JPS5848742B2 - engine intake system - Google Patents

engine intake system

Info

Publication number
JPS5848742B2
JPS5848742B2 JP53153884A JP15388478A JPS5848742B2 JP S5848742 B2 JPS5848742 B2 JP S5848742B2 JP 53153884 A JP53153884 A JP 53153884A JP 15388478 A JP15388478 A JP 15388478A JP S5848742 B2 JPS5848742 B2 JP S5848742B2
Authority
JP
Japan
Prior art keywords
valve
flow rate
air flow
intake air
rate detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53153884A
Other languages
Japanese (ja)
Other versions
JPS5578129A (en
Inventor
克日子 横奥
節男 原田
孝成 徳島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kogyo Co Ltd filed Critical Toyo Kogyo Co Ltd
Priority to JP53153884A priority Critical patent/JPS5848742B2/en
Publication of JPS5578129A publication Critical patent/JPS5578129A/en
Publication of JPS5848742B2 publication Critical patent/JPS5848742B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、吸入空気流量検出弁を吸気通路に介設し、該
検出弁によって吸入空気流量を検出し、吸入空気流量に
応じて燃料を計量し、計量した燃料を吸気通路に供給す
る燃料供給装置を備えたエンジンの吸気装置の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention includes an intake air flow rate detection valve interposed in the intake passage, the intake air flow rate detected by the detection valve, fuel measured according to the intake air flow rate, and the measured fuel. The present invention relates to an improvement in an intake system for an engine equipped with a fuel supply system that supplies fuel to an intake passage.

従来より、上記の如き吸気装置は種々公知であり、吸入
空気流量に比例した燃料を供給できるため、通常の気化
器に比べ空燃比を正確にコントロールできる利点を有す
る。
Conventionally, various intake devices as described above have been known, and because they can supply fuel proportional to the intake air flow rate, they have the advantage of being able to control the air-fuel ratio more accurately than ordinary carburetors.

しかしながら、吸入空気流量を吸気通路に介設した吸入
空気流量検出弁によって検出するようにしているため、
この吸入空気流量検出弁自体が吸気抵抗となる問題があ
る。
However, since the intake air flow rate is detected by an intake air flow rate detection valve installed in the intake passage,
There is a problem that this intake air flow rate detection valve itself causes intake resistance.

この場合、吸気通路の吸気抵抗は、吸入空気流量検出弁
とこの検出弁の下流側に設けられ、アクセルペタルに連
動して開閉制御される絞弁とでほぼ決定されるが、吸入
空気流量の少ない低負荷運転時には、主として絞弁によ
って支配され、吸入空気流量検出弁による吸気抵抗はさ
ほど問題とならない。
In this case, the intake resistance of the intake passage is almost determined by the intake air flow rate detection valve and the throttle valve that is provided downstream of this detection valve and is controlled to open and close in conjunction with the accelerator pedal. During low-load operation, it is mainly controlled by the throttle valve, and the intake resistance caused by the intake air flow rate detection valve does not pose much of a problem.

しかしながら、絞弁が全開される高負荷運転時には、吸
気通路の吸気抵抗は吸入空気流量検出弁によって支配さ
れ、吸入空気流量検出弁による吸気抵抗のため、吸入空
気量が不足し、これ応じて燃料流量も不足し充填効率が
低下して必要十分な出力を確保することができな(潤題
があった。
However, during high-load operation when the throttle valve is fully opened, the intake resistance in the intake passage is controlled by the intake air flow rate detection valve, and due to the intake resistance caused by the intake air flow rate detection valve, the amount of intake air is insufficient, and accordingly, the amount of fuel The flow rate was also insufficient, the filling efficiency decreased, and it was not possible to secure the necessary and sufficient output (there was a problem).

また、絞弁が全開される高負荷運転時には吸気脈動が吸
入空気流量検出弁に作用し吸入空気流量検出弁が誤作動
する問題がある。
Furthermore, during high-load operation in which the throttle valve is fully opened, the intake pulsation acts on the intake air flow rate detection valve, causing the intake air flow rate detection valve to malfunction.

本発明は、かSる問題を解消すべくなされたものであっ
て、高出力が要求される運転時には、吸入空気流量によ
って決まる吸入空気流量検出弁の開度より大きく全開保
持させることによって、高出力を保障するのに必要十分
な吸入空気量を確保することができ、したがって必要十
分な燃料流量を確保することができるとともに、吸気脈
動による吸入空気流量検出弁の誤作動が防止できるエン
ジンの吸気装置を提供せんとするものである。
The present invention has been made to solve the above problem. During operation where high output is required, the intake air flow rate detection valve is kept fully open to a degree larger than the opening determined by the intake air flow rate. An engine intake system that can secure the necessary and sufficient amount of intake air to guarantee output, and therefore ensure the necessary and sufficient fuel flow rate, as well as prevent malfunction of the intake air flow rate detection valve due to intake pulsation. The aim is to provide the equipment.

このため、本発明にかかるエンジンの吸気装置において
は、高出力が要求される運転状態を検出し高出力が要求
される運転状態になる際信号を発する運転状態検出装置
を設けるとともに、この運転?態検出装置の信号により
、吸入空気流量検出弁の自然の開度以上に該流量検出弁
を大きく開作動させて全開保持する弁全開保持装置を設
け、高出力が要求される運転時には、吸入空気流量検出
弁を強制的に全開保持させ、吸入空気流量検出弁による
吸気抵抗を実質的に皆無ならしめると同時に、吸入空気
流量検出弁の全開保持に応じて燃料流量を大巾に増量す
るようにするとともに吸気脈動による吸入空気流量検出
弁の誤作動を確実に防止したことを基本的な特徴として
いる。
For this reason, the engine intake system according to the present invention is provided with an operating state detection device that detects an operating state that requires high output and issues a signal when the operating state that requires high output is reached. A valve full-open holding device is installed that opens the intake air flow rate detection valve wide beyond its natural opening level based on the signal from the state detection device and holds it fully open. The flow rate detection valve is forcibly held fully open to virtually eliminate the intake resistance caused by the intake air flow rate detection valve, and at the same time, the fuel flow rate is greatly increased as the intake air flow rate detection valve is held fully open. At the same time, its basic feature is that it reliably prevents malfunction of the intake air flow rate detection valve due to intake pulsation.

本発明に係る燃料供給装置は、吸入空気流量検出弁の開
度に応じて燃料流量を設定するものであれば、機械式、
電気式のいずれであってもよく、高出力要求時、吸入空
気流量検出弁を強制的に全開保持する弁全開保持装置は
、機械的な作動装置であっても電気的作動装置であって
もよい。
The fuel supply device according to the present invention may be a mechanical type, as long as it sets the fuel flow rate according to the opening degree of the intake air flow rate detection valve.
The valve full-open holding device that forcibly holds the intake air flow rate detection valve fully open when high output is required may be either a mechanical actuator or an electrical actuator. good.

また、本発明に係る運転状態検出装置は、絞弁の開度、
絞弁下流の圧力等要するに高出力が要求される運転状態
を検出するのに必要な情報をもとに、その運転状態を検
出することができ、それに応じて信号を発するものであ
ればよく、信号としては、圧力信号や電気信号等、要す
るに弁全開保持装置の形式に応じてこれを作動させるこ
とができる信号であればよく、か工る意味で、機械的、
電気的いずれの構造のものも用いることができる。
Further, the operating state detection device according to the present invention can detect the opening degree of the throttle valve,
It is sufficient that the device can detect the operating condition based on the information necessary to detect the operating condition that requires high output, such as the pressure downstream of the throttle valve, and emit a signal accordingly. The signal may be a pressure signal, an electric signal, or any other signal that can operate the device depending on the type of valve holding device.
Any electrical structure can be used.

以下、図面の実施例について、本発明を具体的に説明す
る。
The present invention will be specifically described below with reference to embodiments shown in the drawings.

まず、第1図について、本発明を適用するエンジンの吸
気装置の基本構成を説明する。
First, with reference to FIG. 1, the basic configuration of an engine intake system to which the present invention is applied will be explained.

第1図において、1はアクセルペダル(図示せず。In FIG. 1, 1 is an accelerator pedal (not shown).

