JPS5848635B2 - Aluminum electrolytic manufacturing method - Google Patents

Aluminum electrolytic manufacturing method

Info

Publication number
JPS5848635B2
JPS5848635B2 JP12381377A JP12381377A JPS5848635B2 JP S5848635 B2 JPS5848635 B2 JP S5848635B2 JP 12381377 A JP12381377 A JP 12381377A JP 12381377 A JP12381377 A JP 12381377A JP S5848635 B2 JPS5848635 B2 JP S5848635B2
Authority
JP
Japan
Prior art keywords
weight
aluminum
electrolytic
molten
electrolytic bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12381377A
Other languages
Japanese (ja)
Other versions
JPS5456909A (en
Inventor
八郎 市川
達雄 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP12381377A priority Critical patent/JPS5848635B2/en
Publication of JPS5456909A publication Critical patent/JPS5456909A/en
Publication of JPS5848635B2 publication Critical patent/JPS5848635B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 本発明はアルミニウム塩化物を溶融塩電解して工業的に
有利にアルミニウムを製造する方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an industrially advantageous method for producing aluminum by subjecting aluminum chloride to molten salt electrolysis.

従来、アルミニウムは工業的には酸化アルミニウム(ア
ルミナ)を溶融氷晶石を主体とする金属弗化物溶融塩電
解浴に溶解し、炭素を陽極として電解する所謂、ホール
・エルー法によって製造されている。
Traditionally, aluminum has been manufactured industrially by the so-called Hall-Heroux method, in which aluminum oxide (alumina) is dissolved in a metal fluoride molten salt electrolytic bath mainly composed of molten cryolite, and electrolyzed using carbon as an anode. .

而し乍らホール・エルー法は原理的にアルミナの電解還
元に多量の電気エネルギーを必要とし、事実アルミニウ
ムを1トン製造するために要する電力、即ち電力原単位
は14000KWh/t或はそれ以上となるため、電気
エネルギー消費を低減し得るアルミニウムの製造技術の
開発が強く要請されていた。
However, in principle, the Hall-Heroux method requires a large amount of electrical energy for the electrolytic reduction of alumina, and in fact, the electric power required to produce one ton of aluminum, that is, the electric power consumption rate, is 14,000 KWh/t or more. Therefore, there has been a strong demand for the development of aluminum manufacturing technology that can reduce electrical energy consumption.

このホール・エルー法に代る有望な省電気エネルギー型
のアルミニウムの製造法としては、アルミニウム塩化物
をNa(J! ,KCIIなとのアルカリ金属塩化物溶
融塩浴に溶かして電解する塩化アルニウム電解法が知ら
れている。
As an alternative to the Hall-Heroux process, a promising energy-saving method for producing aluminum is aluminum chloride electrolysis, in which aluminum chloride is dissolved in a molten alkali metal chloride bath such as Na(J!, KCII) and electrolyzed. The law is known.

この塩化アルニウム溶融電解法は電解温度がホール・エ
ルー法に較べて約300℃低い700℃附近の温度で操
業ができること、また陽極反応が塩素生成反応であるた
め陽極に用いられる黒鉛電極が非消耗とな?ことなど、
幾多の利点を有するに拘らず、高温の塩化アルミニウム
及び生成塩素ガス等の取扱いが厄介なこと、更には適当
な耐浴材料が工業的に得られないことなどの理由で、長
い間工業的に利用されずに放置されてきた。
This aluminum chloride melt electrolysis method can operate at an electrolysis temperature of around 700°C, which is approximately 300°C lower than the Hall-Heroux method, and since the anode reaction is a chlorine production reaction, the graphite electrode used as the anode is non-consumable. Tona? Things, etc.
Despite having many advantages, it has not been used industrially for a long time due to the difficulty of handling high-temperature aluminum chloride and generated chlorine gas, and the inability to obtain suitable bath-resistant materials industrially. It has been left unused.

