JPS584866B2 - current supply circuit - Google Patents

current supply circuit

Info

Publication number
JPS584866B2
JPS584866B2 JP52014628A JP1462877A JPS584866B2 JP S584866 B2 JPS584866 B2 JP S584866B2 JP 52014628 A JP52014628 A JP 52014628A JP 1462877 A JP1462877 A JP 1462877A JP S584866 B2 JPS584866 B2 JP S584866B2
Authority
JP
Japan
Prior art keywords
resistor
current supply
circuit
transistor
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52014628A
Other languages
Japanese (ja)
Other versions
JPS53100708A (en
Inventor
鈴木康暢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP52014628A priority Critical patent/JPS584866B2/en
Publication of JPS53100708A publication Critical patent/JPS53100708A/en
Publication of JPS584866B2 publication Critical patent/JPS584866B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/001Current supply source at the exchanger providing current to substations

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Devices For Supply Of Signal Current (AREA)

Description

【発明の詳細な説明】 本発明は、電話機等の通信端末への直流電流の供給を電
磁系の回路から半導体回路に置換することによって、電
磁系素子の小形化、経済化を図った直流電流供給回路に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a direct current supply system that reduces the size and cost of electromagnetic elements by replacing the electromagnetic circuit with a semiconductor circuit for supplying direct current to communication terminals such as telephones. It concerns the supply circuit.

電話交換等に於ては、通話に際して通信端末である電話
機に通話電流としての直流電流を供給する必要があった
2. Description of the Related Art In telephone exchanges and the like, it is necessary to supply a direct current as a communication current to a telephone, which is a communication terminal, when making a call.

しかしながら、この直流電流は交換接続動作では不必要
なものであるばかりか、この接続処理を半導体回路で実
現する場合には極めて有害なものであった。
However, this direct current is not only unnecessary in the exchange connection operation, but also extremely harmful when the connection process is implemented using a semiconductor circuit.

従って、この直流電流を交換機側には遮断し、電話機側
へのみ供給するための電流供給回路は従来より数多く提
案されており、その内のいくつかは実用化の段階にまで
達している。
Therefore, many current supply circuits have been proposed for cutting off this direct current to the exchange side and supplying it only to the telephone side, and some of them have reached the stage of practical use.

第1図に従来使われてきた電流供給回路の代表例を示す
Figure 1 shows a typical example of a conventionally used current supply circuit.

aは通話電流を抵抗Ra、変成器Tの1次巻線N1、加
入者線路および電話機(図では省略)、変成器Tの1次
巻線N1’、抵抗Rbを通して流すので、加入者線路の
短い(0km)加入者に対しては第2図のP点で示され
るように100mAを越す電流が流れ、抵抗Ra,Rb
の定格電力が大きく、また変成器Tも直流100mAを
流し且つ充分なインダクタンスを必要とするため極めて
大きく、不経済であった。
In a, the communication current flows through the resistor Ra, the primary winding N1 of the transformer T, the subscriber line and the telephone (not shown in the figure), the primary winding N1' of the transformer T, and the resistor Rb. For short (0 km) subscribers, a current exceeding 100 mA flows as shown at point P in Figure 2, and resistors Ra and Rb
The rated power of the transformer T was large, and the transformer T was extremely large and uneconomical because it passed 100 mA of direct current and required sufficient inductance.

bはその変形で、通話電流はチョークコイルCHを通り
、変成器Tは小形になるが、大きなチョークコイルCH
が必要となり、小形化を妨げているばかりか不経済でも
ある。
b is a modification of this, in which the communication current passes through a choke coil CH, and the transformer T is made smaller, but a larger choke coil CH is used.
This not only hinders downsizing but is also uneconomical.

一般に+10dBm(10mW)以下の音声信号を扱う
600Ωないし900系の音声帯域変成器Tの1次イン
ダクタンスは1〜2ヘンリーが必要である。
Generally, the primary inductance of a 600Ω to 900 series audio band transformer T that handles audio signals of +10 dBm (10 mW) or less needs to be 1 to 2 Henrys.

たとえばこれの1次巻線に100mAの直流重畳電流が
流れるとチョークコイルとしての等価変圧器(50Hz
換算)容量は 1/2ωLIdc2=(1/2)×100π×(1〜2
)H×0.IX=1.57〜3.14Watt(at
50Hz)となり、10mWの音声変成器容量は無視で
きる程小さく、ほとんど1次巻線容量で変成器Tの大き
さが決まってしまう。
For example, if a DC superimposed current of 100 mA flows through the primary winding of this, an equivalent transformer (50 Hz
Conversion) Capacity is 1/2ωLIdc2=(1/2)×100π×(1~2
)H×0. IX=1.57~3.14Watt(at
50Hz), the audio transformer capacity of 10mW is negligibly small, and the size of the transformer T is determined almost by the primary winding capacity.

したがって直流重畳電流を減らすことが変成器Tの小形
、経済化に接がるため、見掛上の直流アンペアターンを
打消して鉄心の飽和を防ぎ、鉄心の形状を小形にする試
みもある。
Therefore, since reducing the DC superimposed current is related to making the transformer T more compact and economical, some attempts have been made to counteract the apparent DC ampere turns to prevent saturation of the iron core and to make the shape of the iron core more compact.

