JPS5849045A - System parallel operation control system for synchronous generators - Google Patents

System parallel operation control system for synchronous generators

Info

Publication number
JPS5849045A
JPS5849045A JP56145426A JP14542681A JPS5849045A JP S5849045 A JPS5849045 A JP S5849045A JP 56145426 A JP56145426 A JP 56145426A JP 14542681 A JP14542681 A JP 14542681A JP S5849045 A JPS5849045 A JP S5849045A
Authority
JP
Japan
Prior art keywords
synchronous
power
voltage side
breaker
synchronous generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56145426A
Other languages
Japanese (ja)
Other versions
JPS6322137B2 (en
Inventor
水野 茂幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56145426A priority Critical patent/JPS5849045A/en
Publication of JPS5849045A publication Critical patent/JPS5849045A/en
Publication of JPS6322137B2 publication Critical patent/JPS6322137B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は水力発電所における同期発電機の系統芸人制御
方式の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a system performer control system for a synchronous generator in a hydroelectric power plant.

従来周知のように、水力発電所は起動時間が短く連応性
に優れていることからピーク負荷用として運用されてい
るが、この水力発電所は、最近は益々遠隔地に建設され
るようになり従って電力需用地までの送電距離が長くな
ると同時に、コストダウンを計るため、その同期発電機
は益々大容量化する傾向にある。
As is well known, hydroelectric power plants have been operated for peak loads due to their short start-up time and excellent coordination, but recently hydropower plants have been constructed in increasingly remote locations. Therefore, as power transmission distances to power demand areas become longer, synchronous generators tend to have larger capacities in order to reduce costs.

このような水力発電所において、同期発電機および水車
付属装置の電源を確保するため、常時送電線を課電して
おくことは、年間運転時間が例えば年間600時間等と
言った極〈短いものであるため、送電線のロスによる電
力損失が無視できなくなる・この友め、水力発電所はピ
ーク負荷時のみ送電線を課電して同期発電機を運転し、
系統に差入させることが望まれる。
In such hydroelectric power plants, in order to secure the power supply for the synchronous generator and the water turbine auxiliary equipment, constantly charging the power transmission line means that the annual operation time is extremely short, such as 600 hours a year. Therefore, power loss due to transmission line loss cannot be ignored. ・My friend, hydroelectric power plants operate synchronous generators by energizing transmission lines only during peak loads.
It is desirable to insert it into the system.

圧側に同期遮断器を設置し、同期発電機および水車の運
転に先立ち、先ず、主要変圧器の高圧@遮断器を並入し
、主要変圧器を介して同期発電機お・・よび水車付属装
置の電源を確保したのち、同期発しかしながら、この場
合、前述したように主要変圧器も同期発電機の大容量化
に伴い大容量になっているため、上記従来方式では高圧
@遮断器並入時、主要変圧器の励磁突入電流により送電
端電圧が大幅に低下し、系統全体が不安定となり、最悪
の場合は全系統を停電させる危険性があった。
Install a synchronous breaker on the high voltage side, and before operating the synchronous generator and water turbine, first connect the high voltage @ breaker of the main transformer in parallel, and connect the synchronous generator... and water turbine auxiliary equipment via the main transformer. After securing the power source, synchronous generation is started. However, in this case, as mentioned above, the main transformer has also increased in capacity due to the increased capacity of the synchronous generator. The inrush current of the main transformer caused the voltage at the sending end to drop significantly, making the entire system unstable, and in the worst case, there was a risk of a power outage for the entire system.

本発明は、送電線の電力ロスを無くすと共に、ピーク負
荷時、系統を不安定にすることなく、安全に同期発電機
を系統に並入することのできる同期発電機の系統並入制
御方式を提供することを目的とする。
The present invention provides a system for controlling the parallelization of synchronous generators in the grid, which eliminates power loss in transmission lines and allows the synchronous generators to be safely connected to the grid without destabilizing the grid during peak loads. The purpose is to provide.

この目的を達成するため本発明は、主要変圧器の高圧側
および低圧側に同期遮断器を設ける一方。
To achieve this objective, the present invention provides synchronous circuit breakers on the high voltage side and the low voltage side of the main transformer.