然し近年になって米国アルコア社から例えば特公昭52
−15044号、特公昭52−15043号および特公
昭5215361号に示すように新しい電解装置と新し
い浴組戒の電解浴による塩化アルミニウム電解法(アル
コア法)が提案され、俄かに工業的に着目されるに至っ
た。
However, in recent years, the American Alcoa Company, for example,
As shown in Japanese Patent Publication No. 52-15044, Japanese Patent Publication No. 52-15043, and Japanese Patent Publication No. 5215361, an aluminum chloride electrolytic method (Alcoa method) using a new electrolytic device and an electrolytic bath with a new bath structure was proposed, and it suddenly attracted industrial attention. It came to be.

このアルコア法は高濃度にLiclを配合したAlCl
3 −L iCJ’−Na(J’系の溶融塩電解浴を使
用し、耐火並びに耐浴性の優れた窒化物基体の耐火材料
で内張リした槽内に炭素(黒鉛)電極板を適当な間隙を
おいて積層に積みあげ水平二重電極を構成させた電解槽
を用いて浴温約700℃、電極間距離15鼎前後、電流
密度1A/cIIL附近で電解することにより、塩素ガ
スを陽極面に生成させ、一方、溶融金属アルミニウムを
陰極面に生成させるものであって、陽極面に生戒した塩
素ガスの上昇に伴う揚力効果によって電解浴を極間の一
方向に流動させ、これによって陰極面に生成した金属ア
ル二頓ムの極間からの排除と極間に存在する電解浴中の
塩化アルミニウムの均一化を計ることにより電解操業の
安定化を計ると共にAlCl3−NaCl系電解浴成分
中に電気伝導度の高いLiclを導入することによって
槽電圧の軽減を計ったものである。
This Alcoa method uses AlCl containing LiCl at a high concentration.
3 -L iCJ'-Na (J' type molten salt electrolytic bath is used, and a carbon (graphite) electrode plate is placed in the tank lined with a nitride-based refractory material with excellent fire resistance and bath resistance. Chlorine gas can be produced by electrolyzing at a bath temperature of approximately 700°C, a distance between electrodes of approximately 15 mm, and a current density of approximately 1 A/cIIL using an electrolytic cell in which horizontal double electrodes are stacked with a certain gap in between. The electrolytic bath is produced on the anode surface, while molten metal aluminum is produced on the cathode surface. By eliminating the metal aluminum produced on the cathode surface from between the electrodes and homogenizing the aluminum chloride present in the electrolytic bath between the electrodes, the electrolytic operation can be stabilized and the AlCl3-NaCl electrolytic bath can be stabilized. The cell voltage was reduced by introducing LiCl, which has high electrical conductivity, into the components.

而し乍ら、このAlCl3 Licl NaCl系電
解浴を用いた場合或いは従来のAlCl3一NaCl系
またはAICl3−KCl系の電解浴を用いた場合の電
流効率はせいぜい約85%程度であるため電力原単位の
向上には限界があり、従って工業的に一層有利な電解浴
の開発が望まれている。
However, when using this AlCl3 Licl NaCl based electrolytic bath or when using the conventional AlCl3-NaCl based or AICl3-KCl based electrolytic bath, the current efficiency is at most about 85%, so the power consumption rate is low. There is a limit to the improvement of the electrolytic bath, and therefore there is a desire to develop an electrolytic bath that is industrially more advantageous.

発明者らは、特に電解浴組戒について種々研究の結果、
先にAlCl3−NaCl系の電解浴成分中に比較的大
量のMgCl2またはCaCl2を含有せしめた場合に
は、90%以上95乃至99%附近に及ぶ高電流効率を
もって塩化アルミニウムの電解を行ないうろことを明ら
かにした。
As a result of various studies, especially regarding electrolytic bath group precepts, the inventors found that
If a relatively large amount of MgCl2 or CaCl2 is first contained in the AlCl3-NaCl electrolytic bath components, aluminum chloride can be electrolyzed with a high current efficiency of more than 90% and close to 95 to 99%. revealed.

