焼結の操作を繰返して気孔を埋めるようにしている
が、手数と時間を要し、欠点が多かった。
As a method of increasing the sintered density, the pores are filled by repeating pressure impregnation and sintering of the pitch again, but this is time consuming and has many drawbacks.

本発明はこの点に鑑みて、結合剤ピッチを使わないか、
利用するとしても僅かでよく、容易に高密度に焼結でき
るようにしたもので、硼素含有キレート化合物を焼結促
進剤として混合することを特徴とする。
In view of this point, the present invention does not use binder pitch or
Even if only a small amount is used, it can be easily sintered to a high density, and is characterized by the addition of a boron-containing chelate compound as a sintering accelerator.

焼結は原料の粉末間に通電(放電を含む)を行なわせる
通電焼結法により焼結され、また高周波加熱、炉中加熱
等による焼結法が任意に利用できる。
Sintering is carried out by a current sintering method in which electricity is passed (including discharge) between raw material powders, and any sintering method using high frequency heating, heating in a furnace, etc. can be used.

前者の通電焼結法によれば粉末間の通電浄化、活性化し
た粉末同志が拡散結合するものであるから焼結強度は高
くなり、また周知のように通電焼結によって無定形炭素
が黒鉛化し、均質な成形体が得られることが知られてお
り、焼結成形と黒鉛化が一工程で同時に行なえる。
According to the former electric current sintering method, the sintering strength is increased because the powders are purified by electric current and the activated powders are diffused and bonded together, and as is well known, amorphous carbon is graphitized by electric current sintering. It is known that a homogeneous molded body can be obtained, and sintering and graphitization can be performed simultaneously in one step.

また炉中加熱焼結法でも1次焼結、2次焼結と工程は増
えるが、前記のように硼素含有キレート化合物の混合に
より活性焼結ができ焼結効果が向上する。
Further, even in the furnace heating sintering method, the steps of primary sintering and secondary sintering are increased, but active sintering can be performed by mixing a boron-containing chelate compound as described above, and the sintering effect is improved.

焼結粉末中に結合剤を加えないか従来に比較して少量と
しているので揮発分が少なくなり焼結密度は高まり粉末
と粉末とが強く拡散して結合することにより機械的に高
強度の黒鉛成形体が得られる。
Since the binder is not added to the sintered powder or is added in a small amount compared to the conventional method, the volatile content is reduced and the sintered density is increased.The powders are strongly diffused and bonded, resulting in mechanically high-strength graphite. A molded body is obtained.

以上のように本発明はコークス等の通常の骨材を用い、
結合剤を加えないか、加えるにしても少量にし揮発分を
少なくして焼結するものであり、従来では得られなかっ
た高密度で高強度のグラファイトが得られる。
As described above, the present invention uses ordinary aggregates such as coke,
By sintering without adding a binder or adding a small amount of binder to reduce the volatile content, it is possible to obtain graphite with high density and high strength, which was not possible with conventional methods.

少量の添加により焼結促進効果を果す有機のキレート化
合物としては、諸種なものが利用できるが、主として硼
化物が有効で例えば、アセチルアセト硼化キレート、プ
ロピレンジアミン硼化キレート等が利用される。
Various organic chelate compounds can be used to promote sintering when added in small amounts, but borides are most effective, such as acetylaceto boride chelate, propylene diamine borate chelate, and the like.

次に一実施例により本発明を説明すると、コークス30
0メッシュの骨材にタール2wt%(軟化温度200℃
)とアセチルアセト硼化キレート3wt%を添加混合し
、これをカーボンモールドに充填し、加圧兼通電々極に
よって通電し加圧して焼結した。
Next, to explain the present invention using an example, coke 30
0 mesh aggregate with 2wt% tar (softening temperature 200℃)
) and 3 wt % of acetylacetoboride chelate were added and mixed, and the mixture was filled in a carbon mold, and sintered by applying electricity using pressure and current-carrying electrodes.

通電々流は2 2 0 A/crAで、加圧は4 5
0 kg/ crAを行なって焼結をした。
Current current is 220 A/crA, pressurization is 45
Sintering was carried out at 0 kg/crA.

焼結体の密度は2.36f/iで、圧縮強度は2.1ト
ン/dとなり、従来のもの工2倍近い強度を示した。
The density of the sintered body was 2.36 f/i, and the compressive strength was 2.1 tons/d, which was nearly twice as strong as the conventional one.

以上のように本発明は硼素含有キレート化合物を加えて
焼結するようにしたから、ピッチ等の粘結剤を加えなく
ても焼結でき、もしくは加えても少量とすることができ
、揮発分を少なくして前記硼素含有キレート化合物の焼
結促進効果によって容易に焼結でき、焼結体は黒鉛化し
、高密度で、高強度の良質のグラファイトが容易に得ら
れる。
As described above, since the present invention performs sintering by adding a boron-containing chelate compound, sintering can be performed without adding a binder such as pitch, or even if it is added, it can be done in a small amount, and the volatile content can be reduced. The boron-containing chelate compound can be easily sintered by the sintering promoting effect of the boron-containing chelate compound, and the sintered body can be graphitized to easily obtain high-density, high-strength, and high-quality graphite.