第1図Cおよびdはその例である。しかし、Cの例では
、A線およびB線の対地不平衡、周波数特性等の電気的
特性が極めて悪化し、中でも対地不平衡は交換機の規格
値を大きく外れており、公衆通信網用の交換機では使用
できないという欠点があった。
Figures 1C and d are examples. However, in example C, the electrical characteristics such as the unbalance to the ground and the frequency characteristics of the A and B lines deteriorated significantly, and the unbalance to the ground in particular greatly exceeded the standard value of the switch, and the switch for the public communication network The drawback was that it could not be used.

また、dの例では変成器Tの1次巻線側に最大100m
Aを越す巻線と等価なN1″巻線を巻込むため、結局コ
イルの銅量がほぼ倍増し、変成器Tの小形化、経済化も
不充分であるばかりか、+Vの補助電源を必要とする等
の欠点を有しており、対地不平衡等の電気的特性の点で
もCほどではないにしても悪く、規格を満足することは
困難であった。
In addition, in the example of d, there is a maximum of 100 m on the primary winding side of the transformer T.
Since the N1'' winding, which is equivalent to the winding over A, is wound, the amount of copper in the coil is almost doubled, and not only is it insufficient to make the transformer T smaller and more economical, but also requires a +V auxiliary power supply. It has drawbacks such as: 1.C, and its electrical characteristics such as ground unbalance are also poor, although not as good as C, making it difficult to meet the standards.

第2図は、第1図a,b,c,dに示す各回路の線路電
流と局内抵抗を含む加入者線ループ抵抗との関係を示す
もので、加入者線路距離0、局内抵抗440Ωのみで電
話局電池電圧−48Vのときは最大線路電流109mA
が、また線路抵抗2kΩのときは約20mAが流れる。
Figure 2 shows the relationship between the line current of each circuit shown in Figure 1 a, b, c, and d and the subscriber line loop resistance including the local resistance.The subscriber line distance is 0 and the local resistance is 440Ω only. When the telephone station battery voltage is -48V, the maximum line current is 109mA.
However, when the line resistance is 2 kΩ, approximately 20 mA flows.

第1図a,bおよびdはこの傾向を示し、cは定電流供
給のため線路長0でも通話電流は20mAを越えないの
で、d程1次巻線の銅量は多くなく、第1図の4案中最
も小形であるが、前述のように対地不平衡が最悪で公衆
通信網用交換機には使用できない。
Figure 1 a, b, and d show this tendency, and c is a constant current supply, so even if the line length is 0, the communication current does not exceed 20 mA, so the amount of copper in the primary winding is not as large as d. This is the smallest of the four plans, but as mentioned above, it has the worst ground unbalance and cannot be used as a public communication network switch.

本発明は、半導体形の電流供給回路をA線と地気との間
およびB線と負極性電池との間に対称形に挿入し、さら
に、2分割した変成器Tの1次巻線をコンデンサで接続
するとともに、このコンデンサの両端を夫々値の等しい
抵抗器を用いて電流供給回路のトランジスタのベースに
接続したことによって、対地不平衡を無くし、変成器T
の1次巻線の直流重畳電流をこれまでの数十あるいは数
百分の1程度に減少させるとともに、線路電流一加入者
ループ抵抗特性を所定の範囲内で自由に選べる給電特性
をも持たせることによって、前述の如き欠点をほとんど
含まない直流電流供給回路を提供するものである。
In the present invention, a semiconductor type current supply circuit is inserted symmetrically between the A line and the ground, and between the B line and the negative battery, and the primary winding of the transformer T, which is divided into two, is By connecting a capacitor and connecting both ends of this capacitor to the base of the transistor of the current supply circuit using resistors of the same value, ground unbalance is eliminated and the transformer T
In addition to reducing the DC superimposed current in the primary winding of the device to several tens or hundreds of times that of the previous one, it also provides power supply characteristics that allow line current and subscriber loop resistance characteristics to be freely selected within a predetermined range. This provides a DC current supply circuit that is free from the above-mentioned drawbacks.

以下、図面に従って詳記する。The details will be described below according to the drawings.

第3図に本発明の基本原理を説明するための回路図を、
第4図にその線路電流−加入者ループ抵抗特性を示す。
FIG. 3 shows a circuit diagram for explaining the basic principle of the present invention.
Figure 4 shows the line current vs. subscriber loop resistance characteristics.

第3図で、A線と地気Gの間にあるトランジスタTa、
抵抗Re1,Rb1、ダイオードDaおよびB線と負極
性電池一Bの間にあるトランジスタTb,抵抗Re2,
Rb2、ダイオードDbは夫々半導体形電流供給回路を
構成している。
In Figure 3, the transistor Ta between the A line and the earth G,
Resistors Re1, Rb1, diode Da, transistor Tb between the B line and negative polarity battery 1B, resistor Re2,
Rb2 and diode Db each constitute a semiconductor current supply circuit.

