JPS5848735A - Internal-combustion engine with divided cylinder group operation control type - Google Patents

Internal-combustion engine with divided cylinder group operation control type

Info

Publication number
JPS5848735A
JPS5848735A JP14477081A JP14477081A JPS5848735A JP S5848735 A JPS5848735 A JP S5848735A JP 14477081 A JP14477081 A JP 14477081A JP 14477081 A JP14477081 A JP 14477081A JP S5848735 A JPS5848735 A JP S5848735A
Authority
JP
Japan
Prior art keywords
cylinder group
intake
air
fuel
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14477081A
Other languages
Japanese (ja)
Inventor
Makoto Ueno
真 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP14477081A priority Critical patent/JPS5848735A/en
Publication of JPS5848735A publication Critical patent/JPS5848735A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To attain smooth emission of exhaust gas even at the time of switching the number of operative cylinders, by keeping the air-fuel ratio of mixture at the theoretical air-fuel ratio through accurate measurement of intake air supplied to cylinders at the time when an intake-air stop valve is being opened or closed. CONSTITUTION:A first intake manifold 11 and a first exhaust manifold 14 are connected to a first cylinder group A, while a second intake manifold 12 and a second exhaust manifold 15 are connected to a second cylinder group B. The datum injection quantity of fuel calculated from the output signal of an air-flow meter 25 is corrected on the basis of the output signal of first oxygen-density detector 20a to provide a datum injection quantity for the first cylinder group A, while a datum injection quantity for the second cylinder group B is obtained by correcting the datum injection quantity of fuel calculated from the output signal of the air-flow meter 25 on the basis of the output signal of a second oxygen-density detector 20b. According to these data, injection pulses are applied to fuel injection valves 17a, 17b belonging respectively to the first and the second cylinder groups A, B, and fuel is injected from the valves 17a, 17b to supply air-fuel mixture to the cylinder groups A, B at the theoretical air-fuel ratio.

Description

【発明の詳細な説明】 本発明は分割運転制御式内燃機関に関する。[Detailed description of the invention] The present invention relates to a split operation controlled internal combustion engine.

スツッ゛トル弁により機関負荷を制御するようにした内
儀機関ではスロットル弁開度が小さくなるKつれて燃料
消費率が悪化する。従って燃料消費率を向上するために
機関低負荷運転時には一部の気筒を休止させると共に残
90気筒に高負荷運転を行なわせるようKし九分割運転
制御式内燃機関が1例えば特開昭55−69736号会
報に記載されているように公知である。この公知の内燃
機関で、は第111に示すように気筒が第1気筒群ムと
第2fi筒群Bとに分割され、第1気筒群ムと第2気筒
群BK夫々第1吸気マニホルド1と第2吸気マニホルド
2を接続すると共に第1吸気マニホルド1と第2吸気!
ニホルド2を共通のスロットル弁3を介して大気に連通
させ、第1吸気マニホルド1の吸入空気入口部に吸気遮
断弁4を設けると共に排気マニホルド5と第1吸気マニ
ホルド1とを連結する排気還流通路6内に排気還流弁7
を設け1機関低負荷運転時には燃料゛噴射弁8からの燃
料噴射を停止させると共に吸気遮断弁4を開弁しかつ排
気還流弁7を開弁して第2気筒群Bを高負荷運転せしめ
、一方機関高負荷運転時には全燃料噴射弁8.9から燃
料を噴射すると共Kl&気鐘断遮断を開弁じかつ排気還
流弁7を閉弁して全気筒ム、Bを発火運転せしめるよう
にしている。この内燃機関では上述のように機関低負荷
運転時に吸気速断弁4が閉弁しかつ排気還流弁7が開弁
して第1気筒群^に排気還流通路6を介して排気ガスが
循循されるためにボンピング損失をなくすことができ、
しかもこのとき第2気筒群Bが高負荷運転せしめられる
ので燃料消費率を向上することができる。
In a private engine in which the engine load is controlled by a throttle valve, the fuel consumption rate worsens as the throttle valve opening decreases. Therefore, in order to improve the fuel consumption rate, some cylinders are deactivated when the engine is operated at low load, and the remaining 90 cylinders are operated at high load. It is publicly known as described in Bulletin No. 69736. In this known internal combustion engine, the cylinders are divided into a first cylinder group M and a second cylinder group B, as shown in No. 111, and the first cylinder group M and the second cylinder group BK are respectively connected to the first intake manifold 1 and Connect the second intake manifold 2 and the first intake manifold 1 and the second intake!
An exhaust gas recirculation passage connects the exhaust manifold 5 and the first intake manifold 1, which communicates the intake manifold 2 with the atmosphere through a common throttle valve 3, and provides an intake cutoff valve 4 at the intake air inlet of the first intake manifold 1. Exhaust recirculation valve 7 in 6
is provided to stop fuel injection from the fuel injector 8 during low load operation of one engine, open the intake cutoff valve 4 and open the exhaust recirculation valve 7, and cause the second cylinder group B to operate under high load. On the other hand, when the engine is operating under high load, when fuel is injected from all fuel injection valves 8 and 9, the Kl & air shut-off is opened and the exhaust recirculation valve 7 is closed, causing all cylinders M and B to perform firing operation. . In this internal combustion engine, as mentioned above, when the engine is operated under low load, the intake quick cutoff valve 4 closes and the exhaust recirculation valve 7 opens, so that exhaust gas is circulated to the first cylinder group ^ via the exhaust recirculation passage 6. It is possible to eliminate the pumping loss due to the
Moreover, since the second cylinder group B is operated under high load at this time, the fuel consumption rate can be improved.

このような分割運転制御式内燃機関において機関排気系
に三元触媒コンバータと酸素濃度検出器を取付け、酸素
濃度検出器の出力信号に基いて機関シリンダ内に供給さ
れる混合気の空燃比を理論空燃比に二致せしめようとし
た場合には吸入空気量を正確に計測する必要があに、こ
のために第1図に示すようにスロットル弁3の上流にエ
アフローメータKを取付けてこのエア70−メータKK
−よシ全吸入空気量を計測するようにしている。しかし
壜がらこのようにスロットル弁3の上流にエアフローメ
ータKを取付けた場合には吸気遮断弁4が全開して全気
筒に同量の吸入空気が供給されている場合、或いは吸気
遮断弁4が全閉して第2気筒評bKのみ吸入空気が供給
されている場合しか各気筒に供給されh吸入空気量を正
確に計測することはできない、即ち、言い換えると吸気
遮断弁4が半開状態にあるときKは第1気筒群ムと第2
気一群BK夫々どれ位の割合で吸入空気が振分けられる
かわからないために第1気筒群ムと第2気筒詳Bの各気
筒に供給される空気量を正確に求めることかできない、
このように吸気遮断弁4が部分量となるのは吸気速断弁
4が全閉から全開になるとき、或いは全開から全閉にな
るときであや。
In such a split-operation controlled internal combustion engine, a three-way catalytic converter and an oxygen concentration detector are installed in the engine exhaust system, and the air-fuel ratio of the mixture supplied to the engine cylinders is theoretically determined based on the output signal of the oxygen concentration detector. When attempting to match the air-fuel ratio, it is necessary to accurately measure the amount of intake air. For this purpose, an air flow meter K is installed upstream of the throttle valve 3 as shown in FIG. -Meter KK
- I try to measure the total amount of intake air. However, when the air flow meter K is installed upstream of the throttle valve 3 like this, the intake cutoff valve 4 is fully open and the same amount of intake air is being supplied to all cylinders, or the intake cutoff valve 4 is It is only possible to accurately measure the amount of intake air supplied to each cylinder when it is fully closed and intake air is supplied only to the second cylinder bK.In other words, the intake cutoff valve 4 is in a half-open state. When K is the first cylinder group and the second cylinder group
It is not possible to accurately determine the amount of air supplied to each cylinder in the first cylinder group B and the second cylinder group B because it is not known at what ratio the intake air is distributed to each cylinder group B.
In this way, the intake cutoff valve 4 becomes partially closed when the intake quick cutoff valve 4 changes from fully closed to fully open, or from fully open to fully closed.

従ってこのようなときには上述し九ように各気筒に供給
される吸入空気量が正確に求められないために各気筒に
供給される混合気は過濃、或いは過薄となり、斯くして
排気エミッタ1ンが悪化するという問題を生ずる。特に
機関出力の急激な増減を阻止するために吸気遮断弁4の
開弁動作、或いは閉弁動作を緩慢にした場合には排気エ
ミッタ1ンが益々悪化してしまう。
Therefore, in such a case, as mentioned above, the amount of intake air supplied to each cylinder cannot be determined accurately, so the air-fuel mixture supplied to each cylinder becomes too rich or too lean, and thus the exhaust emitter 1 This results in the problem of deterioration of performance. In particular, if the opening or closing operation of the intake cutoff valve 4 is made slow in order to prevent a sudden increase or decrease in the engine output, the exhaust emitter 1 becomes even worse.

本発明は吸気速断弁が開弁動作成いは閉弁動作をしてい
るときでも各気筒に供給される吸入空気量を正確に計測
して各気筒に供給される混合気の空燃比を理論空燃比に
保持し、それKよって運転気筒数切換時においても良好
な排気エミッシ嘗ンを確保できるようKした内燃機関を
提供することKある。
The present invention theoretically calculates the air-fuel ratio of the air-fuel mixture supplied to each cylinder by accurately measuring the amount of intake air supplied to each cylinder even when the intake quick-cut valve is opening or closing the valve. It is an object of the present invention to provide an internal combustion engine in which the air-fuel ratio is maintained at a constant level, thereby ensuring good exhaust emissions even when the number of operating cylinders is changed.

以下、添附図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第2図を参照すると10は機関本体、11は第1吸気・
!ニホルド、12は第29気iニホルド。
Referring to Fig. 2, 10 is the engine body, 11 is the first intake air
! Nifold, 12 is the 29th Qi Nifold.