)に連動して開閉制御される絞弁2を備えた吸気通路、
3は絞弁2上流の吸気通路1の折曲部1人を利用して設
けたテーパ部1Bに対して設定した円板状の弁体よりな
る吸入空気流量検出弁、4は吸入空気流量検出弁3の上
流側近傍の圧力P1 と下流側近傍の圧力P2 との
差圧が常時一定となるように吸入空気流量検出弁3の開
度な調整する差圧調整装置、5は吸入空気流量検出弁3
の開度に応じて燃料を機械的に計量する燃料計量装置、
6は燃料タンクγ内の燃料を燃料フィルタ8を介して吸
込んで加圧し、燃料フィルタ9を介して上記燃料計量装
置5に供給通路1によって供給する燃料ポンプ、10は
燃料計量装置5の出口に連結した供給通路l2の下流に
設けた噴射弁、11は上記供給通路l2の途中に介設し
た燃料の微調整用のダイヤフラム式等差圧弁装置、12
は供給通路12の等差圧弁装置11と噴射弁100間に
介設され、エンジン停止時及び減速時に燃料をカットす
る燃料カット電磁弁、13は上記等差圧弁装置11の圧
力室11aに、エンジンの運転条件を例えば冷却水温セ
ンサ、アイドルセンサ、絞弁全開センサ、02センサ(
排気ガス中の酸素濃度を検出するセンサ)、EGRセン
サ等により検出し、これに基いて設定された時間の間に
開弁される時間を変化させることによって所定の燃料ポ
ンプ6かもの吐出燃料を供給することにより、等差圧弁
装置11を制御する比例電磁弁、14は余剰燃料の帰還
通路13を利用一して設けた加速時の燃料増量用の加速
ポンプで、これらは、差圧調整装置4により吸入空気流
量に比例するように開度が調整される吸入空気流量検出
弁3の開度に応じて、燃料ポンプ6から吐出された燃料
を燃料計量装置5により計量し、計量した燃料量を゛専
差圧弁装置11で微調整したうえで、噴射弁10を介し
て燃料噴射部16から吸気通路1の絞弁2の上流に噴射
する吸気装置を構或している。
), an intake passage equipped with a throttle valve 2 whose opening and closing are controlled in conjunction with the
Reference numeral 3 indicates an intake air flow rate detection valve consisting of a disc-shaped valve body set for a tapered portion 1B provided by using a bent portion of the intake passage 1 upstream of the throttle valve 2; 4 indicates an intake air flow rate detection valve; A differential pressure adjusting device adjusts the opening of the intake air flow rate detection valve 3 so that the pressure difference between the pressure P1 near the upstream side and the pressure P2 near the downstream side of the valve 3 is always constant; 5 is an intake air flow rate detection device; Valve 3
A fuel metering device that mechanically measures fuel according to the opening degree of the
Reference numeral 6 denotes a fuel pump which sucks and pressurizes the fuel in the fuel tank γ via a fuel filter 8 and supplies it to the fuel metering device 5 through the supply passage 1 via the fuel filter 9; An injection valve 11 is provided downstream of the connected supply passage 12, and 12 is a diaphragm type equal differential pressure valve device for fine adjustment of fuel, which is interposed in the middle of the supply passage 12.
13 is a fuel cut solenoid valve which is interposed between the equal differential pressure valve device 11 and the injection valve 100 in the supply passage 12 and cuts fuel when the engine is stopped and decelerated; For example, the operating conditions of the cooling water temperature sensor, idle sensor, throttle valve fully open sensor, 02 sensor (
A sensor that detects the oxygen concentration in exhaust gas), an EGR sensor, etc. detect this, and based on this, the valve is opened for a set period of time to change the amount of fuel discharged from the predetermined fuel pump. The proportional solenoid valve 14 controls the equal differential pressure valve device 11 by supplying it, and 14 is an acceleration pump for increasing the amount of fuel during acceleration, which is provided by using the excess fuel return passage 13. The fuel discharged from the fuel pump 6 is measured by the fuel metering device 5 according to the opening degree of the intake air flow rate detection valve 3 whose opening degree is adjusted in proportion to the intake air flow rate by 4, and the measured amount of fuel is determined. An intake device is constructed in which the fuel is finely adjusted by a dedicated differential pressure valve device 11 and then injected from a fuel injection section 16 to an upstream side of a throttle valve 2 in an intake passage 1 via an injection valve 10.

より具体的に、各装置の構造を説明すると、まず、差圧
調整装置4は、吸入空気流量検出弁3の上流側近傍の圧
力P1(P1は大気圧である)と下流側近傍の圧力P2
との差圧P1−P2が常時設定値JP(例えば、3
0miHg )となるように、吸入空気流量検出弁30
開度を調整するためのもので、吸入空気流量検出弁3の
ガイドロツド17を、上記吸気通路1の折曲部IAの背
部に連通孔18aで連通ずるように形成した室18内に
おいて支持したオリフィス19を有するベローズ20お
よびこのベローズ20の内圧を制御するダイヤフラム装
置Dを備えている。
More specifically, to explain the structure of each device, first, the differential pressure adjustment device 4 controls the pressure P1 (P1 is atmospheric pressure) near the upstream side of the intake air flow rate detection valve 3 and the pressure P2 near the downstream side.
The differential pressure P1-P2 between the
0 miHg), the intake air flow rate detection valve 30
An orifice for adjusting the opening degree, in which the guide rod 17 of the intake air flow rate detection valve 3 is supported in a chamber 18 formed so as to communicate with the back of the bent portion IA of the intake passage 1 through a communication hole 18a. 19 and a diaphragm device D for controlling the internal pressure of the bellows 20.

このダイヤフラム装置Dは、上部室21と下部室22と
を形成する・・ウジング23と、下部室22をさらに上
、下の圧力室24,25に仕切る差圧設定ダイヤフラム
26と、上部室21の中央部に突設した弁座27と、上
記差圧設定ダイヤフラム26にロツド28を介して連動
し、上部室21の内周部21aと外周部2lbとの連通
を制御する開閉弁29と、上記下側圧力室25内に縮装
された差圧設定スプリング30と、上記外周部21b内
に縮装され上記開閉弁29を常時閉方向に付勢するいま
一つの差圧設定スプリング31と、下側圧力室25内に
おいて差圧設定ダイヤフラム26に対して設置され、例
えば大気を1気圧40゜Cで密封したべローズ32とを
有し、上記上部室21の外周部2lbには、通路m1
によって吸入空気流量検出弁3の上流側近傍の圧力P1
を導入するようにするとともに、該外周部2lbと下
部室22の上側圧力室24とを連通ずる一方、下側圧力
室25には、通路m2によって吸入空気流量検出弁3の
下流側近傍の圧力P2を導入するようにし、また上部室
21の内周部21aは通路m3によって吸入空気流量検
出弁3のガイドロツド17を支持したべローズ20の内
部空間20aに連通している。
This diaphragm device D includes a housing 23 that forms an upper chamber 21 and a lower chamber 22, a differential pressure setting diaphragm 26 that partitions the lower chamber 22 into upper and lower pressure chambers 24, 25, and a a valve seat 27 protruding from the center; an on-off valve 29 interlocked with the differential pressure setting diaphragm 26 via a rod 28 to control communication between the inner peripheral part 21a and the outer peripheral part 2lb of the upper chamber 21; A differential pressure setting spring 30 is compressed in the lower pressure chamber 25, another differential pressure setting spring 31 is compressed in the outer peripheral part 21b and always biases the on-off valve 29 in the closing direction, A bellows 32 is installed in the side pressure chamber 25 with respect to the differential pressure setting diaphragm 26 and is sealed against the atmosphere at 1 atm and 40°C, for example.
The pressure P1 near the upstream side of the intake air flow rate detection valve 3 is
At the same time, the outer peripheral portion 2lb and the upper pressure chamber 24 of the lower chamber 22 are communicated with each other. P2 is introduced, and the inner peripheral portion 21a of the upper chamber 21 communicates with the inner space 20a of the bellows 20 supporting the guide rod 17 of the intake air flow rate detection valve 3 through a passage m3.

なお、上記開閉弁29は、上側圧力室24に導入される
吸入空気流量検出弁3の上流側近傍の圧力P1 と下側
圧力室25に導入される吸入空気流量検出弁3の下流側
近傍の圧力P2 との差圧が上記した設定値JPより
小さくなる際には差圧設定ダイヤフラム26の上方への
移動によって開かれる一方、上記差圧が設定値JPより
大きくなる際には差圧設定ダイヤフラム26の下方への
移動によって閉じられるように、差圧設定スプリング3
0 ,310スプリングカを設定している。
The on-off valve 29 has a pressure P1 near the upstream side of the intake air flow rate detection valve 3 introduced into the upper pressure chamber 24 and a pressure P1 near the downstream side of the intake air flow rate detection valve 3 introduced into the lower pressure chamber 25. When the differential pressure with respect to the pressure P2 becomes smaller than the set value JP, the differential pressure setting diaphragm 26 is opened by moving upward, while when the differential pressure becomes larger than the set value JP, the differential pressure setting diaphragm 26 opens. Differential pressure setting spring 3 so as to be closed by downward movement of 26
0.310 spring force is set.

いま、例えば第1図に示す状態から絞弁2を開いて加速
状態に入った場合には吸入空気流量検出弁3の下流側近
傍の圧力P2は急激に低下し、吸入空気流量検出弁3の
上流側および下流側近傍の圧力P1,P2の差圧は上記
設定値,{Pより大きくなる。
Now, for example, if the throttle valve 2 is opened from the state shown in FIG. The differential pressure between the pressures P1 and P2 near the upstream side and the downstream side becomes larger than the above set value, {P.

この際、吸入空気流量検出弁3の上流側近傍の圧力P1
および下流側近傍の圧力P2は各々通路m1およびm2
によって上側圧力室24および下側圧力室25に導入さ
れるため、差圧設定ダイヤフラム26は下方に移動し開
閉弁29は閉じられるので通路m1 とm3との連通は
遮断されることになる。
At this time, the pressure P1 near the upstream side of the intake air flow rate detection valve 3
and pressure P2 near the downstream side are passages m1 and m2, respectively.
Since the pressure is introduced into the upper pressure chamber 24 and the lower pressure chamber 25, the differential pressure setting diaphragm 26 moves downward and the on-off valve 29 is closed, thereby cutting off communication between the passages m1 and m3.