いま、スイッチSaおよびsbが開放状態にあり、トラ
ンジスタTaおよびTbのベース端子5および6の間に
抵抗R0を接続した状態では、地気GからRb1−Da
−Ro−Db−Rb2の経路で負極性電池一Bに直流電
流が流れる。
Now, when the switches Sa and sb are in the open state and the resistor R0 is connected between the base terminals 5 and 6 of the transistors Ta and Tb, the voltage from the earth G to Rb1-Da
A direct current flows through the negative polarity battery 1B through the path -Ro-Db-Rb2.

トランジスタTa,Tbとして電流増幅率βの充分大き
なものを使用すれば、ベース回路抵抗Rb1,Rb2の
両端の電圧は負極性電池一Bの電圧を抵抗Rb1,R0
およびRb2の抵抗比でほぼ分圧したことになり、抵抗
Rb1,Rb2の電圧降下は加入者線路の長さの変動な
ど外部要因とは無関係に一定となる。
If transistors Ta and Tb with a sufficiently large current amplification factor β are used, the voltage across the base circuit resistors Rb1 and Rb2 will be equal to the voltage of the negative battery 1B and the resistors Rb1 and R0.
The voltage drop across the resistors Rb1 and Rb2 remains constant regardless of external factors such as variations in the length of the subscriber line.

ここで、トランジスタTa,Tbは前述の如くβが充分
大きくαがほぼ1に等しいものを使用しているためその
エミツタ電流はコレクタ電流とほぼ等しいものとなり、
従って、次のような関係が成立する。
Here, since the transistors Ta and Tb have β sufficiently large and α approximately equal to 1 as described above, their emitter current is approximately equal to the collector current.
Therefore, the following relationship holds true.

ここでvRb1,vRb2はベース抵抗Rb1,Rb2
の両端電圧、VDはダイオードDa,Dbの電圧降下、
IROは抵抗R0を流れる電流とする。
Here, vRb1, vRb2 are base resistances Rb1, Rb2
, VD is the voltage drop across diodes Da and Db,
IRO is a current flowing through resistor R0.

ただしRb1=Rb2,Re1=Re2とする。However, it is assumed that Rb1=Rb2 and Re1=Re2.

すなわち、トランジスタTa,Tbのエミツタ電流は線
路の長さとは無関係にRb1,Rb2,R0,Re1お
よびRe2の抵抗値によって決まる定電流値を保ち、ト
ランジスタTa,Tbは定電流源として動作する。
That is, the emitter currents of the transistors Ta and Tb maintain a constant current value determined by the resistance values of Rb1, Rb2, R0, Re1 and Re2 regardless of the length of the line, and the transistors Ta and Tb operate as constant current sources.

たとえば電流IR0を2mA,トランジスタTa,Tb
のコレクタ電流(:エミツタ電流)を20mAとして、
トランジスタTa,Tbの電流増巾率をβ≧500程度
に選定することによってトランジスタTa,Tbのベー
スに流れ込む電流を無視すれば、 となる。
For example, current IR0 is 2mA, transistors Ta and Tb
Assuming that the collector current (:emitter current) of is 20mA,
If the current amplification factor of the transistors Ta and Tb is selected to be about β≧500 and the current flowing into the bases of the transistors Ta and Tb is ignored, then the following equation is obtained.

ここで、β≧500程度のトランジスタは、ダーリント
ン接続、コンプリメタリ接続等の複合接続トランジスタ
によって容易に得ることができる。
Here, a transistor with β≧500 or so can be easily obtained by a composite connection transistor such as a Darlington connection or a complementary connection.

従って、抵抗Rb1=Rb2をRe1=Re2の10倍
に選ぶことにより、第4図C3のように20mAの定電
流供給回路が得られ、しかも第1図eで示した定電流供
給回路に較べて、 (1)変成器の1次巻線に直流が重畳しない。
Therefore, by selecting the resistors Rb1=Rb2 to be 10 times Re1=Re2, a 20 mA constant current supply circuit as shown in FIG. 4 C3 can be obtained, and moreover, compared to the constant current supply circuit shown in FIG. (1) Direct current is not superimposed on the primary winding of the transformer.

(2)A,B線の対地不平衡インピーダンスは低下しな
い。
(2) The unbalanced impedance of the A and B lines to the ground does not decrease.

などの利点が得られる。Benefits such as:

ただし、この場合、それぞれの電流供給回路とも定電流
源として動作するので、第3図の地気GとA線およびB
線と電池一Bの間の電位は不定となる。
However, in this case, since each current supply circuit operates as a constant current source,
The potential between the wire and battery 1B becomes unstable.

ここで、電位平衡上からは、任意の加入者線の使用状態
において地気Gから下がるA線の電位VGAと、電池−
Bから上がるB線の電位VB−Bとは通常等しいことが
望ましい。
Here, from the viewpoint of potential equilibrium, the potential VGA of the A line that drops from the ground G in any subscriber line usage state, and the potential VGA of the battery -
It is usually desirable that the voltage is equal to the potential VB-B of the B line rising from B.

この条件を満たすために、たとえば第3図のスイッチS
a,Sbを閉じると、トランジスタTa,Tbのうちコ
レクターベース間電圧の高い側の抵抗R1(またはR1
′)の電流が大きくなり、トランジスタTa(またはT
b)のコレクターベース間電圧差を低くする方向に自動
制御される。
In order to satisfy this condition, for example, the switch S shown in FIG.
When transistors a and Sb are closed, the resistor R1 (or R1
') increases, and the current in transistor Ta (or T
The collector-base voltage difference in b) is automatically controlled in the direction of lowering it.