その高圧側同期遮断器が開いていて同期発電機および水
車付属装置の電源が送電線よフ受電できない場合は、そ
の電源を他の発電所又は配電線より確保し、同期発電機
の電圧を確立し、高圧側同期遮断器を並入するようにし
九ことを特徴とする。
If the high-voltage side synchronous breaker is open and the power source for the synchronous generator and water turbine accessories cannot be received from the power transmission line, secure the power source from another power plant or distribution line and establish the voltage of the synchronous generator. It is characterized in that a high voltage side synchronous breaker is installed in parallel.

以下、本発明を図の実施例を参照して説明する。The present invention will be explained below with reference to the embodiments shown in the drawings.

第1図は本発明〇−賽施例に係る系統並入制御方式を説
明するための水力発電所の単線結線図を示したものであ
る。
FIG. 1 shows a single line diagram of a hydroelectric power plant for explaining the system parallel control system according to the present invention.

図において、同期発電機1は低圧側同期遮断器(CBG
 ) 2、主要変圧器3、高圧側同期遮断器(CBL 
) 41介して送電線に接続される。それら同期遮断器
2,4を同期並入制御するため同期並入制御装置5が高
圧同期、低圧同期切換用継電器6の動作接点6m、変成
器7,8を介して低圧側同期遮断器20両端に接続され
る。同時に、その継電器6の復帰接点6b%変成器9.
10を介して高圧側同期遮断器40両端に接続される。
In the figure, a synchronous generator 1 is a low-voltage synchronous breaker (CBG)
) 2, Main transformer 3, High voltage side synchronous breaker (CBL)
) 41 to the power transmission line. In order to perform synchronous parallel control of these synchronous circuit breakers 2 and 4, a synchronous parallel control device 5 connects both ends of the low voltage side synchronous circuit breaker 20 via the operating contacts 6m of the relay 6 for high voltage synchronous and low voltage synchronous switching, and the transformers 7 and 8. connected to. At the same time, the return contact 6b% of the relay 6 transformer 9.
10 to both ends of the high voltage side synchronous breaker 40.

同期発電機および水車の付属装置用電源は所内変圧器1
1、所内遮断器(CBH1) 12を介して低圧側同期
遮断器2と主要変圧器3の中間点から取り出される。同
時に、所内遮断器(CBH2) 13を介して配電線又
は他発電所からも供給され得るように構成されている。
The power source for the synchronous generator and water turbine accessories is the station transformer 1.
1. Station breaker (CBH1) Taken out from the midpoint between the low voltage side synchronous breaker 2 and the main transformer 3 via 12. At the same time, it is configured so that it can also be supplied from the distribution line or other power plants via the on-site circuit breaker (CBH2) 13.

また、配電線又は他発電所からの電圧の供給を確認する
電圧確認継電器(VRI)14、付属装置用電源の存在
をiI認する電圧確認継電器(VB2 ) 15がそれ
ぞれ変成器16.17を介して接続されている。更に、
主要変圧器3の低圧側の電圧確認継電器(VRB ) 
18が変成器8を介して接続されている。
In addition, a voltage confirmation relay (VRI) 14 that confirms the supply of voltage from the distribution line or another power plant, and a voltage confirmation relay (VB2) 15 that confirms the existence of a power source for attached equipment are connected via transformers 16 and 17, respectively. connected. Furthermore,
Voltage confirmation relay (VRB) on the low voltage side of main transformer 3
18 are connected via transformer 8.

この構成で、ピーク負荷用の同期発電機lを停止する際
、送電停止後、短時間で再び送電を開始する場合は、低
圧側同期遮断器2を開いて同期発電機1を停止させるだ
け゛で、高圧側同期遮断器4は閉じたまま待機させる。
With this configuration, when stopping the peak load synchronous generator 1, if you want to start power transmission again in a short time after stopping power transmission, simply open the low voltage side synchronous breaker 2 and stop the synchronous generator 1. Then, the high voltage side synchronous breaker 4 is kept closed and on standby.