よって、吸入空気流量検出弁3の上流側および下流側近
傍の圧力P1,P2の差圧により吸入空気流量検出弁3
は開作動するが、この際ベローズ20の内部空間20a
には加速前の比較的高い圧力が存在するため、オリフイ
ス19を介して内部空間20aと室18内との圧力がバ
ランスするまではこのベローズ20がダンパーとして作
用し吸入空気流量検出弁3の急激な開作動が規制される
Therefore, due to the differential pressure between the pressures P1 and P2 near the upstream and downstream sides of the intake air flow rate detection valve 3, the intake air flow rate detection valve 3
operates to open, but at this time the internal space 20a of the bellows 20
Since there is a relatively high pressure before acceleration, the bellows 20 acts as a damper until the pressure between the internal space 20a and the chamber 18 is balanced through the orifice 19, and the sudden increase in the intake air flow rate detection valve 3 is caused by the bellows 20 acting as a damper. Opening operation is regulated.

吸入空気流量検出弁3が開作動するに従って、その下流
側近傍の圧力P2は上昇し、上流側近傍の圧力P1 と
の差圧が設定値JPより小さくなった時にはダイヤフラ
ム装置Dの差圧設定ダイヤフラム26が上方に移動して
開閉弁29を開くのでベローズ20の内部空間20aに
は通路m1およびm3を介して圧力P1つまり大気圧が
導入される。
As the intake air flow rate detection valve 3 opens, the pressure P2 near its downstream side increases, and when the differential pressure with the pressure P1 near the upstream side becomes smaller than the set value JP, the differential pressure setting diaphragm of the diaphragm device D 26 moves upward and opens the on-off valve 29, pressure P1, that is, atmospheric pressure, is introduced into the internal space 20a of the bellows 20 via the passages m1 and m3.

すなわち、吸入空気流量検出弁3が開作動し、その上流
側および下流側近傍の圧力PI,P2の差圧が設定値J
Pより小さくなるベローズ20の内部空間20aに圧入
P1が導入されるのでベローズ20は膨張し吸入空気流
量検出弁3を閉方向に移動させる。
That is, the intake air flow rate detection valve 3 is opened, and the differential pressure between the pressures PI and P2 near the upstream and downstream sides reaches the set value J.
Since the press fit P1 is introduced into the internal space 20a of the bellows 20 which is smaller than P, the bellows 20 expands and moves the intake air flow rate detection valve 3 in the closing direction.

そして吸入空気流量検出弁3が閉方向に移動すると今度
はその下流側近傍の圧力P2が低下することによって上
流側および下流側近傍の圧力p17 P2の差圧が設定
値JPより大きくなりダイヤフラム装置Dの差圧設定ダ
イヤフラム26は再び下方向に移動して開閉弁29が閉
じられるので吸入空気流量検出弁3は開方向に移動する
ことになる。
Then, when the intake air flow rate detection valve 3 moves in the closing direction, the pressure P2 near its downstream side decreases, and the differential pressure between the pressures p17 and P2 near the upstream side and the downstream side becomes larger than the set value JP, and the diaphragm device D Since the differential pressure setting diaphragm 26 moves downward again and the on-off valve 29 is closed, the intake air flow rate detection valve 3 moves in the opening direction.

このように、吸入空気流量検出弁3はその上流側および
下流側近傍の圧力P1,P2の差圧が設定値JPになる
開度で保持されるのである。
In this way, the intake air flow rate detection valve 3 is maintained at the opening degree where the differential pressure between the pressures P1 and P2 near the upstream and downstream sides thereof becomes the set value JP.

一方、上記した状態から絞弁2を閉じて減速状態に入っ
た場合には、吸入空気流量検出弁3の下流側近傍の圧力
P2は急激に上昇し、吸入空気流量検出弁3の上流側お
よび下流側近傍の圧力P1,P2の差圧は設定値Jpよ
り小さくなるので、ダイヤフラム装置Dの差圧設定ダイ
ヤフラム26の上方向への移動によって開閉弁29が開
かれる。
On the other hand, when the throttle valve 2 is closed and the deceleration state is entered from the above state, the pressure P2 near the downstream side of the intake air flow rate detection valve 3 rises rapidly, and the pressure P2 on the upstream side of the intake air flow rate detection valve 3 and the vicinity Since the differential pressure between the pressures P1 and P2 near the downstream side becomes smaller than the set value Jp, the opening/closing valve 29 is opened by upward movement of the differential pressure setting diaphragm 26 of the diaphragm device D.

よって、ベローズ20の内部空間20aに圧力P1が導
入されるのでベローズ20が膨張し吸入空気流量検出弁
3は閉作動される。
Therefore, since the pressure P1 is introduced into the internal space 20a of the bellows 20, the bellows 20 expands and the intake air flow rate detection valve 3 is operated to close.

その後、吸入空気流量検出弁3の閉作動によって、その
下流側近傍の圧力P2が低下し、上流側および下流側近
傍の圧力P1,P2の差圧が設定値JPの近傍になると
、吸入空気流量検出弁3は上記加速状態と同様に差圧調
整装置40作用によって所要位置に保持されることにな
る。
Thereafter, by the closing operation of the intake air flow rate detection valve 3, the pressure P2 near its downstream side decreases, and when the differential pressure between the pressures P1 and P2 near the upstream side and the downstream side becomes close to the set value JP, the intake air flow rate is reduced. The detection valve 3 is held at a required position by the action of the differential pressure adjustment device 40, as in the acceleration state described above.

なお、上記説明は、大気圧が1気圧、大気温度が40℃
の場合のものであるが、大気圧もし《は太気温度が上記
条件以外にある際にはベローズ32の膨張もしくは収縮
によって開閉弁29が開閉される設定値APを補正し適
切な吸入空気流量検出弁3の開度を与えることによって
大気圧もしくは大気温度に適した燃料流量を設定し得る
ようにしている。
The above explanation assumes that the atmospheric pressure is 1 atm and the atmospheric temperature is 40°C.
However, if the atmospheric pressure is outside the above conditions, the set value AP at which the on-off valve 29 opens and closes due to the expansion or contraction of the bellows 32 is corrected to obtain an appropriate intake air flow rate. By giving the opening degree of the detection valve 3, a fuel flow rate suitable for atmospheric pressure or atmospheric temperature can be set.

次に、燃料計量装置5は、上記ベローズ20を設けた室
18の外壁面に、吸入空気流量検出弁3のガイドロツド
17と同軸をなすように固定した筒状のケーシング35
の内部を仕切部材36によって軸方向に2分し、軸方向
外側の室3γには、供給通路l1 と連通ずる流入口3
8と帰還通路l3に連通ずる帰還口39とを開設すると
ともに、他方の室40には供給通路l2に連通ずる流出
口41を開設する一方、上記ガイドロッド1Tの自由端
側は延長して軸に平行に適当な長さのスリット42を]
た計量ロツド43とし、該計量ロツド43゛を仕切部材
36に摺動自在に貫挿して、スリット42により、両室
37,40を連通した構造を有している。
Next, the fuel metering device 5 includes a cylindrical casing 35 fixed to the outer wall surface of the chamber 18 in which the bellows 20 is provided so as to be coaxial with the guide rod 17 of the intake air flow rate detection valve 3.
The interior of the chamber is axially divided into two parts by a partition member 36, and the axially outer chamber 3γ has an inlet 3 communicating with the supply passage l1.
8 and a return port 39 communicating with the return passage l3, and the other chamber 40 has an outlet 41 communicating with the supply passage l2, while the free end side of the guide rod 1T is extended to form a shaft. A slit 42 of an appropriate length parallel to]
The measuring rod 43 is slidably inserted into the partition member 36, and the two chambers 37 and 40 are communicated with each other through the slit 42.

この場合の燃料の計量は、スリット42と仕切部材36
との相対位置、より具体的には、スリット42の自由端
側端部と仕切部材36の室37側端面36aとの相対距
離に応じて行なわれ、スリット42を有する計量ロツド
43が、吸入空気流量検出弁3の開度に応じて軸方向に
変位される結果、吸入空気流量に比例した燃料の計量が
行えるのである。
In this case, the fuel is measured by using the slit 42 and the partition member 36.
More specifically, the metering rod 43 having the slit 42 is adjusted according to the relative distance between the free end side end of the slit 42 and the end surface 36a of the partition member 36 on the chamber 37 side. As a result of being displaced in the axial direction according to the opening degree of the flow rate detection valve 3, fuel can be measured in proportion to the intake air flow rate.

なお、上記仕切部材36は室40に縮装したスプリング
45によって弾性的に支持する一方、室37側には、ア
ジャストスクリュウ46によって軸方向に位置調整可能
とした、流通孔47aを有する筒状の調節部材47を設
けて、仕切部材36の位置を調整することができるよう
にしている。
The partition member 36 is elastically supported by a spring 45 compressed in the chamber 40, while a cylindrical tube having a flow hole 47a whose position can be adjusted in the axial direction by an adjustment screw 46 is provided on the chamber 37 side. An adjustment member 47 is provided so that the position of the partition member 36 can be adjusted.

