JPS5848703A - Row of stator blade of turbine - Google Patents

Row of stator blade of turbine

Info

Publication number
JPS5848703A
JPS5848703A JP14616181A JP14616181A JPS5848703A JP S5848703 A JPS5848703 A JP S5848703A JP 14616181 A JP14616181 A JP 14616181A JP 14616181 A JP14616181 A JP 14616181A JP S5848703 A JPS5848703 A JP S5848703A
Authority
JP
Japan
Prior art keywords
row
turbine
blades
nozzle
blade row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14616181A
Other languages
Japanese (ja)
Inventor
Tetsuo Sasada
哲男 笹田
Hajime Shibaoka
柴岡 初
Kunio Tsuji
辻 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14616181A priority Critical patent/JPS5848703A/en
Publication of JPS5848703A publication Critical patent/JPS5848703A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To make the deformation of the row of stator blades of a turbine due to difference of pressure uniform and reduce the leakage loss of an operating fluid by providing long nozzle blades having large rigidity in the vicinities of divided parts of partition plates of the row of the stator blade and short nozzle blades having small friction loss at other parts of the row. CONSTITUTION:An outer partition plate 2a is divided into two parts on surfaces 2c and an inner partition plate 2b on surfaces 2d. Three long nozzle blades 3b having high rigidity are provided only in the vicinity of the divided surfaces and short nozzle blades 3a having a small friction resistance are provided at other remaining parts. By this arrangement, the axial deformation due to vapor pressure in the row of stator blades is made uniform, and gaps of respective parts between the row of stator blades and the row of rotary blade can be made small. Accordingly, the leakage loss of the operating fluid can be reduced, and the function of the turbine can be improved.

Description

【発明の詳細な説明】 本発明は、二分割したタービン静止翼列の改良に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a two-part turbine stationary blade row.

蒸気タービンその他ガスタービン等軸流ターボ機械にお
いては、周知の通り、静止部をなす静止翼列と回転部を
々す回転翼列との一組で段落を構成している。即ち、こ
れらはタービンケーシング内゛に納められ、ボイラー等
外部からの高温高圧の作動流体を静止翼列に設けたノズ
ル翼で案内して゛回転翼列の動翼に高速で吹付けること
によって回転翼列を回転させ、さらにこの回転翼列を通
過した作動流体を次の段落に伝え、順次作動流体の熱エ
ネルギを機械仕事に転換している。
In axial flow turbomachines such as steam turbines and other gas turbines, as is well known, a stage is composed of a stationary blade row serving as a stationary part and a rotary blade row serving as a rotating part. That is, these are housed in a turbine casing, and the high-temperature, high-pressure working fluid from outside, such as a boiler, is guided by nozzle blades installed in a stationary blade row and sprayed at high speed onto the rotor blades of the rotary blade row. The row is rotated, and the working fluid that has passed through this rotary blade row is transmitted to the next stage, and the thermal energy of the working fluid is sequentially converted into mechanical work.

この様に静止翼列と回転翼列とは静止体と回転体との関
係Kl>るから、その興には轟然若干の間隙を必要とす
るが、これらの間隙から漏洩する作動流体は仕事をせず
、単に損失となるのみでるるから、この間隙は極力小さ
く抑える必要がめる。
Since the stationary blade row and the rotary blade row have a relationship between the stationary body and the rotating body, they require a certain amount of clearance for their operation, but the working fluid leaking from these gaps does no work. Therefore, it is necessary to keep this gap as small as possible.

しか、シ、実際には静止翼列はその前後の圧力差によっ
て下流側に変形するから、前記の間隙はこの変形を考慮
して設定されていて、従来はこの変形が不均一でかつ大
きかったため、前記の間隙は大きく、従って漏洩損失が
大きくなってタービンの効率の低下を招いていた。
However, in reality, the stationary blade row deforms downstream due to the pressure difference before and after it, so the gap mentioned above was set with this deformation in mind, and in the past, this deformation was uneven and large. , the gap is large, and therefore leakage losses are large, leading to a decrease in turbine efficiency.