一方、送電を停止し光径、暫く送電を開始する必要のな
い場合は、前述したように送電線の電力ロスをなくすた
め、相手端遮断器を開くと共に、低圧側同期遮断器2.
高牛側遁断器4を共に開いた状態で待機させることにな
る。
On the other hand, if power transmission is stopped and there is no need to start power transmission for a while, as described above, in order to eliminate power loss in the transmission line, open the breaker at the other end and open the low-voltage side synchronous breaker 2.
Both of the high cow side futonbunki 4 are placed on standby in an open state.

従って、同期発電機1の停止時、主機運転指令が入力さ
れると、第2図の7tif−チャートで示すように、図
示せぬ制御装置は、先ず電圧確認継電器14の状11を
調べ、電圧確認継電器14が動作つまり配電線又は他発
電所より受電が可能なときは、所内遮断器13を閉じ同
時発電機および水車の付属装置用電源を確保する。この
結果、電圧確認継電器15が動作して付属装置用電源が
確保されたことに吃れば、高圧同期、低圧同期切換用継
電器6t−復帰状態にして主機即ち同期発電機および水
車を起動する0次に、主機回転数が定格の80%に達し
たとき、低圧側同期遮断器2を閉じる一方、同期発電機
lの励磁制御を開始する・これにより、同期発電機1の
電圧を立ち上げ、その電圧が確立したとき、同期並入制
御装置5管活かし、壜巷同期切換用継電器6の復帰によ
り閉じている接点6bを介して入力される電圧に応じ、
高圧側同期遮断器弘を同期並入する。
Therefore, when the synchronous generator 1 is stopped and a main engine operation command is input, as shown in the 7tif-chart in FIG. When the confirmation relay 14 is activated, that is, when power can be received from the distribution line or another power plant, the in-house circuit breaker 13 is closed to secure power for the simultaneous generator and the attached equipment of the water turbine. As a result, when the voltage confirmation relay 15 operates and the power supply for the attached equipment is secured, the high-voltage synchronous/low-voltage synchronous switching relay 6t is set to the reset state and the main engine, that is, the synchronous generator and the water turbine are started. Next, when the main engine rotational speed reaches 80% of the rated value, the low-voltage side synchronous breaker 2 is closed, and the excitation control of the synchronous generator 1 is started.Thus, the voltage of the synchronous generator 1 is started, When that voltage is established, the synchronous parallel control device 5 utilizes the voltage input via the contact 6b, which is closed by the return of the synchronous switching relay 6.
Synchronously connect the high voltage side synchronous breaker Hiro.

一方、主機運転指令入力時、電圧確認継電器14が不動
作即ち配電線又は他発電所からの受電が不可能なときは
電圧確認継電器11が動作しているか否か調べる。
On the other hand, when the main engine operation command is input, if the voltage check relay 14 is inoperative, that is, it is not possible to receive power from the distribution line or another power plant, it is checked whether the voltage check relay 11 is operating.

この結果、電圧確認継電器18が不動作つまり高圧側同
期遮断器4も開いていて付属装置用電源が得られないと
きは、同期発を機1の系統並入を断念する。
As a result, when the voltage check relay 18 is inoperative, that is, the high voltage side synchronous circuit breaker 4 is also open and power source for the attached devices cannot be obtained, the synchronous generation machine 1 is given up on joining the system.

しかし、電圧確認継電器18が動作つまフ高圧側同期遮
断器4が閉じていて付属装置用電源を取り出すことが可
能ならば、所内遮断器12を閉じ付属装置用電源を確保
したのち、n同期切換用継電器6t−動作させる。その
後は、前述同様、主機を起動し、その主機回転数が定格
の80%に達したとき、直ちに同期発電機1に励磁をか
け、同期発電機l電圧が確立したとき同期並入制御装置
5を動作させて低圧側同期遮断器2を同期並入させる。
However, if the voltage confirmation relay 18 is activated and the high-voltage side synchronous breaker 4 is closed and it is possible to take out the power for the attached equipment, then the station circuit breaker 12 is closed and the power for the attached equipment is secured, and then the n synchronous switching is performed. Relay 6t-operate. Thereafter, as described above, the main engine is started, and when the main engine rotational speed reaches 80% of the rated value, the synchronous generator 1 is immediately excited, and when the synchronous generator l voltage is established, the synchronous parallel control device 5 is operated to synchronously close the low voltage side synchronous circuit breaker 2.