また、等差圧弁装置11は、ケーシング50の内部をダ
イヤフラム51によって、2つの圧力室11aと11b
とに仕切り、一方の圧力室11aを比例電磁弁13を介
して供給通路l1 に連通ずる一方、他方の室11bに
は、燃料計量装置5の流出口41に連通ずる流入口52
と噴射弁10側に燃料カット電磁弁12を介して連通ず
るテーパ状の流出口53とを設け、該流出口53に対し
ては、上記ダイヤフラム51からロツド54を介して弁
体55を支持し、圧力室1Ib内において、ケーシング
50とダイヤフラム51との間に縮装したコイルスプリ
ング56の設定荷重と、画室11at11b間の差圧と
で決まるダイヤフラム51の偏位に応じて、弁体55と
流出口53との流通間隙を設定し、燃料計量装置5によ
って予じめ計量された燃料を、エンジンの運転状態に応
じて最終的に補正調整する。
Further, the equal differential pressure valve device 11 has two pressure chambers 11a and 11b formed inside the casing 50 by a diaphragm 51.
One pressure chamber 11a is connected to the supply passage l1 via the proportional solenoid valve 13, while the other chamber 11b has an inlet 52 that communicates with the outlet 41 of the fuel metering device 5.
and a tapered outlet 53 communicating with the fuel cut solenoid valve 12 on the injection valve 10 side, and a valve body 55 is supported from the diaphragm 51 via a rod 54 to the outlet 53. In the pressure chamber 1Ib, the valve body 55 and the flow are adjusted according to the deviation of the diaphragm 51 determined by the set load of the coil spring 56 compressed between the casing 50 and the diaphragm 51 and the differential pressure between the compartments 11at11b. A flow gap with the outlet 53 is set, and the fuel metered in advance by the fuel metering device 5 is finally corrected and adjusted according to the operating state of the engine.

即ち、等差圧弁装置11は、運転条件に応じて設定時間
に対する開弁時間が制御され、室11aに作用する圧力
を匍脚する比例電磁弁13によって室11aに与えられ
る圧力と、他方の室11bの圧力との差が一定値となる
ように、ダイヤフラム51をコイルスプリング56のス
プリングカとの関係において偏位せしめ、流出口53の
流出量を、支持した弁体55によって設定するのである
That is, the equal differential pressure valve device 11 has a valve opening time for a set time controlled according to the operating conditions, and the pressure applied to the chamber 11a by the proportional solenoid valve 13 which controls the pressure acting on the chamber 11a, and the pressure applied to the other chamber. The diaphragm 51 is deviated in relation to the spring force of the coil spring 56 so that the difference between the pressure and the pressure at the outlet 11b is a constant value, and the flow rate from the outlet 53 is set by the supported valve body 55.

なお、等差圧弁装置110室11a側は、途中にオリフ
イス57を設げた帰還路l4によって主帰還路l3に、
連通しており、この帰還路l4 より比例電磁弁13を
通過した燃料を常時所要量帰還させることによって、室
11a内の圧力を比例電磁弁13によって制御し得るよ
うにしている。
In addition, the equal differential pressure valve device 110 chamber 11a side is connected to the main return path l3 by a return path l4 having an orifice 57 in the middle.
The pressure inside the chamber 11a can be controlled by the proportional solenoid valve 13 by constantly returning the required amount of fuel that has passed through the proportional solenoid valve 13 through this return path l4.

また、燃料カット電磁弁12は通常は等差圧弁装置11
の流出口53側と噴射弁10側とを連通ずるよう作動し
、エンジン停止時や減速時等の燃料カットを必要とする
時には、主帰還路l3に連通した帰還路l5 に等差圧
弁装置11の流出口53側に切換え連通させるように作
動するものである。
Further, the fuel cut solenoid valve 12 is normally operated by the equal differential pressure valve device 11.
The equal differential pressure valve device 11 is operated to communicate the outlet 53 side of the injector 10 with the injection valve 10 side, and when a fuel cut is required such as when the engine is stopped or decelerated, an equal pressure valve device 11 is installed in the return path l5 communicating with the main return path l3. It operates so as to switch and communicate with the outflow port 53 side.

また、燃料ポンプ6下流の供給通路l1 と主帰還路
l3との間に設けた逆止弁58は、燃料ポンプ6によっ
て吐出された燃料の圧力を吐出圧より低い一定圧力に維
持するためのもので、該逆止弁58との連結点より下流
の主帰還路l3に介設した逆止弁59は、主帰還路l3
に所要の通路抵抗を発生させ供給通路l2側に燃料を流
し得るようにするためのものである。
Further, a check valve 58 provided between the supply passage l1 downstream of the fuel pump 6 and the main return passage l3 is for maintaining the pressure of the fuel discharged by the fuel pump 6 at a constant pressure lower than the discharge pressure. The check valve 59 interposed in the main return path l3 downstream from the connection point with the check valve 58 is connected to the main return path l3.
This is to generate the necessary passage resistance in the supply passage 12 so that the fuel can flow to the supply passage 12 side.

一方、加速時の燃料増量を分担する加速ポンプ14は、
主帰還路l3は逆止弁59の下流に介設したオリフイス
60の上流及び下流に連通路l6,l7によって連通ず
る流入室61と、チェックボールCに介して流入室61
に連通し、常時燃料を貯溜する貯溜室62とを有し、貯
溜室62は逆止弁63を介設した供給通路l8によって
燃料噴射部16に設けた増量ポート65に連通している
On the other hand, the acceleration pump 14 which shares the increase in fuel amount during acceleration,
The main return path l3 has an inflow chamber 61 that communicates with the upstream and downstream of an orifice 60 provided downstream of the check valve 59 through communication passages l6 and l7, and an inflow chamber 61 that communicates with the inflow chamber 61 through a check ball C.
The storage chamber 62 communicates with an increase port 65 provided in the fuel injection section 16 through a supply passage l8 in which a check valve 63 is interposed.

上記貯溜室62の圧縮のために設けたダイヤフラム66
は、ロツド67を介して、絞弁2の開閉に連動するリン
ク(図示せず)に連結し、絞弁2が開作動されたときに
は、ダイヤフラム66をロツド67を介して圧縮作動さ
せ、貯溜室62内に貯溜していた燃料を供給通路l8に
送出し、送出された燃料は供給通路l8を通して、増量
ポート65から吸気通路1に供給され、加速時に必要な
燃料を賄なう。
A diaphragm 66 provided for compressing the storage chamber 62
is connected via a rod 67 to a link (not shown) that is linked to the opening and closing of the throttle valve 2, and when the throttle valve 2 is opened, the diaphragm 66 is compressed via the rod 67, and the reservoir chamber is opened. The fuel stored in the engine 62 is delivered to the supply passage 18, and the delivered fuel is supplied to the intake passage 1 from the increase port 65 through the supply passage 18, thereby supplying the fuel required during acceleration.

なお、燃料噴射部16は、絞弁2の上流に対向するよう
に設置した室70の底面に環状に開口させた噴射孔71
を設けるとともに、該噴射孔71の上方に、噴射弁10
に連通ずる噴射ノズル72の下端を臨ませる一方、該室
TOには、吸気通路1の吸入空気流量検出弁3の上流に
大気取入口73aを設げたエアブリード管73によって
大気を導入するようにし、噴射ノズル72から噴射され
た燃料が導入したエアによってその霧化、気化が促進さ
れた上で、噴射孔71より噴出するようにしたものであ
る。
The fuel injection unit 16 includes an injection hole 71 that is opened in an annular shape at the bottom of a chamber 70 that is installed to face the upstream side of the throttle valve 2.
An injection valve 10 is provided above the injection hole 71.
The lower end of the injection nozzle 72 that communicates with the chamber TO faces the lower end of the injection nozzle 72, and the atmosphere is introduced into the chamber TO through an air bleed pipe 73 having an atmosphere intake port 73a upstream of the intake air flow rate detection valve 3 of the intake passage 1. The fuel injected from the injection nozzle 72 is atomized and vaporized by the introduced air, and is then ejected from the injection hole 71.

また、絞弁2は、図示の如く3枚の円板75,76,7
7を重合せるとともに、上側の円板75に、上記噴射孔
71から噴射されてくる燃料を受合う環状の打抜き開口
78を設け、受容した燃料を画板間の間隙を通して中間
および下側円板76,77の周囲に案内し流出させるよ
うにすれば、燃料の霧化気化をより一層良好なものとす
ることができる。
Further, the throttle valve 2 is made up of three disks 75, 76, 7 as shown in the figure.
At the same time, the upper disk 75 is provided with an annular punched opening 78 that receives the fuel injected from the injection hole 71, and the received fuel is passed through the gap between the drawing plates to the middle and lower disks 76. , 77 to flow out, the atomization and vaporization of the fuel can be further improved.

以上の基本構成に加えて、本実施例では、高出力が要求
される運転状態を検出し、高出力が要求される運転状態
になる際信号を発する運転状態検出装置80を設けると
ともに、該運転状態検出装置80の信号発生時にオンさ
れるスイッチ81を介してバツテリ82に接続された電
磁弁83からなる弁全開保持装置を吸入空気流量検出弁
3に対して設けている。
In addition to the above basic configuration, this embodiment is provided with an operating state detection device 80 that detects an operating state that requires high output and issues a signal when the operating state that requires high output is reached. A fully open valve holding device consisting of a solenoid valve 83 connected to a battery 82 via a switch 81 that is turned on when a signal from the state detection device 80 is generated is provided for the intake air flow rate detection valve 3.