その後さらに研究を進めた結果、上記した電解浴に少量
の塩化バリウムを添加するときは陰極に生成したアル?
ニウムの陰極面からの流動排除を極めて円滑に、且つ速
やかに行いうろことを見出した。
After further research, we found that when a small amount of barium chloride is added to the electrolytic bath mentioned above, the amount of aluminum generated at the cathode?
We have discovered that the flow of Ni from the cathode surface can be removed extremely smoothly and quickly.

即ち、積層二重電極を用いた塩化アルミニウムの電解に
おいては、陰極に生成した金属アルミニウムを可及的に
速やかに陰極面から排除することが安定的な高電流効率
操業を行なうための必須要件であるが、発明者らの実験
によればアルカリ土類金属塩化物のなかで、Ba(J!
2はMgCl2及びCaCl2のように電流効率向上の
効果は乏しいが、アルミニウムメタルの浴に対する界面
張力を減少させ、流動を助長する効果を有することが確
認された。
In other words, in the electrolysis of aluminum chloride using a laminated double electrode, it is essential to remove metallic aluminum generated on the cathode from the cathode surface as quickly as possible in order to perform stable, high current efficiency operation. However, according to experiments conducted by the inventors, among alkaline earth metal chlorides, Ba (J!
It was confirmed that although 2 has a poor effect of improving current efficiency like MgCl2 and CaCl2, it has the effect of reducing the interfacial tension with respect to the aluminum metal bath and promoting flow.

よって、本発明は塩化アルミニウムを含む金属塩化物溶
融塩電解浴を複数個の水平又は傾斜電極を適宜の極間距
離を保って上下に、積層状に配設した電解槽中において
電解し、陽極面に塩素ガスを、また陰極面に溶融金属ア
ルミニウムを生成させ、陰極面に生成した溶融アルミニ
ウムを極面より流動排除し、電解槽底に沈降させて取得
する方法において、溶融塩電解浴としてAl(J?3,
NaCA ,B acj? 2 t C acl2及び
/又はMgCl2からなる混合浴とし、それぞれの混合
量を以下に述べる範囲に規定することによって、安定し
た高電流効率を維持しつつ塩化アルニウムの電解による
アルニウム製造法を確立したものである。
Therefore, the present invention electrolyzes a metal chloride molten salt electrolytic bath containing aluminum chloride in an electrolytic cell in which a plurality of horizontal or inclined electrodes are stacked one above the other with an appropriate distance between the electrodes. In the method of generating chlorine gas on the surface and molten metal aluminum on the cathode surface, the molten aluminum generated on the cathode surface is flowed away from the electrode surface and settled at the bottom of the electrolytic cell. (J?3,
NaCA,Bacj? A method for producing aluminum by electrolyzing aluminum chloride while maintaining a stable high current efficiency by using a mixed bath consisting of 2t C acl2 and/or MgCl2 and specifying the mixing amount of each within the range described below. It is.

本発明において、塩化アルミニウムに対する溶媒塩とし
て選ばれたNa(J!は電解浴の電気伝導度を向上させ
るものであり、85〜10重量%の範囲で使用される。
In the present invention, Na (J!) selected as a solvent salt for aluminum chloride improves the electrical conductivity of the electrolytic bath, and is used in an amount of 85 to 10% by weight.

また、BaCl2の3〜15重量%の添加はアルミニウ
ムの界面張力を減じ、極面からの流動排出を容易ならし
める効果をもたせるものであり、下限量以下ではその効
果は少なく、また上限量以上の添加は浴の密度を高め、
アルミニウムの沈降速度を低下させるので好ましくない
Furthermore, the addition of 3 to 15% by weight of BaCl2 has the effect of reducing the interfacial tension of aluminum and making it easier to flow and discharge from the electrode surface. Below the lower limit amount, this effect is small, and when above the upper limit amount, the effect is small. The addition increases the density of the bath,
This is not preferred because it reduces the sedimentation rate of aluminum.