13はサージタンク、14は第1排気マニホルド。13 is a surge tank, and 14 is a first exhaust manifold.

15は第2排気マニホルド、16畠*16be16c、
16d、16e、16fは1番気筒、2番気筒、3番気
筒、4番気筒、5番気筒並びに6番゛気筒を夫々示す、
なお、これらの各気筒は気筒16暑* 16b−16c
からなる第1気筒群Aど。
15 is the second exhaust manifold, 16 Hatake*16be16c,
16d, 16e, and 16f indicate the 1st cylinder, 2nd cylinder, 3rd cylinder, 4th cylinder, 5th cylinder, and 6th cylinder, respectively.
In addition, each of these cylinders is cylinder 16*16b-16c.
The first cylinder group A, etc.

気筒16d、16e、16fから々る第2気筒詳Bとに
分割される。第2図かられかるように第1吸気マニホル
ド11並びに第1排気マニホルド14は鮪l気筒群^に
接続され、第2吸気マニホルド12並びに第2排気マニ
ホルド15は第2気筒評BK接続される。第2図並びに
第3図に示されるように第1吸気マニホル、ド11並び
に第2吸気!ニホルド12の各マニホルド枝管には燃料
噴射弁17m、17bが取付けられ、これらの各燃料噴
射弁17m、17bのソレノイドは電子制御エニット1
8に接続される。一方、第1排気マニホルド14並びに
第2排気マニホルド15はそれらの出口部において共通
の仕切壁19により仕切られており、この仕切壁19の
両側の排気通路。
It is divided into a second cylinder B consisting of cylinders 16d, 16e, and 16f. As can be seen from FIG. 2, the first intake manifold 11 and the first exhaust manifold 14 are connected to the first cylinder group, and the second intake manifold 12 and the second exhaust manifold 15 are connected to the second cylinder group BK. As shown in FIGS. 2 and 3, the first intake manifold, the first intake manifold, and the second intake manifold! Fuel injection valves 17m and 17b are attached to each manifold branch pipe of the Nifold 12, and the solenoid of each of these fuel injection valves 17m and 17b is controlled by an electronically controlled Enit 1.
Connected to 8. On the other hand, the first exhaust manifold 14 and the second exhaust manifold 15 are partitioned at their outlet portions by a common partition wall 19, and exhaust passages are provided on both sides of this partition wall 19.

即ち第1排気マニホルド14並びに第2排気マニホルド
15内には夫々第1酸素濃度検出器20m並びに第2酸
素濃度検出器20bが配置される。
That is, a first oxygen concentration detector 20m and a second oxygen concentration detector 20b are arranged in the first exhaust manifold 14 and the second exhaust manifold 15, respectively.

これらの酸素濃度検出器20m、20bは電子制御ユニ
ツ)18に接続される。第1排気マニホルド14並びに
第2排気マニホルド15は共通の排気管74を介して三
元触座コンバータ75に接続され、この排気管74内に
は仕切壁76が配置される。この仕切壁76の一端は排
気マニホルド14.15の仕切壁19に接続され、仕切
壁76の他端は三元触媒コンバータ75の近傍まで延設
される。従って排気管74内には第1排気マニホルド1
4内に連通する第1排気通路74鳳と、第2排気マニホ
ルド15内に連通ずる第2排気通路74bとが形成され
、これら排気通路74m、 74bは三元触媒コンバー
タ75の近iにおいて互に合流する。
These oxygen concentration detectors 20m and 20b are connected to an electronic control unit 18. The first exhaust manifold 14 and the second exhaust manifold 15 are connected to a three-way contact converter 75 via a common exhaust pipe 74, and a partition wall 76 is disposed within this exhaust pipe 74. One end of the partition wall 76 is connected to the partition wall 19 of the exhaust manifold 14 , 15 , and the other end of the partition wall 76 extends to the vicinity of the three-way catalytic converter 75 . Therefore, the first exhaust manifold 1 is located inside the exhaust pipe 74.
A first exhaust passage 74b communicating with the inside of the three-way catalytic converter 75 and a second exhaust passage 74b communicating with the second exhaust manifold 15 are formed. join together.

一方、第1吸気マニホルド11は吸入空気入口部21と
、この吸入空気入口部21から分岐して各気筒16m、
16b、16cK夫々連結された3本のマニホルド枝管
を有し、吸入空気入口部21はサージタンク13に接続
される。また、第2吸気!ニホルド12も同様に吸入空
気入口部22と、この吸入空気入口部22がら分岐して
各気11116d、16e、16fK夫々連結された3
本のマニホルド枝管を有し、吸入空気入口部22はナー
ジタンクIBK@続される。サージタンク13のほけ中
央部には吸気ダクト23が取付□けられ、?:、の吸気
ダクト23内にはスロットル弁24が配置される。この
スロットル弁24は車両運転室内に設けられたアクセル
ペタルにワイヤ25′を介して接続される。更に、第3
図に示すように吸気ダクト23にはエアフローメータ2
5が取付けられ、仁のエア7四−メータ25け図示しな
いリード線を介して電子制御ユニツ)18に接続されゐ
、−7図かられかるように第1吸気マニホルドll並f
fK第2吸気マニホルド12は機関本体1Gの長手方向
に対して直角をなす対称軸線8に関して実質的に対称的
な形状を有しており、更に吸気ダクト23はほぼこの対
称軸1s8上に配置されている。tた。サージタンク1
3も対称軸線8に関して実質的に対称な形状を有する。
On the other hand, the first intake manifold 11 has an intake air inlet section 21, and a cylinder 16m branching from the intake air inlet section 21,
It has three manifold branch pipes 16b and 16cK connected to each other, and the intake air inlet section 21 is connected to the surge tank 13. Also, the second intake! Similarly, the intake air inlet 12 has an intake air inlet 22 and three air inlets 11116d, 16e, and 16fK that are branched from the intake air inlet 22 and connected to each other.
It has a main manifold branch pipe, and the intake air inlet section 22 is connected to the nerge tank IBK@. An intake duct 23 is installed in the center of the surge tank 13. A throttle valve 24 is disposed within the intake duct 23 of : . This throttle valve 24 is connected via a wire 25' to an accelerator pedal provided in the vehicle cab. Furthermore, the third
As shown in the figure, an air flow meter 2 is installed in the intake duct 23.
5 is installed, and the air meter 74 is connected to the electronic control unit 18 via a lead wire (not shown), and the air meter 25 is connected to the electronic control unit 18 via a lead wire (not shown).
The fK second intake manifold 12 has a substantially symmetrical shape with respect to the axis of symmetry 8 that is perpendicular to the longitudinal direction of the engine body 1G, and the intake duct 23 is arranged approximately on this axis of symmetry 1s8. ing. It was. surge tank 1
3 also has a substantially symmetrical shape with respect to the axis of symmetry 8.

第2図並びに第3図に示されるように第1吸気マニホル
ド11の吸入空気入口部21内には吸気遮断弁26が配
置され、吸気遮断弁26の弁軸27には負圧ダイアフラ
ム装置30に連結されたアーム28と第一切換ス、イッ
チ29が取付けられる。第3図に示されるように負圧ダ
イアフラム装置30は互に間隔を隔だてた一対のダイア
フラム31.32を有し、負圧ダイア3フラム装置30
の内部はこれらダイアフラム31.32によって第1負
圧童33.第2負圧室34並びに大気圧室35に8分割
される。第1負圧室33内にはダイアフラム押圧用圧縮
ばね36が挿入され、更にダイアフラム31と係合可能
に配置されてダイアフラム31の変位量を調整可能表ス
トッパ37が負圧ダイアフラム装置30のハウジングに
螺着される。tた。第2負圧室34内に露呈するダイア
フラム31の表面上には開孔38を有する保合部材3−
が固着され、この開孔38よりも大きな径を有しかつ保
合部材39内で移動可能な拡大頭部を有する遊び結合ロ
ッド4oがダイアフラム32に一着される。また、ダイ
アフラム31.32間には圧縮ばね41が挿入され、ダ
イアフラム32は制御ロッド42を介してアーム28の
先端部処連結されゐ、菖1負圧室33け大気に連通可能
な第2電磁切換弁43.絞り46並びに負圧導管44を
介してサージタンク13内に接続され、館2負  。
As shown in FIGS. 2 and 3, an intake cutoff valve 26 is disposed in the intake air inlet 21 of the first intake manifold 11, and a negative pressure diaphragm device 30 is connected to the valve shaft 27 of the intake cutoff valve 26. A connected arm 28 and a first exchange switch 29 are attached. As shown in FIG. 3, the negative pressure diaphragm device 30 includes a pair of spaced apart diaphragms 31,32.
The interior of the diaphragm 31.32 creates a first negative pressure element 33. It is divided into eight parts, a second negative pressure chamber 34 and an atmospheric pressure chamber 35. A compression spring 36 for pressing the diaphragm is inserted into the first negative pressure chamber 33 , and a stopper 37 is arranged to be able to engage with the diaphragm 31 to adjust the amount of displacement of the diaphragm 31 . be screwed on. It was. The retaining member 3- has an opening 38 on the surface of the diaphragm 31 exposed in the second negative pressure chamber 34.
is fixed to the diaphragm 32, and a play coupling rod 4o having an enlarged head having a larger diameter than the opening 38 and movable within the retaining member 39 is attached to the diaphragm 32. A compression spring 41 is inserted between the diaphragms 31 and 32, and the diaphragm 32 is connected to the distal end of the arm 28 via a control rod 42. Switching valve 43. It is connected to the inside of the surge tank 13 via a throttle 46 and a negative pressure conduit 44, and is connected to the inside of the surge tank 13.