運転状態検出装置80としては、絞弁2の開度を検出し
、絞弁2の開度が設定値より大きくなる際に信号を発す
る絞弁開度検出手段、絞弁2の下流の圧力を検出し、該
圧力が設定値より高くなる際に信号を発する吸気圧力検
出手段を、単独に、或いは組合せて用いることができる
The operating state detection device 80 includes a throttle valve opening detection means that detects the opening of the throttle valve 2 and issues a signal when the opening of the throttle valve 2 becomes larger than a set value, and detects the pressure downstream of the throttle valve 2. Intake pressure detection means that detect and issue a signal when the pressure is higher than a set value can be used alone or in combination.

さらに、エンジン回転数等の情報を上記各手段から得ら
れる情報と組合せて、より総合的な運転状態の検出が行
えるようにすることが好ましい。
Furthermore, it is preferable to combine information such as the engine speed with information obtained from each of the above means to enable more comprehensive detection of the operating state.

つまり、高出力が要求される運転状態を絞弁開度もしく
は絞弁下流の圧力のみで検出し、吸入空気流量検出弁3
を全開させた際には加速初期つまり絞弁開度もしくは絞
弁下流の圧力が設定値以上であってもエンジン回転数が
比較的低い領域では吸入空気流量検出弁3の全開操作に
伴う燃料流量の増大によって空然比が要求される値より
過濃となる恐れがあるため、このような場合には、絞弁
開度もしくは絞弁下流の圧力が設定値以上にあるという
条件に、エンジン回転数が設定値以上にあるという条件
を加えて、両条件を満す運転状態を高出力が要求される
運転状態とすればよい。
In other words, the operating state that requires high output is detected only by the throttle valve opening or the pressure downstream of the throttle valve, and the intake air flow rate detection valve 3
When the valve is fully opened, in the early stages of acceleration, that is, even if the throttle valve opening or the pressure downstream of the throttle valve is above the set value, in the region where the engine speed is relatively low, the fuel flow rate due to the fully opening operation of the intake air flow rate detection valve 3 will increase. There is a risk that the air-to-air ratio will become richer than the required value due to an increase in By adding the condition that the number is greater than or equal to the set value, an operating state that satisfies both conditions may be set as an operating state that requires high output.

上記エンジン回転数を検出するについては、エンジン回
転数を直接検出してもよいが、吸入空気流量検出弁3の
開度を検出してもほぼ同様な信号とすることができる。
Regarding the detection of the engine rotation speed, the engine rotation speed may be directly detected, but substantially the same signal can be obtained by detecting the opening degree of the intake air flow rate detection valve 3.

また、上記電磁弁83は、ソレノイド84を励磁したと
きに、アマーチャ85を吸入空気流量検出弁3を開作動
方向に押圧保持するように突出させ、吸入空気流量検出
弁3を強制的に全開保持させる装置として構成している
Further, when the solenoid 84 is energized, the solenoid valve 83 causes the armature 85 to protrude so as to press and hold the intake air flow rate detection valve 3 in the opening operation direction, thereby forcing the intake air flow rate detection valve 3 to remain fully open. It is configured as a device that allows

そして、吸入空気流量検出弁3が全開保持即ち、差圧調
整装置4によって設定される最大開度以上に全開保持さ
れると、吸入空気流量検出弁3に直接機械的に連動する
燃料計量装置5の燃料計量ロッド43も全ストロークし
、燃料計量装置5は燃料流量を最大に計量し、吸入空気
流量検出弁3の全開保持に対応して増加する吸入空気流
量に応じた燃料を、噴射弁10、燃料噴射部16を介し
て吸気通路1の絞弁2の上流に噴射供給する。
Then, when the intake air flow rate detection valve 3 is held fully open, that is, fully opened beyond the maximum opening set by the differential pressure adjustment device 4, the fuel metering device 5 is directly mechanically linked to the intake air flow rate detection valve 3. The fuel metering rod 43 of the injector 10 is also fully stroked, the fuel metering device 5 measures the fuel flow rate to the maximum, and the injector 10 receives fuel in accordance with the intake air flow rate which increases in response to the intake air flow rate detection valve 3 being held fully open. , is injected and supplied to the intake passage 1 upstream of the throttle valve 2 via the fuel injection part 16.

よって、上記実施例によれば、高出力が要求される運転
状態になる際には電磁弁83によって吸入空気流量検出
弁3が全開保持されるので吸入空気流量検出弁3が吸気
抵抗となるのを防止でき、十分な出力を得ることが可能
となるとともに、吸気脈動等による吸入空気流量検出弁
3の誤作動をも防止できる。
Therefore, according to the embodiment described above, when the operating state where high output is required is reached, the intake air flow rate detection valve 3 is held fully open by the solenoid valve 83, so that the intake air flow rate detection valve 3 does not become an intake resistance. This makes it possible to obtain sufficient output, and also prevents malfunction of the intake air flow rate detection valve 3 due to intake pulsation or the like.

次に、第2図に示す実施例について説明すると、この実
施例では、吸気通路1の絞弁2の下流の圧力によって制
御されるダイヤフラム装置87によって運転状態検出装
置を形成する一方、該ダイヤフラム装置87により作動
されるカム機構88により弁全開保持装置を形成してい
る。
Next, the embodiment shown in FIG. 2 will be described. In this embodiment, a diaphragm device 87 controlled by the pressure downstream of the throttle valve 2 in the intake passage 1 forms the operating state detection device, and the diaphragm device A cam mechanism 88 operated by a valve 87 forms a valve fully open holding device.

この運転状態検出装置としてのダイヤフラム装置87は
、吸気通路1の絞弁2の下流に圧力取出口89aを有し
逆止弁Vが介設された負圧通路89によって負圧が導入
される負圧室87aと大気圧87bとをダイヤフラム8
7cによって仕切り、負圧室87aにはコイルスプリン
グ87dを縮装する一方、ダイヤフラム87cに基部を
取付げたリンクロツド87eを大気室87bを貫通させ
たうえで、上記カム機構88の作動レバー88aに上端
を連結した構造を有する。
The diaphragm device 87 as the operating state detection device is a negative pressure passageway 89 which has a pressure outlet 89a downstream of the throttle valve 2 of the intake passage 1, and into which negative pressure is introduced through a negative pressure passage 89 in which a check valve V is interposed. The diaphragm 8 connects the pressure chamber 87a and the atmospheric pressure 87b.
A coil spring 87d is compressed into the negative pressure chamber 87a, and a link rod 87e whose base is attached to the diaphragm 87c is passed through the atmospheric chamber 87b, and its upper end is connected to the operating lever 88a of the cam mechanism 88. It has a connected structure.

この運転状態検出装置としてのダイヤフラム装置87は
、吸入空気流量検出弁3の開度が設定開度以上に開かれ
たときに、上記ダイヤフラム装置87を作動可能とする
いま一つのダイヤフラム装置90を備えている。
The diaphragm device 87 as the operating state detection device includes another diaphragm device 90 that enables the diaphragm device 87 to operate when the opening degree of the intake air flow rate detection valve 3 is opened beyond the set opening degree. ing.

このダイヤフラム装置90は、負圧通路89の途中でし
かも、逆止弁Vよりダイヤフラム装置87側に設けた大
気開放口89bを開閉する弁体91を開閉制御するため
のものであって、ダイヤフラム90aによって仕切った
2つの圧力室90bt90cの一方の室90bには、吸
気通路1の吸入空気流量検出弁3の上流側に一端が開口
する通路m4の他端を連通ずる一方、他方の室90cに
は、吸入空気流量検出弁3が設定開度以上開かれるまで
は、その下流に位置し、設定開度以上に開かれたときに
、その上流に位置するように設定した開口に一端が連結
された通路m5の他端を連通ずるとともに、この室90
cにダイヤフラム90aを持上げ、支持した弁体91を
開作動させる方向に常時付勢するコイルスプリング90
dを縮装した構造を有する。
This diaphragm device 90 is for controlling the opening and closing of a valve body 91 that opens and closes an atmosphere opening port 89b provided in the middle of the negative pressure passage 89 and closer to the diaphragm device 87 than the check valve V. One chamber 90b of the two pressure chambers 90bt90c partitioned by is connected to the other end of the passage m4, one end of which opens upstream of the intake air flow rate detection valve 3 of the intake passage 1, while the other chamber 90c , until the intake air flow rate detection valve 3 is opened beyond the set opening degree, it is located downstream, and when the intake air flow rate detection valve 3 is opened beyond the set opening degree, one end is connected to an opening set to be located upstream of the intake air flow rate detection valve 3. This chamber 90 communicates with the other end of the passage m5.
A coil spring 90 that constantly biases the diaphragm 90a in the direction c and opens the supported valve body 91.
It has a structure that is a reduced version of d.

いま、上記の構成において、通常の運転状態にある際つ
まり、吸入空気流量検出弁3の開度が設定開度以下のと
きには、ダイヤフラム装置9002つの室90b t
90eには夫々、吸入空気流量検出弁3の上流側の比較
的高い圧力と、下流側の比較的低い圧力とが夫々導入さ
れる結果、画室間の差圧(これは、差圧調整装置4によ
り設定される差圧に等しい。
Now, in the above configuration, in the normal operating state, that is, when the opening degree of the intake air flow rate detection valve 3 is equal to or less than the set opening degree, the diaphragm device 900 has two chambers 90b and t.
A relatively high pressure on the upstream side of the intake air flow rate detection valve 3 and a relatively low pressure on the downstream side of the intake air flow rate detection valve 90e are respectively introduced, and as a result, the differential pressure between the compartments (this is the differential pressure adjustment device 4 is equal to the differential pressure set by

)により、コイルスプリング90dのスプリングカに抗
してダイヤフラム90aは弁体91を閉位置に保持し、
大気開放口89bを閉じている。
), the diaphragm 90a holds the valve body 91 in the closed position against the spring force of the coil spring 90d,
The atmosphere opening 89b is closed.