これを図について具体的に説明する。第1図は蒸気ター
ビンの段落構造を示す軸方向断面図で、第2図の(a)
は第1図のP−P矢視図、(b)図は(a)図のA−A
に沿った矢視断面展開図である。静゛止翼列1は、外杆
切板2a及び内仕切板2bと、この内、外画仕切板2b
、2a間に配設され、この両者に夫々連結された複数枚
のノズル翼3及びパツキン4とから構成されていて、該
静止翼列の外周、即ち外杆切板2aの外周1aはタービ
ンケーンング内壁に熱膨張に対応できる構造で固定され
ている。また、静止翼列1は第2図の(a)に示す如く
、保守点検のため、外杆切板は20面で、内仕切板は2
d面で二分割され、全体として2 c −2d −2d
−2d面で二分割されている。一方、回転翼列5は動翼
6とこれに連結するシュラウド7及びロータディスク8
とから成り、軸受に軸支されていて、B方向から静止翼
列1のノズル翼3を介して吹付ける高温高圧の蒸気を動
翼6に受け、中心#5aを中心に回転する(前記タービ
ンケー7ングと軸受とは図示されていない。)。
This will be explained in detail with reference to the figures. Figure 1 is an axial sectional view showing the stage structure of a steam turbine, and (a) in Figure 2
is a PP arrow view in Figure 1, and (b) is an A-A view in (a).
FIG. The stationary blade row 1 includes an outer frame partition plate 2a, an inner partition plate 2b, and an outer frame partition plate 2b.
, 2a, and is composed of a plurality of nozzle blades 3 and packing 4, which are respectively connected to the two, and the outer periphery of the stationary blade row, that is, the outer periphery 1a of the outer cutting plate 2a, is connected to the turbine cane. It is fixed to the inner wall of the housing with a structure that can accommodate thermal expansion. In addition, as shown in Figure 2 (a), the stationary blade row 1 has 20 outer rod partition plates and 2 inner partition plates for maintenance and inspection purposes.
Divided into two by the d plane, the whole is 2 c -2d -2d
It is divided into two parts by the -2d plane. On the other hand, the rotor blade row 5 includes a rotor blade 6, a shroud 7 connected thereto, and a rotor disk 8.
The rotor blades 6 receive high-temperature, high-pressure steam blown from the direction B through the nozzle blades 3 of the stationary blade row 1, and rotate around center #5a (the turbine (The casing and bearings are not shown.)

静止翼列1と回転翼列5との間には、前記外杆切板2a
側面とシュラウド7側面との間の動翼先端間隙9a、内
仕切板2b側面と動翼6のルートフ″イン6aとの間の
動翼根元間隙9b1及びパツキン4のパツキンフィン4
aとロータディスク80ロータパツキン溝8a側面との
パツキン間隙9Cとが形成されている。そして、これら
の間隙は前記静止翼列1の変形の影響を受けるから、こ
 −の変形を小さくするには、静止翼列1を剛性の高い
構造としなければならない。
Between the stationary blade row 1 and the rotary blade row 5, the outer cutting plate 2a is provided.
The rotor blade tip gap 9a between the side surface and the side surface of the shroud 7, the rotor blade root gap 9b1 between the side surface of the internal partition plate 2b and the root in'' 6a of the rotor blade 6, and the gasket fin 4 of the gasket 4.
A packing gap 9C is formed between the rotor disk 80 and the side surface of the rotor packing groove 8a. Since these gaps are affected by the deformation of the stationary blade row 1, the stationary blade row 1 must have a highly rigid structure in order to reduce this deformation.

しかるに、静止翼列1は前記の通り、外杆切板2a及び
内仕切板2bと、この間にあって両者に連結された複数
枚のノズル翼3とから構成されているので、ノズル翼3
の剛性は静止翼列1の剛性に大きく影響する。一方、ノ
ズル翼3の剛性は第3図(b)に示す如<’、(a)図
の翼幅!を増大させるに従って増加するが、この反面、
翼表面積の増加に伴い摩擦損失が増加してタービンの効
率を低下させる。このため従来は、第2図に示す如く、
摩擦損失の少ない短ノズル翼3aと剛性の高い長ノズル
翼3bとを交互に組合せて使用していた。
However, as described above, the stationary blade row 1 is composed of the outer rod partition plate 2a, the inner partition plate 2b, and the plurality of nozzle blades 3 located between them and connected to both.
The rigidity of the stationary blade row 1 has a large influence on the rigidity of the stationary blade row 1. On the other hand, the rigidity of the nozzle blade 3 is as shown in FIG. 3(b), and the blade width is as shown in FIG. 3(a)! However, on the other hand,
As the blade surface area increases, friction losses increase and reduce the efficiency of the turbine. For this reason, conventionally, as shown in Figure 2,
Short nozzle blades 3a with low friction loss and long nozzle blades 3b with high rigidity were used in alternate combination.