したがって抵抗R1,R1′を挿入すると電位VGAと
VB−Bの間の電位差が平衡を保ち、上述の電位不定条
件がなくなる。
Therefore, by inserting the resistors R1 and R1', the potential difference between the potentials VGA and VB-B is balanced, and the above-mentioned potential instability condition is eliminated.

しかし、このように抵抗R1,R1′を挿入すると、そ
れぞれの電流供給回路はたとえばA線に対して等価出力
抵抗Rは ただしRb1《R1,β≧500 となる。
However, when the resistors R1 and R1' are inserted in this way, the equivalent output resistance R of each current supply circuit for the A line, for example, becomes Rb1<<R1, β≧500.

ここでRe1/Rb1として前述の1/10を入れると となり、たとえば抵抗R1およびR1′を500kΩ程
度に選んだとしてもA,B両線にそれぞれ約4.5kΩ
の抵抗が接続されたことと等価になり、音声帯域内での
挿入損失をまねく。
Here, if we insert the aforementioned 1/10 as Re1/Rb1, for example, even if the resistors R1 and R1' are selected to be around 500kΩ, both wires A and B will each have approximately 4.5kΩ.
This is equivalent to connecting a resistance of

これを防ぐため、音声帯域内で抵抗Rb1のインピーダ
ンスを低くする方法として、抵抗Rb1,Rb2にそれ
ぞれバイパスコンデンサを入れる方法も考えられるが、
ダイヤルパルスの再生中継における波形歪の問題が生じ
る。
To prevent this, one possible method to lower the impedance of resistor Rb1 within the audio band is to insert bypass capacitors into each of resistors Rb1 and Rb2.
A problem arises in waveform distortion when reproducing and relaying dial pulses.

このような問題を解決するには、抵抗R1が音声帯域に
対しては高いインピーダンスであリ、一方A,B線の直
流電位を決定する直流成分に対してはそのまま抵抗とし
て動作することが望ましい。
In order to solve this problem, it is desirable that the resistor R1 has a high impedance for the audio band, while operating as a resistor for the DC component that determines the DC potential of the A and B lines. .

そこで、たとえば抵抗R1のA線側端子1の位置を直流
電位としてはほぼ同一の変成器Tの1次巻線端子2の位
置に、同様にして抵抗R1′のB線側端子8の位置を1
次巻線端子3の位置に移す。
Therefore, for example, if the position of the A line side terminal 1 of the resistor R1 is set to a DC potential, the position of the primary winding terminal 2 of the transformer T is approximately the same, and the position of the B line side terminal 8 of the resistor R1' is similarly set to the DC potential. 1
Move to the next winding terminal 3 position.

この様にして構成されたのが第5図に示す本発明の実施
例である。
The embodiment of the present invention shown in FIG. 5 is constructed in this manner.

このように構成すると、A,B両線の直流電位をトラン
ジスタTa,Tbで自動制御する点では第3図のスイッ
チSa,Sbを閉じた状態と同一でありながら、音声帯
域信号に対しては抵抗R1,R1′の接続される端子2
および3の電位はコンデンサCのために不変であり、ト
ランジスタTa,Tbが高インピーダンスを維持する。
With this configuration, the direct current potential of both lines A and B is automatically controlled by the transistors Ta and Tb, which is the same as the state in which the switches Sa and Sb are closed in FIG. Terminal 2 to which resistors R1 and R1' are connected
The potentials of and 3 remain unchanged due to capacitor C, and transistors Ta and Tb maintain high impedance.

したがって、音声帯域内で電流供給回路は全く挿入損失
を持たないという極めて重大な特徴を発揮する。
Therefore, within the audio band, the current supply circuit exhibits the extremely important feature of having no insertion loss.

しかも、このとき変成器Tの1次巻線に流れる電流は加
入者線に流れる電流に較べて充分少ないので、変成器T
の大巾な小形、経済化が実現される。
Moreover, at this time, the current flowing through the primary winding of the transformer T is sufficiently small compared to the current flowing through the subscriber line, so the transformer T
Achieving significant miniaturization and economy.

次に、本発明のもうひとつの重大な特徴について述べる
Next, another important feature of the present invention will be described.

いま、第5図において、抵抗R1,R1’を(1)にす
れば、第3図で述べたとおり第4図にC3で示す様な定
電流特性が得られるが、第6図に示す如く逆に抵抗R0
を∽にして、抵抗R1,Rl’,Re1,Re2,Rb
1およびRb2を(6)式から得られる等価出力抵抗R
が通常の電話交換機で用いられる220Ωとなるように
選ぶこともできる。
Now, in Fig. 5, if the resistors R1 and R1' are set to (1), a constant current characteristic as shown by C3 in Fig. 4 can be obtained as described in Fig. 3, but as shown in Fig. 6. Conversely, resistance R0
∽, resistors R1, Rl', Re1, Re2, Rb
1 and Rb2 are the equivalent output resistance R obtained from equation (6).
can also be chosen to be 220Ω, which is used in common telephone exchanges.