このようにして、配電線又は他発電所より同期発電機お
よび水車の付属装置用電源が確保可能なときは、高圧側
同期遮断器4の同期並入即ち高圧同期並入制御を行う。
In this way, when the power source for the synchronous generator and the attached equipment of the water turbine can be secured from the distribution line or another power plant, synchronous parallel connection of the high voltage side synchronous circuit breaker 4, that is, high voltage synchronous parallel connection control is performed.

一方、その付属装置用電源が配電線又は他発電所より得
られなくとも、主要変圧器3を介して得られる場合は、
低圧側同期遮断器2の同期並入即ち低圧同期並入制御を
行う。
On the other hand, if the power source for the auxiliary equipment cannot be obtained from the distribution line or other power plant, but can be obtained via the main transformer 3,
Performs synchronous parallel entry of the low voltage side synchronous circuit breaker 2, that is, low voltage synchronous parallel entry control.

これにより、主要変圧器3の励磁突入電源を防止するこ
とができ、系統を不安定にするととなく、同期発電機の
同期並入が可能となる。
This makes it possible to prevent the excitation inrush power of the main transformer 3, and to enable synchronous parallel connection of the synchronous generators without destabilizing the system.

尚、上記実施例では同期発電機を系統に並入する際、当
該水力発電所では先ず配電線又は他発電所からの受電が
可能か否かを判断し、可能でない場合は次に主要変圧器
が課電されていて付属装置用電源が送電線よフ取り出し
得る状態にあるか否か判断するように説明したが、先に
付属装置用電源が送電線より取り出し得る状態にあるか
否か判断し、取り出せないときには、次に配電線および
他発電所からの受電が可能か否か判断するようにしても
良い。
In the above example, when a synchronous generator is connected to the system, the hydroelectric power station in question first determines whether it is possible to receive power from the distribution line or another power station, and if it is not possible to receive power from the main transformer. I explained that it is necessary to judge whether the power supply for the attached device can be taken out from the power transmission line because the power supply for the attached device is energized, but first it is determined whether the power supply for the attached device can be taken out from the power transmission line. However, when the power cannot be extracted, it may be determined whether or not it is possible to receive power from the distribution line or another power plant.

以上のように、本発明によれば、主要変圧器の高圧側お
よび低圧側に同期遮断器を設ける一方、同期発電機およ
び水車の付属装置用電源を配電線および他発電所からも
得られるように構成し、上記付属装置用電源が送電線よ
り得られないときは、配電線および他発電所より得て同
期発電機を同期並入するようにしたので、送電線の電力
ロスを無くすことができると共に、ピーク負荷時、励磁
突入電流を生じることなく同期発電機を安定して系統に
並入することが可能となる。
As described above, according to the present invention, synchronous circuit breakers are provided on the high-voltage side and low-voltage side of the main transformer, while power source for the synchronous generator and accessories of the water turbine can also be obtained from distribution lines and other power plants. When the power source for the above-mentioned attached equipment cannot be obtained from the power transmission line, it is obtained from the distribution line or another power plant and the synchronous generator is connected synchronously, thereby eliminating power loss in the power transmission line. At the same time, it becomes possible to stably connect a synchronous generator to the grid without generating an excitation inrush current during peak load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一冥施例に係る水力発電所の単結綜図
、第2図はその動作を説明するためのフローチャートで
ある。 l・・・同期発電機、2・・・低圧側同期遮断器、3・
・・9.10,16.17・・・変成器、11・・・所
内変圧器、12.13・・・所内遮断器、14,15.
18・・・電圧確認継電器。
FIG. 1 is a single heave diagram of a hydroelectric power plant according to one embodiment of the present invention, and FIG. 2 is a flowchart for explaining its operation. l...Synchronous generator, 2...Low voltage side synchronous breaker, 3...
... 9.10, 16.17... Transformer, 11... Station transformer, 12.13... Station circuit breaker, 14, 15.
18...Voltage confirmation relay.