強度は前記のように従来の2倍に近いものである。As mentioned above, the strength is nearly twice that of the conventional one.

なお添加する硼素含有キレート化合物の添加量は1%よ
り少ないと効果が少なく結合剤の添加を増加しなげれば
ならず、またこの硼素含有キレート化合物の添加量が多
過ぎると焼結グラファイトの特性が変化するから多くて
も10wt%加える程度で良い。
If the amount of the boron-containing chelate compound added is less than 1%, the effect will be low and the addition of the binder will have to be increased, and if the amount of the boron-containing chelate compound added is too large, the characteristics of the sintered graphite will deteriorate. Since the amount changes, it is sufficient to add 10 wt% at most.

Claims (1)

【特許請求の範囲】[Claims] 1 石油コークス、ピッチコークス等の骨材に硼素含有
キレート化合物を焼結促進剤として混合し、加圧し加熱
しグラファイト化することを特徴とするグラファイト焼
結方法。
1. A graphite sintering method characterized by mixing aggregates such as petroleum coke and pitch coke with a boron-containing chelate compound as a sintering accelerator, and converting the mixture into graphite by pressurizing and heating.
JP54048824A 1979-04-11 1979-04-19 graphite sintering method Expired JPS5849485B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP54048824A JPS5849485B2 (en) 1979-04-19 1979-04-19 graphite sintering method
US06/138,448 US4414028A (en) 1979-04-11 1980-04-08 Method of and apparatus for sintering a mass of particles with a powdery mold
GB8011883A GB2051134B (en) 1979-04-11 1980-04-10 Sintering method and apparatus using a multi-directional compression system and a powder mould
IT48402/80A IT1128651B (en) 1979-04-11 1980-04-11 PROCEDURE AND DEVICE FOR THE SINTERING OF A MASS OF PARTICLES WITH A MOLD OF FRIABLE MATERIAL
DE19803013943 DE3013943A1 (en) 1979-04-11 1980-04-11 METHOD AND DEVICE FOR SINTERING A PARTICLE SIZE WITH A POWDER-SHAPED SHAPE
FR8008222A FR2453701A1 (en) 1979-04-11 1980-04-11 SINTERING METHOD AND APPARATUS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54048824A JPS5849485B2 (en) 1979-04-19 1979-04-19 graphite sintering method

Publications (2)

Publication Number Publication Date
JPS55140709A JPS55140709A (en) 1980-11-04
JPS5849485B2 true JPS5849485B2 (en) 1983-11-04

Family

ID=12813965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54048824A Expired JPS5849485B2 (en) 1979-04-11 1979-04-19 graphite sintering method

Country Status (1)

Country Link
JP (1) JPS5849485B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5413689A (en) * 1992-06-12 1995-05-09 Moltech Invent S.A. Carbon containing body or mass useful as cell component
CN115849369B (en) * 2023-02-24 2023-05-02 潍坊新翰泽能源科技有限公司 Energy-saving environment-friendly high-purity graphite deep processing production line and control method

Also Published As

Publication number Publication date
JPS55140709A (en) 1980-11-04

Similar Documents

Publication Publication Date Title
GB901176A (en) Method of making refractory bodies
DE102015222439A1 (en) New process for the production of graphite bodies
US3224888A (en) Refractory composition and process for making same
JPS5849485B2 (en) graphite sintering method
US2066176A (en) Commutating brush
US1017483A (en) Process of making molded conductors.
CN109133926B (en) Sealing graphite and preparation method thereof
JPS6323124B2 (en)
US3202619A (en) Graphitic neutron reflector containing beryllium and method of making same
JP2001130963A (en) Method for producing isotropic high-density carbon material
JPH04228412A (en) Composition for specific carbon material
JPS61295216A (en) Preparation of isotropic graphite material having high density and high strength
EP4317358A1 (en) Coal-based heat storage carbon material and preparation method therefor and application thereof, and composition for preparing coal-based heat storage carbon material and application of composition
GB1066052A (en) Production of electrically conducting carbon
GB2198747A (en) Electrode for electrochemical processes
JP2689510B2 (en) Manufacturing method of needle coke for carbon compact
JP3118557B2 (en) Method for growing graphite particles in carbon-based moldings
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH04321560A (en) Production of isotropic graphite material having high strength
JPH06102530B2 (en) Method for manufacturing graphite molded body
JPH06116033A (en) Low carburizing graphite material and its production
AT241629B (en) Neutron reflector and process for its manufacture
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material
JPH0791107B2 (en) Method for producing isotropic graphite material having high density and high strength
JPS62167211A (en) Production of high-density graphitic material