次に、CaCl2 sMgC#2は何れも電解に際して
の電流効率向上に寄与するものであり、これらの塩は浴
中に10〜60重量%含有されることによって電流効率
向上の効果を発揮するものである。
Next, CaCl2 sMgC#2 all contribute to improving current efficiency during electrolysis, and these salts exhibit the effect of improving current efficiency when contained in the bath at 10 to 60% by weight. be.

但し、CaCl2は他の電解浴成分と二層に分離する性
質を有するので、35重量%以下に留めることが望まし
い。
However, since CaCl2 has the property of separating into two layers from other electrolytic bath components, it is desirable to limit the content to 35% by weight or less.

最後に、浴中のAlCl3濃度を余り大きくすると、浴
の電気伝導度が低下し、且つ浴の蒸気圧が過大となって
槽電圧の上昇と操炉の不安定を招く?でAICll3の
濃度は2〜15重量%の範囲とした。
Finally, if the AlCl3 concentration in the bath is increased too much, the electrical conductivity of the bath will decrease and the vapor pressure of the bath will become excessive, leading to an increase in cell voltage and unstable furnace operation. The concentration of AICll3 was in the range of 2 to 15% by weight.

上記した本発明における電解浴を用いて塩化アルミニウ
ム電解の安定した操業が行なわれる電解条件は槽の形式
、容量等によって異なるが、一般的には浴温680〜7
80℃、電流密度0.5〜260A/c/L1極間距離
10〜25關であって、この範囲内で電解を行なうこと
によって、ほぼ90%以上の電流効率をもってアルミニ
ウムの電解製造を継続して行なうことができた。
Electrolytic conditions for stable operation of aluminum chloride electrolysis using the electrolytic bath of the present invention described above vary depending on the type and capacity of the bath, but generally the bath temperature is 680 to 7
By performing electrolysis within this range at 80°C and current density of 0.5 to 260 A/c/L, interelectrode distance of 10 to 25 degrees, electrolytic production of aluminum can be continued with a current efficiency of approximately 90% or more. I was able to do it.

電解は頂部原料供給口と塩素ガス排出口を、また底部に
メタル貯槽を有し、且つ、内部に黒鉛製の電極を配設し
た密閉型電解槽を用いて行われる。
Electrolysis is carried out using a closed electrolytic cell that has a raw material supply port at the top, a chlorine gas discharge port, a metal storage tank at the bottom, and a graphite electrode inside.

なお、電極は適当な間隔をおいて平行に積み重ねられた
一対の黒鉛板からなるもの、又は3個以上の黒鉛板を上
下に、積層状に平行に並べて陽陰極の間に少なくとも一
個以上の中間二重電極を構成したものの何れでもよい。
The electrodes may consist of a pair of graphite plates stacked in parallel at appropriate intervals, or three or more graphite plates may be stacked one above the other in parallel, with at least one intermediate between the anode and cathode. Any of those that constitute a double electrode may be used.

また電極はアルコア法にみられるように水平に配設した
ものを用いることもできるが、この種の電解法において
は比較的極間距離が小さく陰極面に生成するアルミニウ
ム量が増大すると極の短絡を招く恐れがあり、また塩素
との反応機会も増大するので、これを速やかに陰極面か
ら排除してやるために、浴中にBaCl2を添加すると
共に、板状電極を適度に傾斜させることが望ましい。
In addition, the electrodes can be arranged horizontally as in the Alcoa method, but in this type of electrolytic method, the distance between the electrodes is relatively small, and if the amount of aluminum generated on the cathode surface increases, the electrodes will short-circuit. In addition, the chance of reaction with chlorine increases, so in order to quickly remove this from the cathode surface, it is desirable to add BaCl2 to the bath and to tilt the plate electrode appropriately.

この場合には電解浴は陰極面に生成した塩素ガスの上昇
に伴う揚力効果により傾斜上方に向って流動し、陰極上
面に生成したアルニウムは逆に傾斜下方に向って自重に
より降下排除されることになる。
In this case, the electrolytic bath flows upward on the slope due to the lift effect caused by the rise of the chlorine gas generated on the cathode surface, and the aluminum generated on the cathode top surface falls downward on the slope and is eliminated by its own weight. become.