Claims (1)

【特許請求の範囲】[Claims] 同期発電機を主要変圧器を介して系統に同期並入する同
期発電機の系統並人制御方弐において、主要変圧器の高
圧側および低圧側に同期遮断器を設ける一方、同期発電
機および水車付属装置用電源を配電線および他発電所よ
りからも得られるように構成し、同期発電機起動時、上
記高圧側の同期遮断器が開、いていて上記付属装置用電
源が送電線よシ得られないときは、上記配電線および他
発電所より得て同期発電機を起動し、上記低圧側同期遮
断器投入後、上記高圧側同期遮断器により同期並入する
ことを特徴とする同期発電機の系統芸人制御方式、−
In system parallel control method 2 of a synchronous generator, in which the synchronous generator is synchronously connected to the grid via the main transformer, a synchronous circuit breaker is provided on the high voltage side and the low voltage side of the main transformer, while the synchronous generator and the water turbine are The configuration is such that the power source for the accessory equipment can be obtained from the distribution line and other power plants, and when the synchronous generator is started, the high-voltage side synchronous breaker is opened and the power source for the accessory equipment is obtained from the power transmission line. When the synchronous generator cannot be used, the synchronous generator is started using the power from the distribution line and another power plant, and after the low voltage side synchronous breaker is closed, the high voltage side synchronous circuit breaker is used to synchronize the generator. Systematic entertainer control method of -
JP56145426A 1981-09-17 1981-09-17 System parallel operation control system for synchronous generators Granted JPS5849045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56145426A JPS5849045A (en) 1981-09-17 1981-09-17 System parallel operation control system for synchronous generators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56145426A JPS5849045A (en) 1981-09-17 1981-09-17 System parallel operation control system for synchronous generators

Publications (2)

Publication Number Publication Date
JPS5849045A true JPS5849045A (en) 1983-03-23
JPS6322137B2 JPS6322137B2 (en) 1988-05-10

Family

ID=15384968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56145426A Granted JPS5849045A (en) 1981-09-17 1981-09-17 System parallel operation control system for synchronous generators

Country Status (1)

Country Link
JP (1) JPS5849045A (en)

Also Published As

Publication number Publication date
JPS6322137B2 (en) 1988-05-10

Similar Documents

Publication Publication Date Title
US6849967B2 (en) Automatic transfer switch for microturbine and method of operation
US6128204A (en) Line power unit for micropower generation
US7239045B2 (en) Power distribution system and control system for same
US6727603B1 (en) Automatic mode transitions for microturbine generating systems
JPS5849045A (en) System parallel operation control system for synchronous generators
JP2623867B2 (en) Power generation system control method
JPH07332012A (en) Gas turbine static type starting system
JP2004336933A (en) Power supplying system
CN107947643B (en) Ship motor start-stop control circuit
JPH1066265A (en) Method for operating power system
CN217789314U (en) Multi-mode generator set
CN202435323U (en) Switching control device of auto-transformer
JPH05244737A (en) Domestic power supply switching controller for power generating plant
JP3212701B2 (en) Static variable voltage variable frequency power supply and power supply system
CN117200423A (en) High-voltage power utilization system of combined cycle power plant of combustion engine and combined power generation system of combustion engine
Hubbi et al. Operational problems with large induction motors connected to a small power system
JP3064320B2 (en) Spot network relay operation setting method
JPS6295929A (en) Testing apparatus for emergency diesel generator
Szwander Power supply for generating station auxiliary services
JPH0951696A (en) Starting device for gas turbine
CN114629121A (en) Flexible wiring method for auxiliary power of thermal power plant
JPH08182200A (en) System interconnection system for non-utility ac generator facility
JPS60148345A (en) Generating plant
JPS62207144A (en) Power controller
JPH05328616A (en) Engine generating facility