たとえば、前述の(6)式の例で抵抗比Re1/Rb1
を1/10、抵抗R1を2.42kΩとするのがその一
例であるが、3種類の抵抗値にはさまざまな値が(6)
式の範囲でとりうる。
For example, in the example of equation (6) above, the resistance ratio Re1/Rb1
An example is to set R1 to 1/10 and resistor R1 to 2.42 kΩ, but there are various values for the three types of resistance (6)
It can be taken within the range of expression.

このときの線路電流と加入者線ループ抵抗(局内のそれ
も含む)との関係は第4図の曲線C1で示される。
The relationship between line current and subscriber line loop resistance (including that within the station) at this time is shown by curve C1 in FIG.

この特性曲線は従来方式の第1図a,bおよびdに示し
た特性と一致しており、異なる点は変成器Tの一次巻線
に の電流が、また半導体電流供給回路側すなわちトランジ
スタTa,Tbのコレクタ側に の電流が流れることである。
This characteristic curve corresponds to the characteristics shown in FIGS. 1a, b, and d of the conventional method, except that the current in the primary winding of the transformer T and the semiconductor current supply circuit side, that is, the transistor Ta, This means that current flows to the collector side of Tb.

たとえば抵抗比Re1/Rb1が1/10のとき、第6
図ノ変成器Tの1次巻線には トランジスタTa,Tbには の電流が流れることとなる。
For example, when the resistance ratio Re1/Rb1 is 1/10, the sixth
The currents of the transistors Ta and Tb flow through the primary winding of the transformer T shown in the figure.

すなわち、変成器Tの1次巻線の直流電流は、抵抗比R
e1/Rb1=1/10とのきて前述の如く1/11で
あり、この抵抗比Re1/Rb1をさらに小さく選べば
更に1/100程度にすることも不可能でない。
In other words, the DC current in the primary winding of transformer T has a resistance ratio R
Since e1/Rb1=1/10, it is 1/11 as described above, and if this resistance ratio Re1/Rb1 is selected to be even smaller, it is not impossible to further reduce it to about 1/100.

次に、抵抗比Re1/Rb1=1/10のままで抵抗R
1,R2を上記2.42kΩの2倍すなわち4.84k
Ω二5kΩに選ぶと、抵抗R1,Rl’によって流しう
る加入者線電流は第4図にC1で示される曲線の常に1
/2、すなわち同図に点線C2で示される特性となる。
Next, with the resistance ratio Re1/Rb1 = 1/10, resistor R
1, R2 is twice the above 2.42kΩ, or 4.84k
If Ω25kΩ is selected, the subscriber line current that can flow through resistors R1 and Rl' will always be 1 on the curve shown by C1 in Fig. 4.
/2, that is, the characteristic shown by the dotted line C2 in the figure.

次に、C3で示される20mA定電流時の1/2すなわ
ち10mAの定電流特性が得られるように、抵抗R0を
第3図のそれに対してほぼ2倍に選ぶと、このルートに
より電流供給回路に加算される10mAの定電流分のた
め、第5図の合成特性は曲線C4のようになる。
Next, if the resistor R0 is selected to be approximately twice that of the one shown in Figure 3 so that a constant current characteristic of 10 mA, which is 1/2 of the 20 mA constant current shown by C3, is obtained, the current supply circuit Because of the constant current of 10 mA added to the curve C4, the composite characteristic in FIG. 5 becomes a curve C4.

すなわち、第5図で抵抗R0,R1,R1’、抵抗比R
e1/Rb1などを任意に選べば、本発明の電流供給回
路は第4図の曲線C1からC3の範囲で、且つ線路距離
の延長に対して線路電流(通話電流)がなだらかに減少
する曲線の条件において自由に選ぶことができ、局に近
い加入者の通話電流(最大値)と最遠端加入者の通話電
流(最小値)との比を、抵抗R0,R1=R1’の値を
選ぶことにより、自由に選定設計できる特徴を有する。
That is, in FIG. 5, the resistances R0, R1, R1' and the resistance ratio R
By arbitrarily selecting e1/Rb1, etc., the current supply circuit of the present invention can operate within the range of curves C1 to C3 in FIG. The conditions can be freely selected, and the ratio of the communication current (maximum value) of the subscriber closest to the station to the communication current (minimum value) of the farthest subscriber is selected, and the value of the resistors R0, R1 = R1' is selected. This allows for free selection and design.

このことは、交換機の電力消費の削減、放熱設計、実装
の小形化に極めて有効である。
This is extremely effective in reducing power consumption, heat dissipation design, and miniaturization of the switchboard.

次に、第1図に示すように、抵抗Rb1,Rb2両端に
例えば安電圧ダイオードの如き電圧リミット素子Za,
Zbと抵抗R2,R2’とから成る電圧リミット回路を
接続すると、加入者線の電流が第8図のP点に達したと
き、定電流ダイオードZa,Zbが導通して電圧vRb
1,vRb2が制御され、トランジスタTa,Tbは定
電流に近い動作に移る。
Next, as shown in FIG. 1, voltage limiting elements Za, such as low voltage diodes, are connected across the resistors Rb1 and Rb2.
When a voltage limit circuit consisting of Zb and resistors R2 and R2' is connected, when the subscriber line current reaches point P in FIG. 8, constant current diodes Za and Zb conduct and the voltage vRb increases.
1, vRb2 is controlled, and the transistors Ta and Tb shift to near constant current operation.