このため、ダイヤフラム装置87の負圧室87aには絞
弁2下流の圧力が逆止弁Vを介して負圧通路89によっ
て導入され、ダイヤフラム87cはリンクロツド87e
を引下げ、カム88を吸入流量検出弁3に当接しない退
避位置に保持する。
Therefore, the pressure downstream of the throttle valve 2 is introduced into the negative pressure chamber 87a of the diaphragm device 87 via the negative pressure passage 89 via the check valve V, and the diaphragm 87c is introduced into the negative pressure chamber 87a of the diaphragm device 87.
is pulled down to hold the cam 88 in a retracted position where it does not come into contact with the suction flow rate detection valve 3.

一方、高出力が要求される運転状態に入り絞弁2が太き
《開かれると絞弁2の下流側の圧力は上昇するがこれに
対応して逆止弁Vが閉じられ、しかもエンジン回転数が
設定値に達するまで、つまり吸入空気流量検出弁3の開
度が設定開度に達するまでは上記通常運転時と同様に弁
体91が閉じられているため、負圧室87a内は負圧状
態に維持されるのでカム88は退避位置に保持される。
On the other hand, when the throttle valve 2 is opened in an operating state that requires high output, the pressure on the downstream side of the throttle valve 2 increases, but the check valve V is closed in response to this, and the engine speed Until the number reaches the set value, that is, until the opening of the intake air flow detection valve 3 reaches the set opening, the valve body 91 is closed as in the normal operation, so the inside of the negative pressure chamber 87a is negative. Since the pressure is maintained, the cam 88 is held in the retracted position.

その後エンジン回転数が上昇しこれに応じて吸入空気流
量検出弁3の開度が設定開度以上に開かれる運転状態に
なるとともに吸入空気流量検出弁3の上流に位置する結
果、補正用ダイヤフラム装置90の両圧力室9 0 b
,9 0 cの圧力は等圧となり、ダイヤフラム90
aはコイルスプリング90dのスプリングカで持上げら
れ、支持した弁体91を開作動して大気開放口89bを
大気に開口させる。
After that, the engine speed increases, and accordingly, the opening degree of the intake air flow rate detection valve 3 becomes an operating state in which the opening degree is greater than the set opening degree, and as a result of being located upstream of the intake air flow rate detection valve 3, the correction diaphragm device Both pressure chambers 90 b
, 90 c becomes equal pressure, and the diaphragm 90
A is lifted by the spring force of the coil spring 90d, and the supported valve body 91 is opened to open the atmosphere opening port 89b to the atmosphere.

このため、弁全圃保持装置としてのダイヤフラム装置8
7の負圧室B7aに導入されていた絞弁2下流の圧力は
、途中大気開放口89bからの大気によって稀釈されそ
れだけ上昇する。
For this reason, the diaphragm device 8 as a valve holding device
The pressure downstream of the throttle valve 2 introduced into the negative pressure chamber B7a of No. 7 is diluted by the atmosphere from the atmosphere opening 89b and increases accordingly.

したがって、負圧室87aに作用する圧力がほ文大気圧
に等しくなると、弁全開保持装置としてのダイヤフラム
装置87のダイヤフラム87cはコイルスプリング87
dのスプリングカで押上げられ、支持したリンクロツド
87eを押上げ、偏心カム88の回転支点88bの廻り
に矢印Rで示す如く回動し、これにより吸入空気流量検
出弁3を、吸入空気流量に応じて差圧調整装置4により
設定される開度より大きい開度に強制的に押し開き保持
することができる。
Therefore, when the pressure acting on the negative pressure chamber 87a becomes almost equal to the atmospheric pressure, the diaphragm 87c of the diaphragm device 87 as a device for holding the valve fully open is moved by the coil spring 87.
The spring force d pushes up the supported link rod 87e, and the eccentric cam 88 rotates around the rotation fulcrum 88b as shown by the arrow R, thereby adjusting the intake air flow rate detection valve 3 to the intake air flow rate. Accordingly, it is possible to forcibly hold the opening larger than the opening set by the differential pressure adjusting device 4.

この場合の作用効果は、第1図について説明した通りで
ある。
The effects in this case are as explained with reference to FIG.

第3図に示す実施例は、弁全開保持装置を、電磁手段に
よって形成したものであって、吸入空気流量検出弁3の
ガイドロッド17に、これを支持するベローズ20内に
おいて、磁性体よりなる吸着板92を固定する一方、こ
れに対向してガイドロツド1Tを摺動自在に嵌合するソ
レノイド93を室18の外壁に固定して取付け、該ソレ
ノイド93をバツテリ94に対してオンオフするスイッ
チ95を、運転状態検出装置としての絞弁開度もしくは
絞弁下流圧力検出装置96の信号により高出力が要求さ
れる運転状態になった際にオンするようにしたものであ
る。
In the embodiment shown in FIG. 3, the valve fully open holding device is formed by electromagnetic means, and the guide rod 17 of the intake air flow rate detection valve 3 is provided with a magnetic material in the bellows 20 that supports the guide rod 17. While the suction plate 92 is fixed, a solenoid 93 to which the guide rod 1T is slidably fitted is fixedly attached to the outer wall of the chamber 18, and a switch 95 is provided to turn the solenoid 93 on and off with respect to the battery 94. The throttle valve is turned on when a high output is required, based on a signal from the throttle valve opening degree or the throttle valve downstream pressure detection device 96, which serves as an operating state detection device.

ソレノイド93がオンされると、ンレノイド93は吸着
板92を吸着保持し、したがって、吸入空気流量検出弁
3は強制的に、即ち差圧調整装置4による差圧調整作用
に抗して全ストロークされ、吸入空気流量検出弁3の吸
気抵抗を減少させ、よって吸入空気流量を増加させると
同時に、計量ロツド43の全ストロークで燃料計量装置
5は最大流量を計量する。
When the solenoid 93 is turned on, the solenoid 93 attracts and holds the suction plate 92, so that the intake air flow rate detection valve 3 is forcibly stroked completely, that is, against the differential pressure adjustment action of the differential pressure adjustment device 4. , while reducing the intake resistance of the intake air flow detection valve 3 and thus increasing the intake air flow rate, the fuel metering device 5 meters the maximum flow rate during the entire stroke of the metering rod 43.

第4図に示す実施例は、第3図に示す実施例に対して、
エンジン回転数が設定値以下にある際、つまり吸入空気
流量検出弁3が設定開度以下の開度であるときには、弁
全開保持装置を不能化するように改良を加えたものであ
る。
The embodiment shown in FIG. 4 is different from the embodiment shown in FIG.
When the engine speed is below a set value, that is, when the opening degree of the intake air flow rate detection valve 3 is below the set opening degree, the valve full-open holding device is disabled.

即ち、この実施例では、吸入空気流量検出弁3のガイド
ロツド17に、ガイドロツド17とは電気的に絶縁した
スイッチリング98を摺動自在に嵌合して、これを吸入
空気流量検出弁3の背面側からコイルスプリング99で
支持するとともに、バツテリ94の正極側を吸着板92
の吸着用ソレノイド93に、負極側を、絞弁開度もしく
は絞弁下流圧力検出装置96の信号によってオンされる
スイッチ95を介して上記スイッチリング98に接続す
る一方、室18の内壁のガイド部100の端部に、それ
と絶縁して取付けた接点100aを吸着用ソレノイド9
3に接続したものである。
That is, in this embodiment, a switch ring 98 electrically insulated from the guide rod 17 is slidably fitted to the guide rod 17 of the intake air flow rate detection valve 3, and this switch ring 98 is attached to the back side of the intake air flow rate detection valve 3. It is supported from the side by a coil spring 99, and the positive electrode side of the battery 94 is supported by a suction plate 92.
The negative electrode side of the suction solenoid 93 is connected to the switch ring 98 via a switch 95 that is turned on by the throttle valve opening or a signal from the throttle valve downstream pressure detection device 96. A contact 100a installed insulated from the end of the suction solenoid 9
It is connected to 3.

この場合、絞弁開度もしくは絞弁下流圧力検出装置96
、スイッチリング98および接点100aによって運転
状態検出装置を構成している。
In this case, the throttle valve opening degree or the throttle valve downstream pressure detection device 96
, the switch ring 98, and the contact 100a constitute an operating state detection device.

上記スイッチリング98は、吸入空気流量検出弁3が設
定開度より太き《開かれたときに初めて、接点100a
に当接するように支持し、この状態においてのみ、ソレ
ノイドが励磁可能となるようにとしたものである。
The switch ring 98 opens the contact 100a only when the intake air flow rate detection valve 3 is opened to a degree wider than the set opening.
The solenoid is supported so as to be in contact with the solenoid, and only in this state can the solenoid be energized.

したがって本実施例においては、スイッチリング98と
接点100aとが接触したときに、ソレノイド93の一
端とスイッチリング98とが導通される。
Therefore, in this embodiment, when the switch ring 98 and the contact 100a come into contact, one end of the solenoid 93 and the switch ring 98 are electrically connected.