圧室34は大気に連通可能な第2電磁切換弁45並びに
負圧導管47を介してサージタンク13内に接続される
。一方、第1切換スイツチ29はスロットル弁26の弁
軸27と共に回転する可動接点49と、この可動接点4
9と接触可能な3個の固定接点!So、51.32を有
し、これらの固定接点50,51.52は電子制御ユニ
ット18に接続さ終る。可動接点49はスロットル弁2
6が全開し七いるとき固定接点50に接続し、スロット
ル弁26が半開きのときに固定接点51に接続し、スロ
ットル弁26が全閉したときに固定接点!52に11続
される。
The pressure chamber 34 is connected to the inside of the surge tank 13 via a second electromagnetic switching valve 45 that can communicate with the atmosphere and a negative pressure conduit 47. On the other hand, the first changeover switch 29 has a movable contact 49 that rotates together with the valve shaft 27 of the throttle valve 26, and a movable contact 49 that rotates together with the valve shaft 27 of the throttle valve 26.
3 fixed contacts that can be contacted with 9! So, 51.32, these fixed contacts 50, 51.52 end connected to the electronic control unit 18. The movable contact 49 is the throttle valve 2
When the throttle valve 26 is fully open, it is connected to the fixed contact 50, when the throttle valve 26 is half open, it is connected to the fixed contact 51, and when the throttle valve 26 is fully closed, it is connected to the fixed contact 50. 52, followed by 11.

一方、酸素濃度検出器20上流のtlEl排気マ排気水
ルド14と吸気速断弁26下流の第1吸気マニホルド1
1とは排気還流通路53によって互に連結され、この排
気還流通路53には負圧ダイアフラム式排気還流弁54
が挿着される。この排気還流弁54はダイアフラム55
によって隔離された負圧室56と大気圧室57を具備し
、負圧室56内にはダイアフラム押圧用圧縮ばね58が
挿入される。仁の負圧室56は大気に連通可能な第3電
磁切換弁59並びに負圧導管60を介してサージタンク
13内に連結される。この第3電磁切換弁59のソレノ
イド、並びに第1.第2電磁切換弁43.45のソレノ
イドは電子制御へニット18に接続される。排気還流通
路53内には排気還流通路53の開閉制御をする弁体6
1が配置され。
On the other hand, the tlEl exhaust water field 14 upstream of the oxygen concentration detector 20 and the first intake manifold 1 downstream of the intake quick cut valve 26
1 are connected to each other by an exhaust gas recirculation passage 53, and a negative pressure diaphragm type exhaust gas recirculation valve 54 is connected to this exhaust gas recirculation passage 53.
is inserted. This exhaust recirculation valve 54 has a diaphragm 55
It has a negative pressure chamber 56 and an atmospheric pressure chamber 57 which are separated by a negative pressure chamber 56, and a compression spring 58 for pressing the diaphragm is inserted into the negative pressure chamber 56. The negative pressure chamber 56 is connected to the inside of the surge tank 13 via a third electromagnetic switching valve 59 that can communicate with the atmosphere and a negative pressure conduit 60. This solenoid of the third electromagnetic switching valve 59 and the first solenoid. The solenoid of the second electromagnetic switching valve 43,45 is connected to the electronic control unit 18. A valve body 6 for controlling opening and closing of the exhaust gas recirculation passage 53 is provided in the exhaust gas recirculation passage 53.
1 is placed.

この弁体61は弁四ツド62を介してダイアフラム55
に連結さ′れる。更に、排気還流弁54は第2切換スイ
ツチ63を具備する。この第2切換スイツチ63はダイ
アフラム58に連結されてダイアフラム5Jsの移動に
よって作動せしめられる可動接点64と、この可動接点
64と接触可能な一対の固定接点65.66を有し、こ
れらの固定接点65.66は電子制御ユニット18に接
続される。可動接点64は弁体′61が閉弁していると
き画定接点6!$に接続され、弁体61が開弁すると固
定接点66に接続される。なお、第3図に示されるよう
にサージタンク13には機関負荷を検出するためめ負圧
センサ6丁が取付けられ、この負圧センナ67は電子制
御エニツ)1Bに接続される。また、第2図に示される
ようK、再循環排気ガス流量制御弁73と再循環排気ガ
ス導管69からなる排気ガス再循環装置が設けられる。
This valve body 61 is connected to the diaphragm 55 through a valve quadruple 62.
connected to. Further, the exhaust gas recirculation valve 54 includes a second changeover switch 63. This second changeover switch 63 has a movable contact 64 connected to the diaphragm 58 and actuated by movement of the diaphragm 5Js, and a pair of fixed contacts 65 and 66 that can come into contact with the movable contact 64. .66 is connected to the electronic control unit 18. The movable contact 64 is the defining contact 6! when the valve body '61 is closed. $, and when the valve body 61 opens, it is connected to the fixed contact 66. As shown in FIG. 3, six negative pressure sensors are attached to the surge tank 13 to detect the engine load, and this negative pressure sensor 67 is connected to the electronic control unit 1B. Additionally, as shown in FIG. 2, an exhaust gas recirculation device is provided, which comprises a recirculation exhaust gas flow control valve 73 and a recirculation exhaust gas conduit 69.

この再循環排気ガス導管69の排気ガス流入ロア0は酸
素濃度検出器20上流の第1排気マニホルド14内に接
続され、再循環排気ガス導管69の排気ガス、11 流出9口、71はほぼ対称軸線8上においてサージタン
ク13内に接続される。なお、第2図並びに第3図に示
さないが機関回転数を検出するために回転数+7t72
 ([4図)が機関本体10に取付けられる。
The exhaust gas inlet lower 0 of this recirculation exhaust gas conduit 69 is connected to the first exhaust manifold 14 upstream of the oxygen concentration detector 20, and the exhaust gas inlet 11 and outlet 9 port 71 of the recirculation exhaust gas conduit 69 are almost symmetrical. It is connected within the surge tank 13 on the axis 8 . Although not shown in Figures 2 and 3, in order to detect the engine rotation speed, the engine rotation speed +7t72
(Fig. 4) is attached to the engine body 10.

第4図は電子制御ユニット18の回路図を示す。FIG. 4 shows a circuit diagram of the electronic control unit 18.

第4図を参照すると、−子制御ユニット18はディジタ
ルコンピュータからなり、各種の演算処理を行なうiイ
クロプロセッサ(!IJPU)80.ランダムアクセス
メモリ(RAM)81.制御プログラム、演算定数等が
予め格納されているリードオンリメモリ(ROM)82
.入力ポート83並びに出力ボート84が双方向バス8
5を介して互に接続されている。更に、電子制御ユニウ
ド18内には各種のクロック信号を発生するり四ツク発
生器86が設けられる。*<図に示されるように回転数
センサ72.第1切換スイッチ29.第2切換スイツチ
63は夫々対応するバッファ増巾器87゜88.89を
介して入力ポート83に接続される。
Referring to FIG. 4, the slave control unit 18 is comprised of a digital computer, and includes an i-microprocessor (!IJPU) 80. which performs various arithmetic operations. Random access memory (RAM) 81. Read-only memory (ROM) 82 in which control programs, calculation constants, etc. are stored in advance
.. Input port 83 and output port 84 are bidirectional bus 8
They are connected to each other via 5. Furthermore, a four clock generator 86 is provided within the electronic control unit 18 for generating various clock signals. *<As shown in the figure, the rotation speed sensor 72. First changeover switch 29. The second changeover switch 63 is connected to the input port 83 via a corresponding buffer amplifier 87, 88, 89, respectively.

また、エアフローメータ25並びに負圧センサ67は対
応するバッファ増巾器90,91並びに^D変換器92
.93を介して入カポ−)83に接続され、第1酸素濃
度検出器20畠並びに第2酸素si度゛検出器20bは
夫々対応するバッファ94m、94に+並びにコンパレ
ータ 95at95に+を介して入カポ−)83に接続
される。
In addition, the air flow meter 25 and the negative pressure sensor 67 are connected to the corresponding buffer amplifiers 90 and 91 and the ^D converter 92.
.. The first oxygen concentration detector 20 and the second oxygen concentration detector 20b are connected to the corresponding buffers 94m and 94, respectively, and to the comparator 95at95 via +. (capo) 83.

エアフローメータ25は吸入空気量に比例し九出力電圧
を出力し、この出力電圧はAD変換器92において対応
する2進数に変換され九後入力ポート83並びにバス8
5を介してMPU 80 K読み込まれる6回転数セン
サ72は機関回転数に比例した周期の連続パルスを出力
し、この連続パルスが入力ポート83並びにバス85を
介してMPU5OK読み込まれる。酸素濃度検出器20
a。
The air flow meter 25 outputs an output voltage proportional to the amount of intake air, and this output voltage is converted into a corresponding binary number by the AD converter 92 and sent to the rear input port 83 and the bus 8.
The rotational speed sensor 72 outputs continuous pulses with a period proportional to the engine rotational speed, and these continuous pulses are read into the MPU 5OK via an input port 83 and a bus 85. Oxygen concentration detector 20
a.

20bは排気ガスが酸化雰囲気のとき0.1ポルFl!
度の出力電圧を発生し、排気ガスが還元雰囲気のとl!
a9*ルト租度の出力電圧を発生する。この酸素濃度検
出器2one 20bの出力電圧はコンパレータ95a
* 95bにおいて例えばα5ポル)@tの基準値と比
較され1例えば排気ガスが酸化雰囲気のときコンパレー
タ9 S m * 9 S bの一方の出力端子に出力
信号が発生し、′排気ガスが還元雰囲気のときコンパレ
ータ95m、95bの他方の出力端子に出力信号が発生
する。コンパレータ95 a e 95 bの出力信号
は入力ポート83並びにバス85を介してMPU80に
読み込まれる。
20b is 0.1 por Fl when the exhaust gas is in an oxidizing atmosphere!
When the exhaust gas is in a reducing atmosphere, it generates an output voltage of 1!
Generates an output voltage of a9* power. The output voltage of this oxygen concentration detector 2one 20b is determined by the comparator 95a.
* For example, when the exhaust gas is in an oxidizing atmosphere, an output signal is generated at one output terminal of the comparator 9 S m * 9 S b, and the exhaust gas is in a reducing atmosphere. At this time, an output signal is generated at the other output terminal of the comparators 95m and 95b. The output signals of the comparators 95 a e 95 b are read into the MPU 80 via the input port 83 and the bus 85 .