抵抗R2,R2′が0で定電圧ダイオードZa,Zbの
動的インピーダンスが0となれば第8図の曲線C5で示
された特性となるが、実際には定電圧ダイオードZa,
Zb自身に有限の動的インピーダンスがあり、また抵抗
R2も有限の値があるため、例えば曲線C6のような線
路抵抗と線路電流特性を得る=ことができる。
If the resistances R2 and R2' are 0 and the dynamic impedance of the constant voltage diodes Za and Zb is 0, the characteristics will be as shown by the curve C5 in FIG. 8, but in reality, the constant voltage diodes Za,
Since Zb itself has a finite dynamic impedance and the resistance R2 also has a finite value, it is possible to obtain line resistance and line current characteristics as shown by curve C6, for example.

すなわち、第1図に示す回路例では、局から近いP点(
第8図)までの範囲の加入者に対してのみ通話電流制限
を行うことができる。
That is, in the circuit example shown in Fig. 1, point P (
The communication current limit can be applied only to the subscribers in the range up to (Fig. 8).

ここで、電圧リミット素子としては前述の定電圧ダイオ
ードの他に、例えば電池とダイオードとの組合せ等によ
っても得ることができる。
Here, the voltage limit element can be obtained by, for example, a combination of a battery and a diode, in addition to the above-mentioned constant voltage diode.

第9図は、更にこれを実用的な見地から、必要時にのみ
電流供給回路が作動するように半導体形電流供給回路の
動作、停止を制御する光結合スイッチ素子を付加すると
ともに、外来サージに対する対策を講じたものである。
Fig. 9 shows that from a practical standpoint, an optical coupling switch element is added to control the operation and stop of the semiconductor current supply circuit so that the current supply circuit operates only when necessary, and measures against external surges are added. This study included the following.

同図に於ては光結合スイッチ素子として、発光ダイオー
ドとフォトトランジスタを1対1で組合せたフオトカプ
ラPC,PC’を用いている。
In the figure, photocouplers PC and PC', which are a one-to-one combination of a light emitting diode and a phototransistor, are used as optical coupling switch elements.

即ち、フオトカプラPC,PC’の駆動入力端子X,Y
に駆動信号が加えられた時にのみ、トランジスタTa,
Tbのベースに信号が加えられる。
That is, the drive input terminals X, Y of the photocouplers PC, PC'
Only when a drive signal is applied to the transistors Ta,
A signal is applied to the base of Tb.

従って、前記駆動入力端子X,Yの駆動信号によって電
流供給回路の動作・停止を制御でき、例えば加入者をハ
イ・アンド・ドライ(High&Dry)処理する場合
、その制御が極めて簡略となる。
Therefore, the operation and stopping of the current supply circuit can be controlled by the drive signals of the drive input terminals X and Y, and the control becomes extremely simple when, for example, high and dry processing is performed on a subscriber.

また、加入者の無通話状態における定状電力損を省くた
めにも有効である。
It is also effective for eliminating constant power loss when the subscriber is not talking.

また、A,B線に加わる外来サージについては次の様な
対策がたてられている。
Additionally, the following countermeasures have been taken against external surges that are applied to the A and B lines.

先ず、正常極性のサージに対しては、使用するトランジ
スタTa,Tbとして素子そのものの対圧の高いものを
使用することで、また逆極性のサージに対してはそのコ
レクタにダイオードD5,D6を挿入することで避けて
いる。
First, to deal with surges of normal polarity, use transistors Ta and Tb that have a high counter-voltage of the elements themselves, and to deal with surges of opposite polarity, insert diodes D5 and D6 in their collectors. I avoid it by doing this.

さらに、フオトカプラPC, PC’については、その
制御端子側をダイオードD1〜D4で構成したダイオー
ドブリッジで地気Gと負極性電池−Bとに接続すること
で、外来サージを地気Gと負極性電池−Bの電圧との間
にクランプしている。
Furthermore, for the photocouplers PC and PC', by connecting the control terminal side to the ground air G and the negative polarity battery -B with a diode bridge composed of diodes D1 to D4, external surges can be connected to the ground air G and the negative polarity battery -B. It is clamped between the voltage of battery-B.

ここで、本発明は以上の実施例にのみ限定されるもので
ないことはいうまでもない。
Here, it goes without saying that the present invention is not limited only to the above embodiments.

第10図は、本発明の手法を変成器の1次側および2次
側に設け、電話交換機の自局内トランクを構成した例を
示し、変成器の1次側がたとえば発信加入者側、2次側
が着信加入者側を示す。
FIG. 10 shows an example in which the method of the present invention is installed on the primary and secondary sides of a transformer to configure an intra-office trunk of a telephone exchange, where the primary side of the transformer is installed on the calling subscriber's side, side indicates the called subscriber side.

回路定数は示していないが、これまで説明した各手法を
必要に応じて使用できることは説明するまでもない。
Although circuit constants are not shown, it goes without saying that each of the methods described above can be used as needed.