しかしながら、この従来方式は、剛性の高い長ノズル翼
3bを円周上に均等に配置し比較的多用しているにも拘
らず、第5図(a)の一点鎖線1°2が示す如く、その
変形、即ち内仕切板2bの内周面端の変位δは均一でな
く、かつ大きい。゛特に、静止翼列の前記分割面2 c
 −2d −2d −2C近傍の変形が太きい。即ち、
従来例の静止翼列では、この最大の変形を基準として前
記回転翼列との間隙が設定されるので、この間隙が大き
く、従って蒸気の漏洩損失が大きくなってタービンの性
能の低下を招いていた。
However, in this conventional method, although highly rigid long nozzle blades 3b are arranged evenly on the circumference and relatively frequently used, as shown by the dashed dotted line 1°2 in FIG. 5(a), The deformation, that is, the displacement δ of the end of the inner peripheral surface of the inner partition plate 2b is not uniform and large.゛In particular, the dividing plane 2 c of the stationary blade row
-2d -2d The deformation near -2C is large. That is,
In conventional stationary blade rows, the gap with the rotary blade row is set based on this maximum deformation, so this gap is large, resulting in large steam leakage losses and a decrease in turbine performance. Ta.

本発明の目的は、以上の欠点を解消し、静止翼列の変形
を均一にして減少させ、回転翼列との各部間隙を減少さ
せると共に、摩擦損失の大きい長ノズル“翼の使用を極
力減少させることにより、タービン性能の向上を図った
タービン静止翼列を提供するにある。
The purpose of the present invention is to eliminate the above-mentioned drawbacks, to uniformly reduce the deformation of the stationary blade row, to reduce the gaps between each part of the stationary blade row, and to minimize the use of long nozzle blades that cause large friction loss. An object of the present invention is to provide a turbine stationary blade row with improved turbine performance.

この目的を達成するため、本発明によるタービン静止翼
列は、従来の長、短ノズル翼の円周上における均等配列
に代え、変形の最も著しがった分割面近傍にのみ剛性の
高い長ノズル翼を配役する吉共に、他の部分を摩擦損失
の少ない短ノズル翼で構成して、前後の圧力差による該
タービン静止翼列の変形を均一にする構造としたことを
特徴どするものである。
To achieve this objective, the turbine stationary blade cascade according to the present invention replaces the conventional arrangement of long and short nozzle blades evenly arranged on the circumference, with long and rigid nozzle blades arranged only in the vicinity of the dividing plane where the deformation is most severe. In addition to the nozzle blades, the other parts are composed of short nozzle blades with low friction loss, and the structure is such that the deformation of the turbine stationary blade row due to the pressure difference before and after is made uniform. be.

以下、本発明の一実施例を図面に基づいて説明する。こ
の寥施例においては、静止翼列の構成は前記のものと基
本的には同一であり、ノズル翼の配列のみ異なるので、
構成は前記第1図を用い、ノズル翼の配列は本発明の一
実施例を示す第4図に基づいて説明する。なお、第1図
、第2図、第4図において同一符号のものは、同−又は
同一相当のものを示す。− 靜、比翼列1は、第1図に示す如く、外杆切板2a、1
び内仕切板2bと、この内、外画仕切板2b、2a間に
配設され、この両者に連結された複数枚のノズル翼3及
びパツキン4とから構成されていて、該静止翼列1の外
周、即ち外杆切板2aの外周1aは、図示されていない
タービンケーシング内壁に熱膨張に対応できる構造で固
定されている。そして、該静止翼列1は、保守点検のた
め、第4図(a)に示す如く、外杆切板2aは20面で
、内仕切板2bは2a面で夫々二分割され、全体として
2C−2d−2d  2C面で二分割されている。
Hereinafter, one embodiment of the present invention will be described based on the drawings. In this embodiment, the configuration of the stationary blade row is basically the same as the one described above, only the arrangement of the nozzle blades is different.
The configuration will be explained using FIG. 1 mentioned above, and the arrangement of the nozzle blades will be explained based on FIG. 4 showing one embodiment of the present invention. In addition, in FIG. 1, FIG. 2, and FIG. 4, the same reference numerals indicate the same or the same equivalent parts. - As shown in FIG.
The stationary blade row 1 is composed of a plurality of nozzle blades 3 and a gasket 4 arranged between the inner and outer partition plates 2b and 2a and connected to both. The outer periphery, that is, the outer periphery 1a of the outer cutting plate 2a is fixed to the inner wall of the turbine casing (not shown) in a structure that can accommodate thermal expansion. For maintenance and inspection, the stationary blade row 1 is divided into two parts, as shown in FIG. -2d-2d Divided into two by the 2C plane.