負圧センサ67はサージタンク13内の負圧に比例した
出力電圧を出力し、この出力電圧は^D変換器93にお
いて対応する2進数に変換された後入カボート83並び
にバス85を介してMPU 80に読み込まれる。第1
切換スイツチ29並びに第2切換スイツチ63の接点切
換信号は入力ポート83並びにパス8sを介してMPU
801C読み込まれる。
The negative pressure sensor 67 outputs an output voltage proportional to the negative pressure inside the surge tank 13, and this output voltage is converted into a corresponding binary number by the D converter 93 and then sent to the MPU via the input port 83 and the bus 85. 80. 1st
The contact switching signals of the changeover switch 29 and the second changeover switch 63 are sent to the MPU via the input port 83 and the path 8s.
801C is loaded.

出力ポート84は燃料噴射弁17m、17b並びに電磁
切換弁43.45.59を作動するために設けられてお
り、この出カポ−)84には2進数のデータがMPU8
0からパス85を介して書き込まれる。出力ポート84
の出力端子はダウンカウンタ96.97並びにラッチ、
98の対応する入力端子に接続されている。各ダウンカ
ウンタ96゜s7はMPo 8Gから書き込まれた2進
数のデータをそれに対応する時間の長さに変換するため
に設けられてお)、これらダウンカウンタ96.97は
出力ポート84から送p込まれたデータのダウンカウン
トをり四ツク発生器86のクロック信号によって開始し
、カウント値がOKなるとカウントを完了して出力端子
にカウント完了信号を発生する。各8−Rフリツプフロ
ツプ99s 100のり★ット入力端子Rは夫々ダウン
カウンタ96゜97の出力端子に接続され、8−Rフリ
ップ70ツブ99.100のセット入力端子8はクロッ
ク発生器86に接続される。これらの8−R7リツプ7
Wツブ9G、100はクロック発生器86のクロック信
号によりダウンカウント開始と同時にセットされ、ダウ
ンカウント完了時に対応するダウンカウンタ96.97
のカウント完了信号によってリセットされる。従って8
−Rフリップ7aツブ9G、100の出力端子Qは対応
す−るダウンカウンタ9g、97のダウンカウントが行
なわれてい畢関高レベルとなる。8−87リツプフロツ
プ99.100の出力端子Qは夫々電力増巾回路101
.10!を介して嬉1気筒詳ムの燃料噴射弁17思並び
に第2気筒群Bの燃料噴射弁17bKl続されており、
従ってダウンカウンタ96゜97がダウンカウントして
いる間燃料噴射弁17m、17bかも夫々燃料が噴射さ
れる。一方。
The output port 84 is provided to operate the fuel injection valves 17m and 17b as well as the electromagnetic switching valves 43, 45, and 59, and the output port 84 stores binary data to the MPU 8.
0 via path 85. Output port 84
The output terminals are down counters 96, 97 and latches,
98 corresponding input terminals. Each down counter 96.s7 is provided to convert the binary data written from the MPo 8G into the corresponding time length), and these down counters 96 and 97 are input from the output port 84. The down-counting of the received data is started by the clock signal of the four clock generator 86, and when the count value is OK, the counting is completed and a count completion signal is generated at the output terminal. The set input terminals R of each 8-R flip-flop 99s 100 are connected to the output terminals of the down counters 96, 97, respectively, and the set input terminals 8 of the 8-R flip-flops 99,100 are connected to the clock generator 86. Ru. These 8-R7 lip 7
The W knobs 9G and 100 are set at the same time as the down count starts by the clock signal of the clock generator 86, and the corresponding down counter 96.97 is set when the down count is completed.
It is reset by the count completion signal. Therefore 8
The output terminals Q of the R flips 7a 9G and 100 are at a high level because the corresponding down counters 9g and 97 are down counting. The output terminals Q of the 8-87 lip-flops 99 and 100 are connected to power amplification circuits 101, respectively.
.. 10! are connected to the fuel injection valve 17 of the first cylinder group B and the fuel injection valve 17bKl of the second cylinder group B,
Therefore, while the down counters 96 and 97 are counting down, fuel is also injected into the fuel injection valves 17m and 17b, respectively. on the other hand.

出力ポート84に書き込まれた電磁切換弁制御用データ
はラッチ98により保持され、ラッチ98に保持された
データによって電磁制御弁43゜45.59が作動せし
められる。
The data for controlling the electromagnetic switching valve written in the output port 84 is held by a latch 98, and the data held by the latch 98 causes the electromagnetic control valve 43°45.59 to operate.

第5図並びに第6図は本発明による分割運転制御方式を
説明するためのタイムチャートを示す。
5 and 6 show time charts for explaining the divided operation control method according to the present invention.

第51図並′参・に第6図において(1)から(h)の
各線図は次のものを示す。
In Figure 51 and Figure 6, the diagrams (1) to (h) indicate the following.

(1)!負圧センサ67の出力電圧。(1)! Output voltage of negative pressure sensor 67.

(b1第1電磁切換弁43のソレノイドに印加される制
御電圧。
(b1 Control voltage applied to the solenoid of the first electromagnetic switching valve 43.

(c) !第2電磁切換弁45のソレノイドに印加され
る制御電圧。
(c)! Control voltage applied to the solenoid of the second electromagnetic switching valve 45.

(d) ! 第3電磁切換弁5gのソレノイドに印加さ
れる制御電圧。
(d)! Control voltage applied to the solenoid of the third electromagnetic switching valve 5g.

(e) を第2気筒群Bの燃料噴射弁17bに印加され
る制御パルス。
(e) is a control pulse applied to the fuel injection valve 17b of the second cylinder group B.

(f)!第1気筒群Aの燃料噴射弁171に印加される
制御パルス。
(f)! A control pulse applied to the fuel injection valve 171 of the first cylinder group A.

(g戸吸気値断弁26の開度。(Opening degree of the g-door intake value cutoff valve 26.

(h) s排気還流弁54の弁体61の開度。(h) Opening degree of the valve body 61 of the s exhaust recirculation valve 54.

なお、Its図は高負荷運転から低負荷運転に移る′と
きを示しており、第6図は低負荷運転から高負荷運転に
移るときを示している。
Note that the Its diagram shows the transition from high-load operation to low-load operation, and FIG. 6 shows the transition from low-load operation to high-load operation.

第5図の時間T1は負圧センサ67の出力電圧が低い高
負荷運転時を示している。このとき第5図(b) K示
されるように第1電磁切換弁43のソレノイドは消勢さ
れておシ、従って第1負圧室33は第1電磁切換弁43
を介して大気に連通している。tた。このとき第5図(
c)に示されるように第2電磁切換弁45のソレノイド
も消勢されており。
Time T1 in FIG. 5 indicates a high load operation when the output voltage of the negative pressure sensor 67 is low. At this time, as shown in FIG. 5(b), the solenoid of the first electromagnetic switching valve 43 is deenergized, and therefore the first negative pressure chamber 33 is
It communicates with the atmosphere through. It was. At this time, Figure 5 (
As shown in c), the solenoid of the second electromagnetic switching valve 45 is also deenergized.

従って第2負圧室34も第2電磁切換弁45を介して大
気に連通している。その結果1両ダイアクラム31.3
2は最も大気圧室3!!*に移動しており、斯くして第
5図ωに示すように吸気速断弁26は全開している。更
に、第5図の時間TIにおいては第5図(d)K示すよ
うに第3電磁切換弁59のソレノイドが消勢されており
、従って排気還流弁54の負王室56は第3電磁切換弁
59を介して大気に連通している。斯くしてダイアフラ
ムS5は最も大気圧室57側に移動しており、その結果
第5図(b) 4’C示すように弁体61が排気還流通
路53を全閉している。
Therefore, the second negative pressure chamber 34 also communicates with the atmosphere via the second electromagnetic switching valve 45. As a result, 1 car Diacrum 31.3
2 is the most atmospheric pressure chamber 3! ! *, and thus the intake quick cut valve 26 is fully open as shown in FIG. 5 ω. Furthermore, at time TI in FIG. 5, the solenoid of the third solenoid switching valve 59 is deenergized as shown in FIG. 59 to the atmosphere. In this way, the diaphragm S5 has moved furthest toward the atmospheric pressure chamber 57, and as a result, the valve body 61 completely closes the exhaust gas recirculation passage 53, as shown in FIG. 5(b) 4'C.

一方、このとき第4図のMP080において回転数セン
サ72の出力パルスから機関回転数が計算され、更にこ
の機関回転数とエア70−メータ25の出力信号から基
本燃料噴射量が計算される。
On the other hand, at this time, at MP080 in FIG. 4, the engine speed is calculated from the output pulse of the rotation speed sensor 72, and the basic fuel injection amount is calculated from this engine speed and the output signal of the air meter 25.