このため、吸入空気流量検出弁3の開度が設定開度以下
であるときには、たとえスイッチ95が絞弁開度もしく
は絞弁下流圧力検出装置96の信号によってオンされて
も、ソレノイド93は励磁されず、設定開度より大きく
吸入空気流量検出弁3が開かれた状態においてスイッチ
95がオンされたときに、ノレノイド93が励磁され、
よって吸着板92を吸着保持して吸入空気流量検出弁3
を全開保持させることができる。
Therefore, when the opening degree of the intake air flow rate detection valve 3 is less than the set opening degree, the solenoid 93 is not energized even if the switch 95 is turned on by the throttle valve opening degree or the signal from the throttle valve downstream pressure detection device 96. First, when the switch 95 is turned on with the intake air flow rate detection valve 3 opened to a degree greater than the set opening degree, the nolenoid 93 is excited.
Therefore, the suction plate 92 is held by suction and the intake air flow rate detection valve 3 is
can be held fully open.

次に、第5図に示す実施例は、燃料噴射部16と絞弁2
の間に吸気通路1にベンチュリ102を設げ、このベン
チュリ102部に生じる吸気負圧を作動源とする弁全開
保持装置を設けたものである。
Next, in the embodiment shown in FIG.
A venturi 102 is provided in the intake passage 1 between the two, and a device for keeping the valve fully open is provided which uses the intake negative pressure generated in the venturi 102 as an operating source.

この実施例では、差圧調整装置4の一部を形成するベロ
ーズ20における第1図乃至第4図に示したオリフイス
190代りに、途中にオリフイス103を介設した通路
m6によって、ベローズ20の内部に連通ずる通路m3
の途中と、ベローズ20を収容した室18とを連通ず
る一方、通路m3の通路m6どの連結点より下流に三方
切換弁104を設け、ベンチュリ102部に開設した負
圧取出口105を有する負圧通路m7を三方切換弁10
4の一方の切換ポートに連結し、かつ三方切換弁104
の切換えを運転状態検出装置106の信号によって制御
するようにしている。
In this embodiment, instead of the orifice 190 shown in FIGS. 1 to 4 in the bellows 20 forming a part of the differential pressure adjusting device 4, the inside of the bellows 20 is Passageway connecting to m3
A three-way switching valve 104 is provided downstream from which connection point of the passage m3 and the passage m6, and a negative pressure outlet 105 is provided in the venturi 102. Passage m7 is connected to three-way switching valve 10
4, and the three-way switching valve 104
The switching is controlled by a signal from the operating state detection device 106.

即ち、この場合には、エンジンの通常運転においては、
通路m3を連通状態に維持して、差圧調整装置4に本来
の差圧調整作用を行なわせる一方、高出力が要求される
運転状態では、運転状態検出装置106の信号により、
三方切換弁104を切換え作動し、負圧通路m7、三方
切換弁104、通路m3の下流という経路で、ベンチュ
リ102部の負圧取出口105から取出した負圧をベロ
ーズ20の内部室20aに導入することにより、ベロー
ズ20を収縮させ、支持した吸入空気流量検出弁3を強
!1拍に全開保持させて高出力を得るようにしている。
That is, in this case, during normal operation of the engine,
While the passage m3 is maintained in a communicating state and the differential pressure adjustment device 4 is made to perform the original differential pressure adjustment function, in an operating state where high output is required, a signal from the operating state detection device 106 is used to
The three-way switching valve 104 is switched and operated, and the negative pressure taken out from the negative pressure outlet 105 of the venturi 102 is introduced into the internal chamber 20a of the bellows 20 via the downstream path of the negative pressure passage m7, the three-way switching valve 104, and the passage m3. By doing so, the bellows 20 is contracted, and the supported intake air flow rate detection valve 3 is strengthened! It is kept fully open for one beat to obtain high output.

また、第6図に示す実施例は、高出力が要求される運転
状態において、吸入空気流量検出弁30制御手段として
の差圧調整装置4の作動を停止せしめることにより吸入
空気流量検出弁3を完全にフリーに開きうるようにし、
吸入空気流量検出弁3の上流側および下流側近傍の圧力
P 1t P2の差圧で吸入空気流量検出弁3を全開保
持するようにしたものである。
Further, in the embodiment shown in FIG. 6, in an operating state where high output is required, the operation of the differential pressure regulator 4 as a control means for the intake air flow rate detection valve 30 is stopped, thereby controlling the intake air flow rate detection valve 3. so that it can be opened completely freely,
The intake air flow rate detection valve 3 is kept fully open by the differential pressure between the pressure P 1t P2 near the upstream side and the downstream side of the intake air flow rate detection valve 3.

この作動停止装置、つまり弁全開保持装置は、吸気通路
1の吸入空気流量検出弁3の上流と差圧調整装置4の上
部室21の外周部2lbとを連通ずる通路m1の途中に
設けた開閉弁108により構成したものである。
This operation stop device, that is, the valve full open holding device is an opening/closing device provided in the middle of a passage m1 that communicates the upstream of the intake air flow rate detection valve 3 of the intake passage 1 with the outer peripheral portion 2lb of the upper chamber 21 of the differential pressure adjustment device 4. It is configured by a valve 108.

(なお、この開閉弁108は通路m3に介設してもよい
(Note that this on-off valve 108 may be provided in the passage m3.

)この場合、開閉弁108は、運転状態検出装置109
が高出力が要求される運転状態を検出したときに発する
信号により閉作動させる。
) In this case, the on-off valve 108 is operated by the operating state detection device 109.
It is closed by a signal issued when the motor detects an operating condition that requires high output.

開閉弁108によって通路m1による圧力導入をカット
すると、差圧調整装置4には、吸入空気流量検出弁3の
上流側近傍の圧力P1が供給されむくなり、差圧調整装
置4は実際上不能化され、しかも吸入空気流量検出弁3
を支持するベローズ20の内外はオリフイス19によっ
て連通されているため、ベローズ20の内外圧はオリフ
イス19による僅かな遅れののちバランスし、バランス
した段階では、ベロ、一ズ20に支持された吸入空気流
量検出弁3は実質的フリーな状態となる。
When the pressure introduction through the passage m1 is cut off by the on-off valve 108, the pressure P1 near the upstream side of the intake air flow rate detection valve 3 is no longer supplied to the differential pressure regulator 4, and the differential pressure regulator 4 is practically disabled. Moreover, the intake air flow rate detection valve 3
Since the inside and outside of the bellows 20 supporting the bellows 20 are communicated by the orifice 19, the internal and external pressures of the bellows 20 are balanced after a slight delay caused by the orifice 19, and at the balanced stage, the intake air supported by the bellows 20 is The flow rate detection valve 3 becomes substantially free.

このため、吸入空気流量検出弁3はその上流側および下
流側近傍の圧力P1,P2の差圧より全開保持され、吸
入空気流量及び燃料流量を高出力運転に必要な量だけ増
量し、高出力を保障することができるのである。
For this reason, the intake air flow rate detection valve 3 is kept fully open due to the differential pressure between the pressures P1 and P2 near its upstream and downstream sides, and increases the intake air flow rate and fuel flow rate by the amount necessary for high output operation. can be guaranteed.

以上各実施例について詳細に説明したことから明らかな
ように、本発明は、吸入空気流量検出弁によって吸入空
気流量を検出し、検出した吸入空気流量に応じて燃料流
量を制御するようにしたエンジンの吸気装置において、
高出力が要求される運転状態を検出する運転状態検出装
置を設けるとともに、。
As is clear from the detailed description of each of the embodiments above, the present invention provides an engine that detects the intake air flow rate using an intake air flow rate detection valve and controls the fuel flow rate according to the detected intake air flow rate. In the intake system of
In addition to providing an operating state detection device for detecting an operating state that requires high output.

高出力が要求される運転状態には、上記運転状態検出装
置の信号によって吸入空気流量検出弁を全開保持とする
弁全開保持装置を設けたことを特徴とするエンジンの吸
気装置を提供するものである。
The present invention provides an engine intake system characterized in that, in an operating state where high output is required, a valve full-open holding device is provided which holds the intake air flow rate detection valve fully open in response to a signal from the operating state detecting device. be.