長、短ノズル翼の配列は、第4図に示す如く、剛性の高
い長ノズル翼3bを円周上に均等に配置せず、従来変形
が最も大きかった静止翼列の前記分割面2 C−2d 
−2d −2C近傍にのみ3枚配設し、残りの部分には
摩擦抵抗の小さい短ノズル翼3aが配設されている。そ
して、長ノズル翼3bは、第3図又は第4図に示す如く
、短ノズル翼3aを上流側に延長して形成した形状を有
している。従って、従来変形が最も大きく剛性が不足し
ていた分割面近傍の剛性が強化され、一方従来変形が少
なかった中間部の剛性が緩和されたので、静止翼列lの
変形が平均化された。即ち、第5図(a)の実線13が
示す如く、内仕切板2bの内周面端の変位δは円周上例
れの点においてもほぼ均一であり、その値は従来例の同
図一点@紳12が示す最大値より可成り小さくなってい
る。従って、前記第1図に示す静止翼列と回転翼列との
各部間隙9a、gb、gCを予め小さく設定することが
できるから、この実施例におけるタービン静止翼列にお
いては、蒸気の漏洩損失が小さくなり、タービンの゛性
能を向上させることができる。また、蒸気の摩擦損失の
大きい長ノズル翼3bは分割面近傍に夫々3枚使用する
だけであるから、長ノズル翼の使用比率2は相対的に小
さくなり、摩擦損失が低減してタービンの性能を更に向
上させることができる。
In the arrangement of the long and short nozzle blades, as shown in FIG. 4, the highly rigid long nozzle blades 3b are not arranged evenly on the circumference, and the above-mentioned dividing plane 2C- 2d
-2d Three blades are arranged only near -2C, and short nozzle blades 3a with low frictional resistance are arranged in the remaining part. As shown in FIG. 3 or 4, the long nozzle blade 3b has a shape formed by extending the short nozzle blade 3a toward the upstream side. Therefore, the rigidity near the dividing plane, where conventionally the deformation was greatest and lacked rigidity, was strengthened, while the rigidity of the middle part, where conventionally the deformation was small, was relaxed, so the deformation of the stationary blade row l was averaged out. That is, as shown by the solid line 13 in FIG. 5(a), the displacement δ of the end of the inner circumferential surface of the internal partition plate 2b is almost uniform at every point on the circumference, and its value is greater than that of the conventional example in the same figure. This is considerably smaller than the maximum value shown by point @Gen12. Therefore, since the gaps 9a, gb, and gC between the stationary blade row and the rotary blade row shown in FIG. It is possible to improve the performance of the turbine. In addition, since only three long nozzle blades 3b, which have a large steam friction loss, are used near the dividing surface, the usage ratio 2 of the long nozzle blades becomes relatively small, reducing friction loss and improving turbine performance. can be further improved.

第6図は、本発明の他の実施例におけるノズル翼の配列
を示したものである。この実施例が前記の実施例と異な
る点は、長ノズル翼を一体構造とせず、長ノズル翼3b
’を、短ノズル翼3aと同一形状のノズル翼3a′と、
このノズル翼3 a /の上流側延長線にこれと個別に
設けた固定板14とから構成した点である。このノズル
翼、3a′と固定板14との組合せは、前記一体構造の
長ノズル翼3bとほぼ同等の剛性を有するから、この実
施例においても前記同様の作用と効果とを達成すること
ができる。そして更に、この実施例においては、ノズル
翼として形状複雑な長、短二種類を必要とせず、短ノズ
ル翼3a及びこれと同一形状のノズル翼3a/と、形状
単純々固定板14のみを準備すればよいから、製作上は
もちろん、保守管理上も有利である。
FIG. 6 shows the arrangement of nozzle blades in another embodiment of the present invention. This embodiment differs from the previous embodiments in that the long nozzle blades are not integrated, and the long nozzle blades 3b
', a nozzle blade 3a' having the same shape as the short nozzle blade 3a,
It is constructed from a fixing plate 14 provided separately from this nozzle blade 3 a on the upstream extension line thereof. Since this combination of the nozzle blade 3a' and the fixed plate 14 has almost the same rigidity as the long nozzle blade 3b of the integral structure, the same functions and effects as described above can be achieved in this embodiment as well. . Furthermore, in this embodiment, there is no need for two types of long and short nozzle blades with complicated shapes, and only the short nozzle blade 3a, the nozzle blade 3a/ having the same shape, and the fixing plate 14 with a simple shape are prepared. This is advantageous not only in terms of production but also in terms of maintenance management.