一方、三元触媒コンバータ75を用いた場合には機関シ
リンダ内に供給される混合気の空燃比が理論空燃比とな
ったときに三元触媒による浄化効率が最も高くなるが上
述のようにエアフローメータ25の出力信号から計算さ
れた基本燃料噴射量は理論空燃比を形成するの1に必要
な燃料量に正確に一致してはいない、従って第1気筒群
AK供給される混合気の空燃比が理論空燃比となるよう
に第1気筒群ムの燃料噴射弁17mから噴射すべき基本
燃料噴射量は第1酸素濃度検出器20mの出力信号に基
いて補正され、一方第2気筒群BK供給される混合気の
空燃比が理論空燃比となるように第2気筒詳Bの燃料噴
射弁17bから噴射すべき基本燃料噴射量は第2酸素濃
度検出器20bの出力信号に基いて補正される。このよ
うに補正するごとKよつて得られた燃料噴射量を表わす
データは出力ポート84に書き込まれ、このデータに基
いて第511(e)並びに第5図(f)に示されるよう
麦ノ(ルスが第2気筒詳Bの燃料噴射弁17m並びに第
2気筒群Bの燃料−射弁17bに印加される。従って機
関高負荷運転時には全燃料噴射弁17mt17bから燃
料が噴射され、第1気筒群ム並びに第2気筒群BK夫々
通論空燃比の混合気が供給される。
On the other hand, when the three-way catalytic converter 75 is used, the purification efficiency by the three-way catalyst is highest when the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder reaches the stoichiometric air-fuel ratio. The basic fuel injection amount calculated from the output signal of the meter 25 does not exactly match the fuel amount required to form the stoichiometric air-fuel ratio. Therefore, the air-fuel ratio of the air-fuel mixture supplied to the first cylinder group AK The basic fuel injection amount to be injected from the fuel injection valve 17m of the first cylinder group BK is corrected based on the output signal of the first oxygen concentration detector 20m so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. The basic fuel injection amount to be injected from the fuel injection valve 17b of the second cylinder B is corrected based on the output signal of the second oxygen concentration detector 20b so that the air-fuel ratio of the mixture becomes the stoichiometric air-fuel ratio. . The data representing the fuel injection amount obtained by K after each correction is written to the output port 84, and based on this data, as shown in Fig. 511(e) and Fig. 5(f), is applied to the fuel injection valve 17m of the second cylinder group B and the fuel injection valve 17b of the second cylinder group B. Therefore, during high-load engine operation, fuel is injected from all fuel injection valves 17mt17b, and the fuel injection valve 17m of the second cylinder group B is injected. The air-fuel mixture at the stoichiometric air-fuel ratio is supplied to each of the cylinder group BK and the second cylinder group BK.

次いで第5図の時刻!1において高負荷運転から低負荷
運転に切換えられ九とすると第5図(a)K示すように
*圧センサ67の出力電圧は急激に上昇する。)JPU
80では負圧センサ67の出力電圧It基準値v、(第
5図伽))よりも大きく表うたときに低負荷運転である
と判別され、その結果第5図(b)K示すようK11!
1電磁切換弁43のソレノイドを付勢すべきデー−を出
力ポート84に書き込む。
Next is the time shown in Figure 5! When high load operation is switched to low load operation at point 1 and point 9 is reached, the output voltage of the *pressure sensor 67 rises rapidly as shown in FIG. 5(a)K. ) J.P.U.
80, when the output voltage It of the negative pressure sensor 67 is larger than the reference value v, (Fig. 5)), it is determined that the operation is under low load, and as a result, as shown in Fig. 5(b)K, K11!
1. Write the data to energize the solenoid of the electromagnetic switching valve 43 to the output port 84.

このようにして第1電磁切換弁43のソレノイドが付勢
されると第1負圧室33は絞946並びに第1電磁切換
弁43を介してサージタンク13内に接続される。その
結果、第1負圧室33内の負圧は徐々に高くなるために
ダイアフラム31は圧縮ばね36に抗して第1.負圧室
33側に移動する。
When the solenoid of the first electromagnetic switching valve 43 is energized in this way, the first negative pressure chamber 33 is connected to the inside of the surge tank 13 via the throttle 946 and the first electromagnetic switching valve 43. As a result, the negative pressure inside the first negative pressure chamber 33 gradually increases, so that the diaphragm 31 resists the compression spring 36 and the negative pressure inside the first negative pressure chamber 33 increases gradually. Move to the negative pressure chamber 33 side.

このとき係合部材39が遊び連結ロッド40と係合する
ために制御ロッド42を持ち上げ、斯くして第5図−)
K示されるように吸気遮断弁26は除徐に閉弁する。一
方、負圧センサ67によって高負荷運転から低負荷運転
になったことが検出されるとエア70−メータ25並び
(負圧センサ6)の検出信号に基いて第1気筒群A並び
に第2気筒詳Bに供給すべき基本燃料噴射量が計算さ些
る。
At this time, the engagement member 39 lifts the control rod 42 to engage the play connecting rod 40, thus FIG.
As shown in K, the intake cutoff valve 26 gradually closes. On the other hand, when the negative pressure sensor 67 detects that the high load operation has changed to the low load operation, the first cylinder group A and the second cylinder The basic fuel injection amount to be supplied to Part B is calculated.

即ち、吸気遮断弁26が徐々に閉弁するとそれに伴なっ
て讐−ジタンク13内の負圧が小さくなり。
That is, as the intake cutoff valve 26 gradually closes, the negative pressure within the storage tank 13 decreases accordingly.

機関回転数が一定とすると吸気遮断弁26の開度とサー
ジタンク13内の負圧の間には一対一の関係がある。更
に6機関回転数が一定であれば吸気速断弁26の開度は
第1気筒群A並びに第2気筒群BK対する供給吸入空気
の割り振り比と一対一の関係があシ、従って機関回転数
が一定であれば2サージタンク13内の負圧と第2気筒
群Bに供給される吸入空気量との間には一対一の関係が
ある。
Assuming that the engine speed is constant, there is a one-to-one relationship between the opening degree of the intake cutoff valve 26 and the negative pressure in the surge tank 13. Furthermore, if the engine speed is constant, the opening degree of the intake speed cutoff valve 26 has a one-to-one relationship with the allocation ratio of the intake air supplied to the first cylinder group A and the second cylinder group BK, and therefore the engine speed increases. If constant, there is a one-to-one relationship between the negative pressure in the two surge tanks 13 and the amount of intake air supplied to the second cylinder group B.

斯くして各機関回転数に対してサージタンク13゜内の
負圧と第2気筒群BK供給される吸入空気量との関係が
わかっていれば機関回転数とサージタンク13内の負圧
からII2気筒群Bに供給される吸入空気量を求めるこ
とができる1本発明では機関回転数N、サージタンク1
3内の負圧Pと第2気筒群BK供給される吸入空気量と
の関係を予め実験により求め1機関−転−N、サージタ
ンク内負圧Pと第2気筒群BK供給される吸入空気量と
の関係が予めROM82内に記憶されている。従って回
輯数センサ72の出力信号から機関回転数NをMP08
G内において計算し、斯くして計算された機関回転数N
と負圧センサ67の出力信号に基いて80Mg2内に記
憶された上述の関係から第2気筒詳BK供給される吸入
空気量が計算される。
Thus, if the relationship between the negative pressure in the surge tank 13° and the amount of intake air supplied to the second cylinder group BK for each engine speed is known, it can be calculated from the engine speed and the negative pressure in the surge tank 13. II2 The amount of intake air supplied to the cylinder group B can be determined.1 In the present invention, the engine speed N, the surge tank 1
The relationship between the negative pressure P in the surge tank and the amount of intake air supplied to the second cylinder group BK was determined in advance through experiments. The relationship with the amount is stored in the ROM 82 in advance. Therefore, the engine rotation speed N is determined from the output signal of the rotation speed sensor 72 as MP08.
Calculated within G, and thus calculated engine speed N
Based on the output signal of the negative pressure sensor 67 and the above-mentioned relationship stored in 80Mg2, the amount of intake air supplied to the second cylinder BK is calculated.

更にlMPU8G内においてエアフローメータ25の出
力信号より求められた全吸入空気量から第2気筒群BK
供給される吸入空気量が減算され、それによって第1気
筒群AK供給される吸入空気量が計算される0次いでM
PU 80内では第1気筒群ムに供給される吸入空気量
と第2気筒群Bに供給される吸入空気量から各気筒に供
給される混合気の空燃比が理論空燃比となるのに必要な
基本燃料噴射量が計算される0次いでMPU80内では
第1酸素濃度検出器201の出力信号に基いて第1気筒
群ムに供給すべき基本燃料噴射量が補正され。
Furthermore, the second cylinder group BK is calculated based on the total intake air amount obtained from the output signal of the air flow meter 25 in lMPU8G.
The amount of intake air supplied is subtracted, thereby calculating the amount of intake air supplied to the first cylinder group AK.
In PU 80, the amount of intake air supplied to the first cylinder group B and the amount of intake air supplied to the second cylinder group B is necessary for the air-fuel ratio of the mixture supplied to each cylinder to reach the stoichiometric air-fuel ratio. Then, in the MPU 80, the basic fuel injection amount to be supplied to the first cylinder group is corrected based on the output signal of the first oxygen concentration detector 201.

更に第2酸素濃度検出器20bの出力信号に基い5て第
2気筒群BK供給すべき基本燃料噴射量が補正される。
Furthermore, the basic fuel injection amount to be supplied to the second cylinder group BK is corrected based on the output signal of the second oxygen concentration detector 20b.

このように補正するととくより得られ九燃料噴射量に基
いて燃料噴射弁17m、17bから燃料が噴射される。
With this correction, fuel is injected from the fuel injection valves 17m and 17b based on the especially obtained nine fuel injection amounts.

とのようなオープンループによる空燃比制御は第5図の
時刻T、から時刻!麺関において行なわれる。この間吸
気遮断弁26は第5図ωかられかるように徐々に閉弁す
るので第1気筒群ムに供給される吸入空気量が徐々に減
少すると共に第2気筒群BK供給される吸入空気量は徐
々に増大する。従って時刻T1から時刻Tb間では鮪5
図(f)K示されるように第1気筒*AK噴射される燃
料量は徐々に減少し、第5図(e)K−示さ′れるよう
に第2気筒群BK噴射される燃料量は徐々に増大せしめ
られるがこの間、各気筒群ム。
Open-loop air-fuel ratio control is performed from time T in Figure 5 to time! It is held at Menseki. During this time, the intake cutoff valve 26 gradually closes as shown in FIG. increases gradually. Therefore, between time T1 and time Tb, tuna 5
As shown in Figure (f) K, the amount of fuel injected into the first cylinder *AK gradually decreases, and as shown in Figure 5 (e) K, the amount of fuel injected into the second cylinder group BK gradually decreases. During this time, the pressure of each cylinder group increases.