なお電極の傾斜は水平との角度が10〜45° とする
ことが望ましく、傾斜角度が45°を超えると、極間の
電解浴の流動が著し<強<なるため析出アルミニウムの
再酸化?起り却って電流効率が低下するので不利である
It is preferable that the inclination of the electrodes be at an angle of 10 to 45 degrees with respect to the horizontal. If the inclination angle exceeds 45 degrees, the flow of the electrolytic bath between the electrodes becomes extremely strong, which may cause reoxidation of the precipitated aluminum. This is disadvantageous because the current efficiency actually decreases.

次に、本発明の実施例を掲げる。Next, examples of the present invention are listed.

実施例 1 AIC13 14.0重量%、NaCl 51.0重量
%、MgCl227。
Example 1 AIC13 14.0% by weight, NaCl 51.0% by weight, MgCl227.

0重量%、BaCl28.O重量%の浴組成のAlCl
3 NaCl MgCl2 BaCl2系混合溶融
塩を電解浴としてアルミナ質耐火材で内張した電解槽内
で水平となす角度が30°の傾斜黒鉛電極板(有効反応
面6 0gmX 3 3mm)を用いて極間距離を14
imに保ち、浴温750℃、電流20A、電流密度IA
/cIILで4.5時間継続して電解した結果、2 7
. 6 rのアルミニウムを得た。
0% by weight, BaCl28. AlCl with a bath composition of O wt%
3. In an electrolytic bath lined with alumina refractory material using a mixed molten salt of NaCl MgCl2 BaCl2 as an electrolytic bath, an inclined graphite electrode plate (effective reaction surface 60 gm x 33 mm) with an angle of 30° to the horizontal was used to create an electrode gap between the electrodes. distance 14
Im, bath temperature 750℃, current 20A, current density IA
As a result of continuous electrolysis with /cIIL for 4.5 hours, 2 7
.. 6 r of aluminum was obtained.

このときの電流効率は9l.2%であり、また槽電圧は
3.24Vであった。
The current efficiency at this time is 9l. 2%, and the cell voltage was 3.24V.

実施例 2 AICll3 8.0重量%、NaCl5.O重量%、
MgCl224.0重量%、CaCl2 1 3.0重
量%、BaCl2 1 0.0重量%の浴組成のAIC
l3 −NaCl−MgCl2 CaCl2 Ba
Cl2系混合溶融塩を電解浴として、実施例−1と同一
電解条件で電解を行なった結果2 7. 7 fのアル
ニウムを得た。
Example 2 AICll3 8.0% by weight, NaCl5. O weight%,
AIC with a bath composition of 224.0% by weight of MgCl2, 3.0% by weight of CaCl21, and 0.0% by weight of BaCl21
l3 -NaCl-MgCl2 CaCl2 Ba
Results 2 of electrolysis carried out under the same electrolytic conditions as Example 1 using a Cl2-based mixed molten salt as an electrolytic bath. 7. 7 f of alumium was obtained.

このときの電流効率は91.7%であり、槽電圧は3.
28Vであった。
The current efficiency at this time was 91.7%, and the cell voltage was 3.
It was 28V.

実施例 3 AICl39.0重量%、Na(J’ 58.8重量
%、CaCl2 2 5.2重量%、B acl2 7
. O重量%(D浴組成のAlCl3−NaCl−Ca
Cl2−BaClz系混合溶融塩を電解浴として実施例
−1と同一電解条件で電解を行なった結果、27.4f
tのアルミニウムを得た。
Example 3 AICl 39.0% by weight, Na(J' 58.8% by weight, CaCl2 2 5.2% by weight, B acl2 7
.. O wt% (AlCl3-NaCl-Ca of D bath composition
As a result of performing electrolysis under the same electrolytic conditions as in Example-1 using a Cl2-BaClz mixed molten salt as an electrolytic bath, 27.4f was obtained.
t of aluminum was obtained.