以上説明したように、本発明によるタービン静止翼列に
おいては、蒸気圧等作動流体によるその軸方向の変形が
均一化されて小さいので、静止翼列と回転翼列との各部
間隙を小さく設定することができる。従って、蒸気等作
動流体の漏洩損失が少なく、シかも摩擦損失の大きい長
ノズル翼の使用比率を小さくすることができるから、タ
ービンの性能を一層向上させることができる。
As explained above, in the turbine stationary blade row according to the present invention, the deformation in the axial direction due to the working fluid such as steam pressure is uniformized and small, so the gaps between each part of the stationary blade row and the rotary blade row are set small. be able to. Therefore, the leakage loss of working fluid such as steam is small, and the ratio of use of the long nozzle blades, which have a large friction loss, can be reduced, so that the performance of the turbine can be further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は蒸気タービン段落の軸方向断面図、第2図(a
)は第1図のP−P矢視図、(b)図は(a)図のA−
Aに沿った矢視断面展開図で従来例を示し、第3図(a
)はノズル翼形状を示し、(b)図はノズル翼幅ノとそ
の剛性及び摩擦損失との関係図、第4図は本発明の一実
施例で、(a)、(b)図は夫々第2図の(a)。 (b)図に対応する図面、第5図(a)は第2図の従来
例における変形と第4図の実施例における変形との比較
図、(b)図は第1図におけるP−P矢視図における変
形実測点を示し、(C)図は(1))図を半径方向の各
面E−Eで切断したE−E矢視断面図とその変形を示し
、第6図は本発明の他の実施例で、第4図に対応する図
である。 l・・・タービン静止翼列、1a・・・外周、2a・・
・外杆切板、2b・・・内仕切板、2cm2d−2d−
2c・・・分割面、3・・・ノズル翼、3a・・・短ノ
ズル翼、3 a /・・・短ノズル翼と同形のノズル翼
、3b。 嬉1図 〜 拮 2 口 (Q−) j$3  図 (Itン (ト) 第 4  阻 ((1) (b)
Figure 1 is an axial sectional view of a steam turbine stage, Figure 2 (a
) is a PP arrow view in Figure 1, and (b) is a view A- in Figure (a).
The conventional example is shown in a cross-sectional development view along arrow A, and Fig. 3 (a
) shows the nozzle blade shape, (b) shows the relationship between the nozzle blade span, its rigidity, and friction loss, FIG. 4 shows an embodiment of the present invention, and (a) and (b) respectively Figure 2 (a). (b) A drawing corresponding to FIG. 5, (a) is a comparison diagram of the modification in the conventional example shown in FIG. 2 and the modification in the embodiment shown in FIG. Figure 6 shows the actual deformation measurement points in the arrow view, and Figure (C) shows the E-E cross-sectional view taken along each plane E-E in the radial direction of Figure (1)) and its deformation. FIG. 5 is a diagram corresponding to FIG. 4 in another embodiment of the invention; l... Turbine stationary blade row, 1a... Outer periphery, 2a...
・Outer rod cutting plate, 2b...inner partition plate, 2cm2d-2d-
2c...Divided surface, 3...Nozzle blade, 3a...Short nozzle blade, 3a/...Nozzle blade with the same shape as the short nozzle blade, 3b. Happy 1st figure - 2nd mouth (Q-) j$3 figure (Itton (t) 4th hindrance ((1) (b)

Claims (1)