BK供−される混合気の空燃比は理論空燃比に維持され
る− 次いで第5図において時刻Tbに達するとダイアフラム
31はストッパ3丁に当接して移動を停止し、吸気速断
弁26は半開きの状態に保持される。
The air-fuel ratio of the air-fuel mixture supplied to BK is maintained at the stoichiometric air-fuel ratio. Then, when time Tb is reached in FIG. 5, the diaphragm 31 comes into contact with three stoppers and stops moving, and the intake quick cutoff valve 26 is half-open. is maintained in the state of

このようにダイアフラム31がストッ/(3?に当接す
ると同時tcI11切換スイッチ29の可動接点49が
固定接点SIK接続し、この固定接点51の接続信号が
MPU80に読み込まれる。MPU8GはζOta絖信
号が発せられる中歪や第1気筒群ムの燃料噴射を停止さ
せるデータ並びに第3電磁切換弁!$9のソレノイドを
付勢せしめるデータを出カポ−)84に書き込む、この
とき第2気筒群Bへは燃料が供給され続け、第2気筒群
BK供給される混合気の空燃比は第2酸素濃度検出器2
0bの出力信号に基いて理論空燃比と力るように制御さ
れる。その結果1時刻ThK達すると第5図(e)に示
されるように第2気筒群Bの燃料噴射弁17bからの燃
料噴射量は増大せしめられ、第5図(f)に示されるよ
うKM1気筒群Aの燃料噴射弁17身からの燃料噴射は
停止せしめられる。更に第3電磁切換弁59のソレノイ
ドが付勢されるために排気還流弁54の負王室56は第
3電磁切換弁59を介してサージタンク13内に接続さ
れる。その結果負圧室56内には負圧が加わるためにダ
イアフラム55は圧縮ばね5BK抗して負圧i!56側
に移動し、斯くして弁体61が排気還流通路53を開弁
する。その結果第1排気マニホルド14内の排気ガスが
排気還流通路53を介して第1吸気マニホルド11内に
還流される。排気還流弁54の弁体61が排気還流通W
653を全開すると第2切換スイツチ63の可動接点6
4が固定接点66に接続し、この固定接点66の接続信
号がMPU80に読み込まれる。このときが第5図にお
いて時刻Tcで示される。この固定接点66の接続信号
が発せられるや否やMPU80は第2電磁切換弁450
ソレノイドを付勢すべきデータを出力ポート84に書き
込む、このようにして第2電磁切換弁4゛5のソレノイ
ドが付勢されると第2負圧室34は負圧導管47を介し
てサージタンク13内に接゛続され、斯くして第2負圧
室34内に負圧室34内に負圧が加えられる。その結果
ダイアフラム32は圧縮ばね41に抗して第1負圧室3
3側に移動し、斯くして制御ロッド42が持ち上げられ
るために第5図(g)K示されるように吸気速断弁26
が全閉する。
In this way, when the diaphragm 31 comes into contact with the stop/(3?), the movable contact 49 of the tcI11 changeover switch 29 connects to the fixed contact SIK, and the connection signal of this fixed contact 51 is read into the MPU 80. Write the generated medium distortion, the data to stop the fuel injection of the first cylinder group B, and the data to energize the third solenoid switching valve! $9 solenoid to the output capo) 84, at this time to the second cylinder group B. continues to be supplied with fuel, and the air-fuel ratio of the mixture supplied to the second cylinder group BK is determined by the second oxygen concentration detector 2.
It is controlled to maintain the stoichiometric air-fuel ratio based on the output signal of 0b. As a result, when 1 time ThK is reached, the fuel injection amount from the fuel injection valve 17b of the second cylinder group B is increased as shown in FIG. 5(e), and the amount of fuel injected into the KM1 cylinder is increased as shown in FIG. 5(f). Fuel injection from the 17 fuel injection valves of group A is stopped. Further, since the solenoid of the third electromagnetic switching valve 59 is energized, the negative end 56 of the exhaust recirculation valve 54 is connected to the inside of the surge tank 13 via the third electromagnetic switching valve 59. As a result, a negative pressure is applied in the negative pressure chamber 56, so that the diaphragm 55 resists the compression spring 5BK and the negative pressure i! 56 side, and thus the valve body 61 opens the exhaust gas recirculation passage 53. As a result, the exhaust gas in the first exhaust manifold 14 is recirculated into the first intake manifold 11 via the exhaust gas recirculation passage 53. The valve body 61 of the exhaust gas recirculation valve 54 is connected to the exhaust gas recirculation W.
When 653 is fully opened, the movable contact 6 of the second changeover switch 63
4 is connected to a fixed contact 66, and a connection signal from this fixed contact 66 is read into the MPU 80. This time is indicated by time Tc in FIG. As soon as the connection signal of the fixed contact 66 is issued, the MPU 80 activates the second electromagnetic switching valve 450.
Data to energize the solenoid is written to the output port 84. When the solenoid of the second electromagnetic switching valve 4-5 is energized in this way, the second negative pressure chamber 34 is connected to the surge tank via the negative pressure conduit 47. 13, thus applying negative pressure to the second negative pressure chamber 34. As a result, the diaphragm 32 resists the compression spring 41 and the first negative pressure chamber 3
3 side, and thus the control rod 42 is lifted, so that the intake quick-release valve 26 is moved to the 3 side as shown in FIG. 5(g)K.
is fully closed.

第5図(@)’PI至第5図(h)K示されるように機
関が高負荷運転から低負荷運転に移るとまず始めに吸気
速断弁26・が半開位置まで徐々に閉弁せしめられ、し
ψhもこの聞咎気筒に供給される混合気の空燃比が理論
空燃比となるように制御され′るので第1気筒群ムの出
力トルクは徐々に低下し、第2気筒群Bの出力トルクは
徐々に増大する。その結果。
As shown in Fig. 5(@)'PI to Fig. 5(h)K, when the engine shifts from high-load operation to low-load operation, the intake quick cutoff valve 26 is first gradually closed to the half-open position. , and ψh are also controlled so that the air-fuel ratio of the air-fuel mixture supplied to this cylinder becomes the stoichiometric air-fuel ratio, so the output torque of the first cylinder group B gradually decreases, and the output torque of the second cylinder group B gradually decreases. The output torque increases gradually. the result.

高負荷運転から低負荷運転へ出力トルクが急激に減少す
ることなく滑らかに移行せしめることかで亀る。更に、
排気還流作用が開始されるまで吸気遮断弁26が半開状
−に保持されるので高負荷運転から低負荷運転に移る際
のボンピング損失をなくすことができる。
The key is to smoothly transition from high-load operation to low-load operation without causing a sudden decrease in output torque. Furthermore,
Since the intake cutoff valve 26 is held in a half-open state until the exhaust gas recirculation action is started, pumping loss during transition from high load operation to low load operation can be eliminated.

一方、第6図において時刻Taは低負荷運転から高負荷
運転に移行したときを示している。このときまず始めに
第6図(C)に示されるように第2電磁切換弁45のソ
レノイドが消勢され、その結果第2負圧室34が第2電
磁切換弁45を介して大気に連通せしめられるためにダ
イアフラム32が大気圧室35儒に移動し、斯くして第
6図(g) K示されるように吸気遮断弁26が半開位
置まで開弁せしめられる。吸気遮断弁26が半開位置ま
で開弁せしめられると吸気遮断弁26は半開状態に一時
的に保持される。一方、吸気遮断弁26が半開位置まで
開弁せしめられると第1切換スイツチ29の可動接点4
9が固定接点51Kii続し、この接続信号によって第
3図(d)K示されるように第3電磁切換弁59が消勢
される。その結果、排気還流弁54の負圧室56は第3
電磁切換弁59を介して大気に連通せしめられるために
ダイアフラム55は大気圧室57側に移動し、第6図(
h) K示されるように弁体61が排気還流通路53を
閉鎖する。弁体61が全閉すると第2切換スイツチ63
の可動接点64が固定接点65に接続され、この゛固定
接点65の接続信号によって第6図(b) K示される
ように第1電磁切換弁43が消勢されると共に第6図(
f)K示されるように第1気筒群Aの燃料噴射弁17m
からの燃料噴射作用が開始される。
On the other hand, in FIG. 6, time Ta indicates a transition from low load operation to high load operation. At this time, first, as shown in FIG. 6(C), the solenoid of the second electromagnetic switching valve 45 is deenergized, and as a result, the second negative pressure chamber 34 is communicated with the atmosphere via the second electromagnetic switching valve 45. The diaphragm 32 is moved to the atmospheric pressure chamber 35, and the intake cutoff valve 26 is opened to the half-open position as shown in FIG. 6(g). When the intake cutoff valve 26 is opened to the half-open position, the intake cutoff valve 26 is temporarily held in the half-open state. On the other hand, when the intake cutoff valve 26 is opened to the half-open position, the movable contact 4 of the first changeover switch 29
9 is connected to the fixed contact 51Kii, and this connection signal deenergizes the third electromagnetic switching valve 59 as shown in FIG. 3(d)K. As a result, the negative pressure chamber 56 of the exhaust gas recirculation valve 54
The diaphragm 55 moves toward the atmospheric pressure chamber 57 to be communicated with the atmosphere via the electromagnetic switching valve 59, and as shown in FIG.
h) The valve body 61 closes the exhaust gas recirculation passage 53 as shown in K. When the valve body 61 is fully closed, the second changeover switch 63
The movable contact 64 is connected to the fixed contact 65, and the connection signal from the fixed contact 65 deenergizes the first electromagnetic switching valve 43 as shown in FIG.
f) Fuel injection valve 17m of the first cylinder group A as shown in K
The fuel injection action starts.