また、自局内トランクの例に止まらず、本発明は一般の
トランクの電流供給のほか電気通信機器における給電法
として一般的に適用できる。
Further, the present invention is not limited to the example of trunks within the own office, but can be generally applied to power supply methods for telecommunication equipment in addition to current supply for general trunks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電流供給回路の例を示す回路図、第2図
はその特性を説明するための図であり、第3図は本発明
の原理を説明するための回路図、第5図〜第7図および
第9図、第10図は本発明の実施例を示す回路図、第4
図および第8図はその特性を示す図である。 T;変成器、N1,N1’; 1次巻線、C;コンデン
サ,R0,R1,R1’,R2,R2’,Rb1,Rb
2,Re1 ,Re2;抵抗、Ta,Tb;トランジス
タ、Da,Db,D1〜D6;ダイオード、Za1,Z
b;定電圧ダイオード、PC,PC’;フォトカプラ、
G;地気、−B;負極性電池。
FIG. 1 is a circuit diagram showing an example of a conventional current supply circuit, FIG. 2 is a diagram for explaining its characteristics, FIG. 3 is a circuit diagram for explaining the principle of the present invention, and FIG. ~ Figures 7, 9, and 10 are circuit diagrams showing embodiments of the present invention;
FIG. 8 and FIG. 8 are diagrams showing the characteristics. T: Transformer, N1, N1'; Primary winding, C: Capacitor, R0, R1, R1', R2, R2', Rb1, Rb
2, Re1, Re2; Resistor, Ta, Tb; Transistor, Da, Db, D1-D6; Diode, Za1, Z
b; Constant voltage diode, PC, PC'; Photocoupler,
G: earth, -B: negative polarity battery.

Claims (1)

【特許請求の範囲】 1 変成器を用いてこの変成器の1次および2次巻線に
各々接続されている通信路相互間の通信情報の転送を行
なうとともに、これら通信路の両側あるいは所望の片側
へ直流電流を供給するための電流供給回路に於て、変成
器の直流電流を供給する必要のある通信路が接続されて
いる巻線を2分割してこれらをコンデンサを介して接続
し、地気とこの通話路のA線との間およびB線と電池と
の間に各々トランジスタを含んでなる半導体形電流供給
回路を対称形となる様に接続するとともに、前記両者の
トランジスタのベース間を抵抗R0で結び、該抵抗R0
の両端を各々抵抗R1、抵抗R1’を介して前記コンデ
ンサの両端へ接続することを特徴とする電流供給回路。 2 2つの半導体形電流供給回路として、一方の回路は
地気端子とトランジスタのエミツタとの間に、他方の回
路は電池端子とトランジスタのエミツタとの間に各々抵
抗を、更にベースとの間に各々抵抗とダイオードの直列
回路を接続し、前者の回路のトランジスタのコレクタを
通話路のA線へ、後者の回路のトランジスタのコレクタ
を通話路のB線へ接続するとともに、前記各々のトラン
ジスタを前記両半導体形電流供給回路で相補となるもの
を使用したことを特徴とする特許請求の範囲第1項記載
の電流供給回路。 3 2つの半導体形電流供給回路として、一方の回路は
地気端子とトランジスタのエミツタとの間に、他方の回
路は電池端子とトランジスタのエミツタとの間に各々抵
抗を、更にベースとの間に各各抵抗と電圧リミット素子
から成る電圧リミット回路と抵抗の並列回路にダイオー
ドを直列接続した回路を接続し、前者の回路のトランジ
スタのコレクタを通話路のA線へ、後者の回路のトラン
ジスタのコレクタを通話路のB線へ接続するとともに、
前記各々のトランジスタを前記両半導体形電流供給回路
で相補となるものを使用したことを特徴とする特許請求
の範囲第1項記載の電流供給回路。 4 トランジスタとして複合接続トランジスタを用いた
ことを特徴とする特許請求の範囲第2項もしくは第3項
記載の電流供給回路。 5 変成器を用いてこの変成器の1次および2次巻線に
各々接続されている通信路相互間の通信情報の転送を行
なうとともに、これら通話路の両側あるいは所望の片側
へ直流電流を供給するための電流供給回路に於で、変成
器の直流電流を供給する必要のある通信路が接続されて
いる巻線を2分割してこれらをコンデンサを介して接続
し、地気とこの通話路のA線との間およびB線と電池と
の間に各々トランジスタを含んでなる半導体形電流供給
回路を対称形となる様に接続し、前記両者のトランジス
タのベース間を抵抗R0で結び、該抵抗R0の両端を各
々抵抗R1,抵抗R1′を介して前記コンデンサの両端
へ接続するとともに、前記抵抗R0と前記各々の半導体
形電流供給回路のトランジスタのベース間に駆動信号に
よって動作するスイッチ素子を設け、必要時のみ電流供
給回路が作動することを特徴とする電流供給回路。 6 駆動信号によって動作するスイッチ素子として光結
合スイッチ素子を用いたことを特徴とする特許請求の範
囲第5項記載の電流供給回路。
[Claims] 1. A transformer is used to transfer communication information between communication paths connected to the primary and secondary windings of the transformer, and to transfer communication information between both sides of these communication paths or to a desired location. In a current supply circuit for supplying DC current to one side, the winding to which the communication path that needs to supply the DC current of the transformer is connected is divided into two, and these are connected via a capacitor. Semiconductor current supply circuits each including a transistor are connected symmetrically between the earth and the A line of this communication path, and between the B line and the battery, and between the bases of both transistors. are connected with a resistor R0, and the resistor R0
A current supply circuit characterized in that both ends of the capacitor are connected to both ends of the capacitor via a resistor R1 and a resistor R1', respectively. 2 As two semiconductor type current supply circuits, one circuit has a resistor between the ground terminal and the emitter of the transistor, and the other circuit has a resistor between the battery terminal and the emitter of the transistor, and a resistor between the base and the base. A series circuit of a resistor and a diode is connected respectively, and the collector of the transistor of the former circuit is connected to the line A of the communication path, and the collector of the transistor of the latter circuit is connected to the line B of the communication path, and each of the transistors is connected to the line B of the communication path. 2. The current supply circuit according to claim 1, wherein both semiconductor type current supply circuits are complementary. 3 As two semiconductor type current supply circuits, one circuit has a resistor between the earth terminal and the emitter of the transistor, and the other circuit has a resistor between the battery terminal and the emitter of the transistor, and a resistor between the base and the base. A circuit in which a diode is connected in series is connected to a voltage limit circuit consisting of each resistor and a voltage limit element, and a parallel circuit of resistors, and the collector of the transistor in the former circuit is connected to line A of the communication path, and the collector of the transistor in the latter circuit is connected to the A line of the communication path. and connect it to line B of the communication path,
2. The current supply circuit according to claim 1, wherein each of said transistors is complementary in both said semiconductor type current supply circuits. 4. The current supply circuit according to claim 2 or 3, characterized in that a composite connection transistor is used as the transistor. 5 Using a transformer, transfer communication information between communication paths connected to the primary and secondary windings of this transformer, and supply direct current to both sides or desired one side of these communication paths. In the current supply circuit for supplying direct current to the transformer, the winding to which the communication path that needs to be supplied is connected is divided into two, and these are connected via a capacitor, and the winding is connected to the ground air and this communication path. A semiconductor current supply circuit including a transistor is connected symmetrically between the A line and the B line and the battery, and the bases of both transistors are connected with a resistor R0. Both ends of the resistor R0 are connected to both ends of the capacitor via a resistor R1 and a resistor R1', respectively, and a switch element operated by a drive signal is provided between the resistor R0 and the base of the transistor of each of the semiconductor current supply circuits. A current supply circuit characterized in that the current supply circuit is provided and operates only when necessary. 6. The current supply circuit according to claim 5, characterized in that an optically coupled switch element is used as the switch element operated by a drive signal.
JP52014628A 1977-02-15 1977-02-15 current supply circuit Expired JPS584866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52014628A JPS584866B2 (en) 1977-02-15 1977-02-15 current supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52014628A JPS584866B2 (en) 1977-02-15 1977-02-15 current supply circuit