【特許請求の範囲】 1、外仕切板及び内仕切板と、両者−の間に配設し両者
に連結した複数枚のノズル翼とから構成し、前記外仕切
板の外周をタービンケーシング内壁に固定して成るター
ビン静止翼列であって、二゛分割したものにおいて、該
分割面近傍に長ノズル翼を配設すると共に、他の部分を
短ノズル翼で構成して、前後の圧力差による該タービン
静止翼列の変形を均一にする構造としたことを特徴とす
るタービン静止翼列。 2、 前記長ノズル翼は、前記短ノズル翼を上流側に延
長して形成した形状を有することを特徴とする特許請求
の範囲第1項記載のタービン静止翼列。 3、 前記長ノズルは、前記短ノズル翼と同形のノズル
翼と、該ノズル翼の上流側延長線に配設した固定板とか
ら構成したことを特徴とする特許請求の範囲第1項記載
のタービン静止翼列。
[Claims] 1. Consisting of an outer partition plate, an inner partition plate, and a plurality of nozzle blades disposed between the two and connected to the two, the outer periphery of the outer partition plate is attached to the inner wall of the turbine casing. In a stationary turbine blade row that is divided into two parts, long nozzle blades are arranged near the dividing surface, and the other part is composed of short nozzle blades, so that the pressure difference between the front and rear A turbine stationary blade row characterized in that the turbine stationary blade row has a structure that uniformizes deformation of the turbine stationary blade row. 2. The turbine stationary blade row according to claim 1, wherein the long nozzle blade has a shape formed by extending the short nozzle blade toward the upstream side. 3. The long nozzle is comprised of a nozzle blade having the same shape as the short nozzle blade, and a fixing plate disposed on an upstream extension of the nozzle blade. Turbine stationary blade row.
JP14616181A 1981-09-18 1981-09-18 Row of stator blade of turbine Pending JPS5848703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14616181A JPS5848703A (en) 1981-09-18 1981-09-18 Row of stator blade of turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14616181A JPS5848703A (en) 1981-09-18 1981-09-18 Row of stator blade of turbine

Publications (1)

Publication Number Publication Date
JPS5848703A true JPS5848703A (en) 1983-03-22

Family

ID=15401506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14616181A Pending JPS5848703A (en) 1981-09-18 1981-09-18 Row of stator blade of turbine

Country Status (1)

Country Link
JP (1) JPS5848703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080558A (en) * 1990-06-07 1992-01-14 Westinghouse Electric Corp. Control stage nozzle vane for use in partial arc operation
US5460484A (en) * 1993-05-26 1995-10-24 Nissan Motor Co., Ltd. Air flow guiding mechanism for compressor inlet
CN102052095A (en) * 2010-07-07 2011-05-11 北京全四维动力科技有限公司 Asymmetric diaphragm static cascade and asymmetric blades in nozzle set for axial flow steam turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080558A (en) * 1990-06-07 1992-01-14 Westinghouse Electric Corp. Control stage nozzle vane for use in partial arc operation
ES2044747A2 (en) * 1990-06-07 1994-01-01 Westinghouse Electric Corp Control stage nozzle vane for use in partial arc operation
US5460484A (en) * 1993-05-26 1995-10-24 Nissan Motor Co., Ltd. Air flow guiding mechanism for compressor inlet
CN102052095A (en) * 2010-07-07 2011-05-11 北京全四维动力科技有限公司 Asymmetric diaphragm static cascade and asymmetric blades in nozzle set for axial flow steam turbine

Similar Documents

Publication Publication Date Title
US4238170A (en) Blade tip seal for an axial flow rotary machine
US3423070A (en) Sealing means for turbomachinery
US6053699A (en) Steam turbine having a brush seal assembly
US3836279A (en) Seal means for blade and shroud
JP5152492B2 (en) Turbomachine casing with treatment, compressor and turbomachine including such casing
US4208167A (en) Blade lattice structure for axial fluid machine
JPS6123804A (en) Turbine stage structure
US3999883A (en) Variable turbomachine stator
US9670936B2 (en) Turbomachine stator internal shell with abradable material
US3333817A (en) Blading structure for axial flow turbo-machines
JP2011528081A (en) Axial flow turbomachine with low gap loss
US6345952B1 (en) Steam turbine
US4645417A (en) Compressor casing recess
GB2081392A (en) Turbomachine seal
JPH11230361A (en) Brush seal
US2846137A (en) Construction for axial-flow turbomachinery
US6305901B1 (en) Steam turbine
JPS62170734A (en) Transition duct sealing structure
JP2011140943A (en) Adverse pressure gradient seal mechanism
US10683769B2 (en) Centrifugally activatable seal for a rotary machine and method of assembling same
EP3330491B1 (en) Fixed blade for a rotary machine and corresponding rotary machine
JP6712873B2 (en) Seal structure and turbo machine
US3756740A (en) Turbine stage
JPS5848703A (en) Row of stator blade of turbine
US3580692A (en) Seal construction