このように燃料噴射弁17畠から脳料の噴射作用が開始
されるまで第1気筒群Aが長時間K II−zて休止せ
しめられていたとするとこの間排気ガスは第1気筒群ム
の吸排気系内を循環しているだけなので排気ガス温か低
下し、その結果第111索濃度検出lfl 20 mの
検出部の温度が150℃程度まで低下してし壇う、しか
しながら酸素濃度検出器は検出部の温度が活性温度以上
1例えば350℃以上にならないと検出能力が低下する
ために上述のように第1酸素濃度検出器201の検出部
の温度が低い場合には第1酸素濃度検出器20mの出力
信号によって空燃比を制御することはできない。
If the first cylinder group A is kept at rest for a long time until the injection action of the brain fuel starts from the fuel injection valve 17, then during this time the exhaust gas will flow through the intake and exhaust of the first cylinder group A. Since the exhaust gas is only circulating within the system, the temperature of the exhaust gas decreases, and as a result, the temperature of the detection part of the 111th line concentration detection lfl 20 m drops to about 150℃.However, the oxygen concentration detector If the temperature of the first oxygen concentration detector 201 is not higher than the activation temperature (1, for example, 350 degrees Celsius or higher, the detection ability will be reduced). The air-fuel ratio cannot be controlled by the output signal.

第1酸素濃度検出器20mの検出部の温度が活性温度よ
シも高くなったか否かくついては第1酸素濃度検出器2
0mの出力電圧のピーク値から判断することができ、こ
のピーク値がα5ポルト程度を越えば第1酸素濃度検出
器20−が検出能力を有するようになったと判断するこ
とができる。第1酸素濃度検出器20mの出力電圧はコ
ンパレータ95mを通して常時MPU壱〇によって監視
されており、従りて上述のように燃料噴射弁171から
燃料の噴射作用が開始されたときに第1酸素議度検出器
20島の検出部の温度が活性温111!に達していない
場合にはエアフルーメータ25並びに負圧センt67の
出力信号から計算された基本燃料噴射量に基いて燃料噴
射弁171から燃料が噴射される。熱論このとき第im
l素濃度検出、器208の検出部の温度が活性温度を越
えていれば上述の基本燃料噴射量は第1酸素濃度検出器
201の出力信号に基いて補正される。
To determine whether the temperature of the detection part of the first oxygen concentration detector 20m has become higher than the activation temperature, check the first oxygen concentration detector 2.
This can be determined from the peak value of the output voltage at 0 m, and if this peak value exceeds approximately α5 port, it can be determined that the first oxygen concentration detector 20- has a detection capability. The output voltage of the first oxygen concentration detector 20m is constantly monitored by the MPU 1 through the comparator 95m, so that when the fuel injection action from the fuel injection valve 171 is started as described above, the first oxygen concentration The temperature of the detection part of the temperature detector 20 islands is the active temperature 111! If the amount has not been reached, fuel is injected from the fuel injection valve 171 based on the basic fuel injection amount calculated from the output signals of the air full meter 25 and the negative pressure center t67. At this moment im passionately
If the temperature of the detection part of the first oxygen concentration detector 208 exceeds the activation temperature, the above-mentioned basic fuel injection amount is corrected based on the output signal of the first oxygen concentration detector 201.

上述のように燃料噴射弁17aからの燃料噴射作用が開
始され、同時に第1電磁切換弁43が消勢されると第1
負圧室33は絞り46を介して大気に連通せしめられる
ためにダイアフラム31は第1負圧室3411に徐々に
移動し、斯くして第6図(g) K示されるように吸気
遮断弁26は徐々に開弁上て全開する。このとき第1酸
素濃度検出器20mの検出部の温度が活性温度に依然と
して達していないとするとエアフルーメータ25の出力
信号から計算された基本燃料噴射量に基いて燃料噴射弁
17鳳から犠料が噴射され、第1酸素濃度検出器20m
の検出部の温度が活性温度を越えている場合にはこの基
本燃料噴射量は第1酸素11度検出920 mの出力信
号によりて補正される。
As described above, when the fuel injection action from the fuel injection valve 17a is started and at the same time the first electromagnetic switching valve 43 is deenergized, the first
Since the negative pressure chamber 33 is communicated with the atmosphere through the throttle 46, the diaphragm 31 gradually moves to the first negative pressure chamber 3411, and thus the intake cutoff valve 26 is closed as shown in FIG. The valve gradually opens and then fully opens. At this time, if the temperature of the detection part of the first oxygen concentration detector 20m has not yet reached the activation temperature, the amount of sacrificial fuel from the fuel injection valve 17 is calculated based on the basic fuel injection amount calculated from the output signal of the airflow meter 25. is injected, and the first oxygen concentration detector 20m
If the temperature of the detection part exceeds the activation temperature, this basic fuel injection amount is corrected by the output signal of the first oxygen 11 degree detection 920 m.

このように機関が低負荷運転から高負荷運転に移るとオ
ず始めに吸気遮断弁26が半開せしめられた後に排気還
流弁54の弁体61が排気還流通路53を閉鎖するので
ボンピング損失をなくすことができ1次いで吸気遮断弁
26が全開位置まで徐々に開弁せしめられて第1気筒群
^による出力トルクが徐々に上昇せしめられるために機
関出力が急激K・増大するのを阻止することができる。
When the engine shifts from low-load operation to high-load operation in this way, the intake cutoff valve 26 is first half-opened, and then the valve body 61 of the exhaust recirculation valve 54 closes the exhaust recirculation passage 53, eliminating the pumping loss. Then, the intake cutoff valve 26 is gradually opened to the fully open position, and the output torque of the first cylinder group is gradually increased, so that it is possible to prevent the engine output from rapidly increasing. can.

以上述べえように本発明によれば機関が高負荷運転から
低負荷運転へ移行する際、或いは低負荷運転から高負荷
運転へ移行する際に吸気遮断弁が徐々に開閉弁せしめら
れ、しかもこの開閉動作中第1気筒群並びに第2気筒群
に供給される混合気の空燃比が理論空燃比となるように
制御されるので排気工建ツシ冒ンが悪化するのを阻止で
きると共に急激な出力トルク変動を阻止することができ
る。また1機関が高負荷運転から低負荷運転に移行する
際、或いは低負荷運転から高負荷運転に移行する際に吸
気遮断弁が半開した状態で排気還流弁の開閉弁動作が行
なわれるのでボンピング損失の発生を阻止でき、更に排
気の還流作用が行なわれているときには第1気筒群に燃
料の供給は行なわれ゛ず、排気の還流作用が停止してい
るときに第1気筒群に燃料が供給されるので良好な燃焼
が得られる。更に1本発明では仕切壁19によって分離
され九各吸気マニホルド14.15内に夫々別個に酸素
濃度検出器20g+、20bを取付けている。とζろが
従来では例えば仕切壁19に第1排気!ニホルド14内
と第2排気iニホルド15内とを連通する貫通孔を形成
し、この貫通孔内に唯一個の酸素濃度検出器を取付けて
いた。しかしながらこの場合第1気筒群Aが休止したと
きに第1゛排気マニホルド14内の排気ガス温が低下す
るので第2排気マニホルド14内を高温の排気ガスが流
れていたとしても酸素濃度検出器の検出器の温度は第7
図に示すように活性温度以下となってしまい、検出能力
が著るしく低下してしまう、なお。
As described above, according to the present invention, when the engine transitions from high-load operation to low-load operation, or from low-load operation to high-load operation, the intake cutoff valve is gradually opened and closed. During the opening/closing operation, the air-fuel ratio of the air-fuel mixture supplied to the first and second cylinder groups is controlled to be the stoichiometric air-fuel ratio, which prevents deterioration of the exhaust system and increases the output suddenly. Torque fluctuations can be prevented. In addition, when one engine shifts from high-load operation to low-load operation, or from low-load operation to high-load operation, the exhaust recirculation valve is opened and closed with the intake cutoff valve half open, resulting in pumping loss. In addition, fuel is not supplied to the first cylinder group when exhaust gas recirculation is being performed, and fuel is not supplied to the first cylinder group when exhaust gas recirculation is stopped. good combustion can be obtained. Furthermore, in the present invention, oxygen concentration detectors 20g+ and 20b are separately installed in each intake manifold 14.15 separated by a partition wall 19. Conventionally, for example, the first exhaust is placed on the partition wall 19! A through hole was formed to communicate the inside of the nitrogen fold 14 and the inside of the second exhaust i-nifold 15, and a single oxygen concentration detector was installed in this through hole. However, in this case, when the first cylinder group A is stopped, the exhaust gas temperature in the first exhaust manifold 14 decreases, so even if high-temperature exhaust gas is flowing in the second exhaust manifold 14, the oxygen concentration detector The temperature of the detector is the 7th
As shown in the figure, the temperature drops below the activation temperature, resulting in a significant drop in detection ability.