したがって、本発明に係るエンジンの吸気装置によれば
、高出力が要求される際に、吸入空気流量検出弁を全開
状態とすることにより、該吸入空気流量検出弁による吸
気抵抗を減少せしめることができ、しかも吸気脈動によ
る吸入空気流量検出弁の誤作動を防止できると同時に増
加した吸入空気流量に応じて燃料流量を吸入空気流量検
出弁の全開によって増量させることができ、全体として
高出力に必要な空気流量及び燃料流量を確保できるので
、この種吸気装置の問題点である高出力要求時の出力不
足を確実に解消することができ、しかも吸気脈動による
吸入空気流量検出弁の誤作動をも防止できるものである
Therefore, according to the engine intake system according to the present invention, when high output is required, by fully opening the intake air flow rate detection valve, it is possible to reduce the intake resistance due to the intake air flow rate detection valve. Moreover, it is possible to prevent malfunction of the intake air flow rate detection valve due to intake pulsation, and at the same time, the fuel flow rate can be increased by fully opening the intake air flow rate detection valve in accordance with the increased intake air flow rate, which is necessary for overall high output. Since a sufficient air flow rate and fuel flow rate can be secured, it is possible to reliably solve the problem of this type of intake system, which is the lack of output when high output is required, and it also prevents malfunction of the intake air flow rate detection valve due to intake pulsation. It is preventable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は夫々本発明の一実施例を示すエンジン
の吸気装置の全体説明図、第3図、第4図は夫々本発明
の他の実施例を示すエンジンの吸気装置の要部説明図、
第5図、第6図は夫々本発明のいま一つの実施例を示す
エンジンの吸気装置の全体説明図である。 1・・・・・・吸気通路、2・・・・・・絞弁、3・・
・・・・吸入空気流量検出弁、4・・・・・・差圧調整
装置、5・・・・・・燃料計量装置、10・・・・・・
噴射弁、80,87,90,96,98,106,10
9・・・・・・運転状態検出装置、83,88,(92
,93),(104,1 05,20), 108・・・・・・弁全開保持装置。
1 and 2 are overall explanatory diagrams of an engine intake system showing one embodiment of the present invention, and FIGS. 3 and 4 are schematic diagrams of an engine intake system showing other embodiments of the present invention, respectively. Part explanatory diagram,
5 and 6 are overall explanatory diagrams of an engine intake system showing another embodiment of the present invention, respectively. 1... Intake passage, 2... Throttle valve, 3...
...Intake air flow rate detection valve, 4...Differential pressure adjustment device, 5...Fuel metering device, 10...
Injection valve, 80, 87, 90, 96, 98, 106, 10
9... Operating state detection device, 83, 88, (92
, 93), (104, 1 05, 20), 108... Valve fully open holding device.

Claims (1)

【特許請求の範囲】 1 吸気通路に吸入空気流量検出弁を介設し、上記吸入
空気流量検出弁の開度に応じてエンジンに供給する燃料
流量を制御するようにしたエンジンの吸気装置において
、 高出力が要求される運転状態を検出し、高出力が要求さ
れる運転状態になる際信号を発する運転状態検出装置を
設けるとともに、高出力が要求される運転状態には上記
運転状態検出装置の信号によって作動し上記吸入空気流
量検出弁を全開保持する弁全開保持装置を設けたことを
特徴とするエンジンの吸気装置。 2 上記弁全開保持装置を、高出力が要求される運転状
態には運転状態検出装置の信号によって作動し、吸入空
気流量検出弁を全開位置まで押圧保持する抑圧装置とし
た特許請求の範囲第1項記載のエンジンの吸気装置。 3 上記押圧装置を電磁弁とした特許請求の範囲第2項
記載のエンジンの吸気装置。 4 上記抑圧装置をカム機構とした特許請求の範囲第2
項記載のエンジンの吸気装置。 5 上記弁全開保持装置を、吸入空気流量検出弁に固定
された磁性体、および高出力が要求される運転状態には
、運転状態検出装置の信号によって励磁され、上記磁性
体を吸入空気流量検出弁が全開される方向に吸引保持す
る電磁石とした特許請求の範囲第1項記載のエンジンの
吸気装置。 6 上記弁全開保持装置を、吸入空気流量検出弁の下流
側で絞弁の上流側に設けたベンチュリおよび高出力が要
求される運転状態には運転状態検出装置の信号により上
記ベンチュリ部に生じる負圧が導入され、該負圧を作動
源として吸入空気流量検出弁を全開位置まで移動保持さ
せる負圧操作装置とした特許請求の範囲第1項記載のエ
ンジンの吸気装置。 7 上記吸入空気流量検出弁を、吸入空気流量検出弁の
上流側近傍および下流側近傍における圧力を比較し、差
圧が設定値より大きくなる際には吸入空気流量検出弁を
開作動せしめる一方、差圧が上記設定値より小さくなる
際には吸入空気流量検出弁を閉作動せしめ、差圧が常時
上記設定値となるようにした差圧調整装置によって開閉
操作するとともに、弁全開保持装置を、高出力が要求さ
れる運転状態には運転状態検出装置の信号により、上記
差圧調整装置の作動を停止せしめる作動停止装置とした
特許請求の範囲第1項記載のエンジンの吸気装置。 8 上記運転状態検出装置を、絞弁開度を検出し絞弁開
度が設定値より大きくなる際に信号を発するものとした
特許請求の範囲第1項から第7項のイスレかに記載のエ
ンジンの吸気装置。 9 上記運転状態検出装置を、絞弁下流の圧力を検出し
、該圧力が設定値より高くなる際に信号を発するものと
した特許請求の範囲第1項から第7項のいずれかに記載
のエンジンの吸気装置。
[Scope of Claims] 1. An intake system for an engine in which an intake air flow rate detection valve is interposed in the intake passage, and the fuel flow rate supplied to the engine is controlled according to the opening degree of the intake air flow rate detection valve. An operating state detection device is provided that detects an operating state that requires high output and issues a signal when the operating state that requires high output is reached. An intake system for an engine, characterized in that it is provided with a valve full-open holding device that is activated by a signal and holds the intake air flow rate detection valve fully open. 2. The device for holding the valve fully open is a suppression device that is actuated by a signal from an operating state detection device in operating conditions where high output is required, and presses and holds the intake air flow rate detection valve to a fully open position. Intake system for the engine described in Section 1. 3. The engine intake device according to claim 2, wherein the pressing device is a solenoid valve. 4 Claim 2 in which the above-mentioned suppression device is a cam mechanism
Intake system for the engine described in Section 1. 5. The device for holding the valve fully open is connected to a magnetic body fixed to the intake air flow rate detection valve, and in operating conditions where high output is required, the device is excited by a signal from the operating condition detection device, and the magnetic body is used to detect the intake air flow rate. An intake system for an engine according to claim 1, wherein the intake device is an electromagnet that attracts and holds the valve in a direction in which the valve is fully opened. 6. The device for holding the valve fully open is equipped with a venturi installed downstream of the intake air flow rate detection valve and upstream of the throttle valve, and in operating conditions where high output is required, the negative force generated in the venturi section by the signal from the operating condition detection device is used. 2. An intake system for an engine according to claim 1, wherein the intake system is a negative pressure operating device into which pressure is introduced and the intake air flow rate detection valve is moved and held at a fully open position using the negative pressure as an operating source. 7 The intake air flow rate detection valve is compared with the pressure near the upstream side and the downstream side of the intake air flow rate detection valve, and when the differential pressure becomes larger than the set value, the intake air flow rate detection valve is opened. When the differential pressure becomes smaller than the above set value, the intake air flow rate detection valve is closed, and the differential pressure adjustment device that keeps the differential pressure always at the above set value opens and closes the valve, and the valve is kept fully open. 2. The intake system for an engine according to claim 1, further comprising an operation stop device that stops the operation of said differential pressure adjusting device in response to a signal from an operating state detection device in an operating state where high output is required. 8. Claims 1 to 7, wherein the operating state detection device detects the opening of the throttle valve and issues a signal when the opening of the throttle valve becomes larger than a set value. Engine intake system. 9. The operating state detection device according to any one of claims 1 to 7, which detects the pressure downstream of the throttle valve and issues a signal when the pressure becomes higher than a set value. Engine intake system.
JP53153884A 1978-12-07 1978-12-07 engine intake system Expired JPS5848742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53153884A JPS5848742B2 (en) 1978-12-07 1978-12-07 engine intake system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53153884A JPS5848742B2 (en) 1978-12-07 1978-12-07 engine intake system

Publications (2)

Publication Number Publication Date
JPS5578129A JPS5578129A (en) 1980-06-12
JPS5848742B2 true JPS5848742B2 (en) 1983-10-31

Family

ID=15572209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53153884A Expired JPS5848742B2 (en) 1978-12-07 1978-12-07 engine intake system

Country Status (1)

Country Link
JP (1) JPS5848742B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130930A (en) * 1974-03-29 1975-10-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50130930A (en) * 1974-03-29 1975-10-16

Also Published As

Publication number Publication date
JPS5578129A (en) 1980-06-12

Similar Documents

Publication Publication Date Title
US3842814A (en) Exhaust gas recirculation system
GB1537344A (en) Fuel supply means for internal combustion engine
US4404941A (en) Electronic controlled carburetor
JPS5848742B2 (en) engine intake system
US4109623A (en) Regulator for auxiliary air injection at the intake of internal combustion engines
US6860254B2 (en) Carburetor
JPS5922263Y2 (en) engine intake system
JPS597547Y2 (en) engine fuel supply system
JPS593192Y2 (en) engine intake system
JPS621405Y2 (en)
JPH05256203A (en) Fuel quantity increase device for multiple carburetor
JPH0614056Y2 (en) Negative pressure control valve in exhaust gas recirculation system
JPS6016775Y2 (en) mechanical fuel pump
JP2791432B2 (en) Engine fuel supply
JPS593190Y2 (en) Internal combustion engine fuel injection system
JPH0139883Y2 (en)
JPS609397Y2 (en) Mixing ratio adjustment device for vaporizer
JP2772659B2 (en) Fuel injection device for two-cycle engine
JP2791433B2 (en) Engine fuel supply
JPS62101859A (en) Fuel control device for electronic fuel-injection type engine
JPS6154942B2 (en)
JPS593177Y2 (en) Air flow rate detection device for internal combustion engine intake system
JP3153930B2 (en) Fuel increase device for multiple carburetor
JPH05223008A (en) Fuel increase device for multiple carburetor
JPS6160977B2 (en)