Publications (2)

Publication Number Publication Date
JPS53100708A JPS53100708A (en) 1978-09-02
JPS584866B2 true JPS584866B2 (en) 1983-01-28

Family

ID=11866451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52014628A Expired JPS584866B2 (en) 1977-02-15 1977-02-15 current supply circuit

Country Status (1)

Country Link
JP (1) JPS584866B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230658U (en) * 1989-08-17 1990-02-27

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123713A (en) * 1973-03-30 1974-11-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49123713A (en) * 1973-03-30 1974-11-27

Also Published As

Publication number Publication date
JPS53100708A (en) 1978-09-02

Similar Documents

Publication Publication Date Title
CN85109009A (en) Power line communication terminal and interface circuit connected with same
US3955052A (en) Subscriber unit particularly useful for time-division-multiplex system
US3714548A (en) D.c. compensation circuit for miniature transformers
JPS59501811A (en) Telephone line interface
JPS584866B2 (en) current supply circuit
US3627952A (en) Direct current reduction network for amplification telephone sets
US4112262A (en) Telephone station repeater
US2924667A (en) Reduction of transmission loss in bridged subscriber loops
US2885483A (en) Telephone instrument utilizing transistor amplifier
US3522384A (en) Constant current operation of central office telephone equipment
CA1037172A (en) Telephone substation with line powered auxiliary services
JPS5853542B2 (en) Electronic telephone circuit for subscriber lines
US3816917A (en) Telephone conference amplifier
JPS60237751A (en) Line power supplying circuit and energizing current supplying method
JPH0241228B2 (en)
GB2025737A (en) Arrangement for applying a signal to atransmission line
US4234763A (en) Feeding bridge with d.c.-compensation for both directions of the feed current
US2885484A (en) Telephone apparatus employing transistor amplifiers
US3794782A (en) Pabx transmission and impulsing circuit
JPS5915174Y2 (en) Audio frequency signal, power and digital pulse transmission circuits in main equipment and terminal equipment
JPS6230546B2 (en)
US2301530A (en) Telephone system
JPH0351349B2 (en)
Nemchik The range extender with gain-A new telephone system loop extender
US4238645A (en) Variable loop telephone transmission circuit