第7図において縦軸Tは酸素濃度検出器の検出部の温度
、tlは全気筒運転時、 tlは第1気筒群ム休止時を
示している。1九、上述のような貫通孔を形成すると第
1気筒群ムの休止時に第2吸気マニホルド内の高温の排
気ガスが第1吸気!ニホルド内に流入するために仁の高
温の排気ガス中に含まれるオイル建ストやカーボン等が
嬉1気筒評^の第1吸気マニホルド内や燃料噴射弁17
1に堆積するという問題が生じる。ところが本発明では
仕切壁19.76を設けることKよって第1気筒群Aが
休止している場合でも第2排気マニホルド15内の高温
の排気ガスが第1排気マニホルド内に侵入することがな
く、斯くしてオイルミストやカーボン等が堆積するのを
阻止することかで°きる。
In FIG. 7, the vertical axis T indicates the temperature of the detection part of the oxygen concentration detector, tl indicates when all cylinders are operating, and tl indicates when the first cylinder group is at rest. 19. If a through hole as described above is formed, the high temperature exhaust gas in the second intake manifold will be transferred to the first intake manifold when the first cylinder group is at rest! Because the oil and carbon contained in the high-temperature exhaust gas flow into the engine's intake manifold, the oil and carbon contained in the high-temperature exhaust gas enter the engine's first intake manifold and fuel injection valve
The problem arises that it accumulates at 1. However, in the present invention, by providing the partition wall 19.76, even when the first cylinder group A is at rest, the high temperature exhaust gas in the second exhaust manifold 15 does not enter into the first exhaust manifold. In this way, it is possible to prevent oil mist, carbon, etc. from accumulating.

まえ、第2酸素濃度検出器20bけ常時高温の排気ガス
と接触するので常時検出可能な状態に保持することがで
きる。一方、!1気筒群が稼動状態となったときに第2
酸素濃度検出器の検出器の温度が十分に高くない場合が
生じるがこのような場合にはオープンループによる空燃
比制御によって空燃比をほぼ理論空燃比に制御すること
ができる。
First, the second oxygen concentration detector 20b is always in contact with the high-temperature exhaust gas, so it can be kept in a detectable state at all times. on the other hand,! When the first cylinder group is in operation, the second
There may be cases where the temperature of the oxygen concentration detector is not high enough, but in such cases, the air-fuel ratio can be controlled to approximately the stoichiometric air-fuel ratio by open-loop air-fuel ratio control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の内燃機関を図解的に示す平面図。 第2図は本発明に係る内燃機関の平面図、館3図は第2
図の内燃機関を図解的に示す平面図、第4図は第3図の
電子制御ユニットの回路図、第5図は本発明による分割
運転制御方式を説明する九めの線図、第6図は本発明に
よる分割運転制御方式を説明するための線図、第7図は
酸素濃度検出器の検出部の温度を示す図である。 11・・・第1a気マニホルド、12・・・第2吸気マ
ニホルド、13・・・サージタンク、14・・・第1排
気マニホルド、15・・・第2排気マニホルド、17m
。 1・7b・・・燃料噴射弁、18・・・電子制御ユニッ
ト。 20m、20b・・・酸素濃度検出器、24・・・ス四
ツートル弁、26・・・吸気遮断弁、29・・・第1切
換スイツチ、3・O・・・、負圧ダイアフラム装置、4
3・・・@1電磁切換弁、45・・・第2電磁切換弁、
53・・・排気還流通路、54・・・排気還流弁、59
・・・第3電磁切換弁、63・・・第2切換スイツチ、
67・・・負圧センサ。 第1図 第2図
FIG. 1 is a plan view schematically showing a conventional internal combustion engine. Fig. 2 is a plan view of an internal combustion engine according to the present invention, and Fig. 3 is a plan view of the internal combustion engine according to the present invention.
FIG. 4 is a circuit diagram of the electronic control unit shown in FIG. 3, FIG. 5 is a ninth diagram illustrating the split operation control system according to the present invention, and FIG. 7 is a diagram for explaining the divided operation control method according to the present invention, and FIG. 7 is a diagram showing the temperature of the detection section of the oxygen concentration detector. DESCRIPTION OF SYMBOLS 11... 1st air manifold, 12... 2nd intake manifold, 13... surge tank, 14... 1st exhaust manifold, 15... 2nd exhaust manifold, 17m
. 1.7b...Fuel injection valve, 18...Electronic control unit. 20m, 20b... Oxygen concentration detector, 24... Four two-way valve, 26... Intake cutoff valve, 29... First changeover switch, 3.O... Negative pressure diaphragm device, 4
3... @1 electromagnetic switching valve, 45... 2nd electromagnetic switching valve,
53... Exhaust recirculation passage, 54... Exhaust recirculation valve, 59
...Third electromagnetic switching valve, 63...Second switching switch,
67...Negative pressure sensor. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 気筒を第10気筒評と第20気筒群に分割し。 該第1気筒群と第2気筒群を夫々第1吸気通路並びに第
2@、気通路を介して共通のサージタンクに接続すると
共に該第1吸気通路内<am辿断弁を設けて該吸気遮断
弁を轡関高負荷運転時に開弁し。 該吸気遮断弁後流の第1吸気通路と機関排気通路とを連
結する排気還流通路内に排気還流弁を設けて該排気還流
弁を機関高負荷運転時に閉弁じ1機関高負荷運転時に上
記第1気筒群並びに第2気筒群への燃料の供給を制御す
ると共に機関低負荷運転時に上記第1気筒郡への燃料の
供給を遮断する燃料供給装置を具備し九内燃機関におい
て、上記第1気筒群の排気通路と上記第2気筒群の排気
通路を互に独立して設けると共に互Ka立した各排気通
路内に夫々酸素濃−検出器を配置し、更に上記第1気筒
群に供給される吸入空気量を検出可能な吸入空気量検出
装置を具備し、吸気遮断弁が開弁動作をしている間上記
第1気筒群の排気通路に設けられた酸素濃度検出器と上
記吸入空気量検出装置の出力信号に基いて第1気筒群に
供給される混合気の空燃比が理論空燃比となるように燃
料供給量を制御するようKし九分割運転制御式内燃機関
[Claims] The cylinders are divided into a 10th cylinder group and a 20th cylinder group. The first cylinder group and the second cylinder group are respectively connected to a common surge tank via a first intake passage and a second intake passage, and a cutoff valve is provided in the first intake passage to connect the intake passage to a common surge tank. Open the shutoff valve during high load operation. An exhaust recirculation valve is provided in the exhaust recirculation passage that connects the first intake passage downstream of the intake cutoff valve and the engine exhaust passage, and the exhaust recirculation valve is closed during high engine load operation, and the above-mentioned exhaust recirculation valve is closed during high engine load operation. 9. The internal combustion engine is equipped with a fuel supply device that controls the supply of fuel to the first cylinder group and the second cylinder group, and cuts off the supply of fuel to the first cylinder group during low load operation of the engine. The exhaust passages of the group and the exhaust passages of the second cylinder group are provided independently from each other, and an oxygen concentration detector is disposed in each of the mutually standing exhaust passages, and the oxygen concentration detector is further provided to the first cylinder group. It is equipped with an intake air amount detection device capable of detecting the amount of intake air, and while the intake cutoff valve is in the opening operation, the oxygen concentration detector provided in the exhaust passage of the first cylinder group and the intake air amount detection device are provided. A nine-division operation control type internal combustion engine that controls the fuel supply amount so that the air-fuel ratio of the air-fuel mixture supplied to the first cylinder group becomes the stoichiometric air-fuel ratio based on the output signal of the device.
JP14477081A 1981-09-16 1981-09-16 Internal-combustion engine with divided cylinder group operation control type Pending JPS5848735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14477081A JPS5848735A (en) 1981-09-16 1981-09-16 Internal-combustion engine with divided cylinder group operation control type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14477081A JPS5848735A (en) 1981-09-16 1981-09-16 Internal-combustion engine with divided cylinder group operation control type

Publications (1)

Publication Number Publication Date
JPS5848735A true JPS5848735A (en) 1983-03-22

Family

ID=15370008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14477081A Pending JPS5848735A (en) 1981-09-16 1981-09-16 Internal-combustion engine with divided cylinder group operation control type

Country Status (1)

Country Link
JP (1) JPS5848735A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159327A (en) * 1984-01-23 1985-08-20 ロックフォード・パワートレイン・インコーポレーテッド Temperature control apparatus of coolant/cooling medium
JPS61171851A (en) * 1985-01-24 1986-08-02 Mazda Motor Corp Control device for multicylinder engine
JPS62139918A (en) * 1985-12-12 1987-06-23 Nippon Denso Co Ltd Cooling system for vehicle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60159327A (en) * 1984-01-23 1985-08-20 ロックフォード・パワートレイン・インコーポレーテッド Temperature control apparatus of coolant/cooling medium
JPS61171851A (en) * 1985-01-24 1986-08-02 Mazda Motor Corp Control device for multicylinder engine
JPS62139918A (en) * 1985-12-12 1987-06-23 Nippon Denso Co Ltd Cooling system for vehicle

Similar Documents

Publication Publication Date Title
US4240389A (en) Air-fuel ratio control device for an internal combustion engine
US4391240A (en) Internal combustion engine
US7055508B2 (en) EGR control device and method for internal combustion engine
US4354471A (en) Internal combustion engine
EP0478120A2 (en) Method and apparatus for inferring barometric pressure surrounding an internal combustion engine
WO2019214821A1 (en) An egr flow determination method, an egr rate error determination method, a control method for an internal combustion engine, and an internal combustion engine
JPS5848735A (en) Internal-combustion engine with divided cylinder group operation control type
US4308831A (en) Internal combustion engine
JPS6118663B2 (en)
JPH0229845B2 (en)
JPS5848734A (en) Internal-combustion engine with divided cylinder group operation control type
JPS6339785B2 (en)
JPH0370099B2 (en)
US8386153B2 (en) Internal combustion engine and method and device for operating an internal combustion engine
JP3338907B2 (en) Engine air-fuel ratio control device
JP4158692B2 (en) Secondary air supply flow rate calculation method
JPH0340220B2 (en)
JPS6118661B2 (en)
JPS6065238A (en) Partial-cylinder operation control type internal- combustion engine
JPS645058Y2 (en)
JP2017002821A (en) Control device of internal combustion engine
JPS5977049A (en) Divided operation control type internal-combustion engine
JPS6118662B2 (en)
JPS5828543A (en) Electronically controlled fuel injection process and equipment in internal combustion engine
JPS6111480Y2 (en)