このときの電流効率は90.7%、槽電圧は3.23■
であった。
At this time, the current efficiency is 90.7% and the cell voltage is 3.23■
Met.

Claims (1)

【特許請求の範囲】 1 塩化アルミニウムを含む金属塩化物溶融塩電解浴を
複数個の水平又は傾斜電極を適宜の極間距離を保って上
下に、積層状に配設した電解槽中において電解し、陽極
面に塩素ガスを、また陰極面に溶融金属アルニウムを生
成させ、陰極面に生成した溶融アルミニウムを電解槽底
に沈降させて取得する方法において、溶融塩電解浴をA
ICl32〜15重量%、CaCl210〜35重量%
、BaCl23〜15重量%及びNaCl 85〜35
重量%からなる混合組成とすることを特徴とするアルニ
ウムの電解製造法。 2 塩化アルミニウムを含む金属塩化物溶融塩電解浴を
複数個の水平又は傾斜電極を適宜の極間距離を保って上
下に、積層状に配設した電解槽中において電解し、陽極
面に塩素ガスを、また陰極面に溶融金属アルミニウムを
生成させ、陰極面に生成した溶融アルミニウムを電解槽
底に沈降させて取得する方法において、溶融塩電解浴を
AlCl32〜15重量%、MgC1210〜60重量
%、BaCA!23〜1 5重量%、NaCA85〜1
0重量%からなる混合組成とすることを特徴とするアル
?ニウムの電解製造法。 3 塩化アルミニウムを含む金属塩化物溶融塩電解浴を
複数個の水平又は傾斜電極を適宜の極間距離を保つよう
にして上下に、積層状に配設した電解槽中において電解
し、陽極面に塩素ガスを、また陰極面に溶融金属アルミ
ニウムを生成させ、陰極面に生成した溶融アルミニウム
を電解槽底に沈降させて取得する方法において、溶融塩
電解浴をAICl32〜15重量%、MgCl2及びC
aCl2の両者合計10〜60重量%、BaCl23〜
15重量%、NaCl85〜10重量%からなる混合組
成とすることを特徴とするアルニウムの電解製造法。
[Claims] 1. A metal chloride molten salt electrolytic bath containing aluminum chloride is electrolyzed in an electrolytic cell in which a plurality of horizontal or inclined electrodes are stacked one above the other with an appropriate distance between the electrodes. , in a method in which chlorine gas is generated on the anode surface and molten metal aluminum is generated on the cathode surface, and the molten aluminum generated on the cathode surface is settled to the bottom of the electrolytic tank, the molten salt electrolytic bath is
ICl32-15% by weight, CaCl210-35% by weight
, BaCl 23-15% by weight and NaCl 85-35
1. A method for electrolytically producing aluminum, characterized by forming a mixed composition consisting of % by weight. 2 A metal chloride molten salt electrolytic bath containing aluminum chloride is electrolyzed in an electrolytic cell in which multiple horizontal or inclined electrodes are stacked one above the other with an appropriate distance between the electrodes, and chlorine gas is applied to the anode surface. In addition, in a method in which molten metal aluminum is produced on the cathode surface and the molten aluminum produced on the cathode surface is allowed to settle to the bottom of the electrolytic bath, the molten salt electrolytic bath contains 32 to 15% by weight of AlCl, 10 to 60% by weight of MgC, BaCA! 23-15% by weight, NaCA85-1
Al? characterized by having a mixed composition consisting of 0% by weight? Electrolytic manufacturing method for Ni. 3 A metal chloride molten salt electrolytic bath containing aluminum chloride is electrolyzed in an electrolytic cell in which multiple horizontal or inclined electrodes are stacked one above the other with an appropriate distance between the electrodes, and the anode surface is In the method of obtaining chlorine gas and molten metallic aluminum on the cathode surface, and allowing the molten aluminum produced on the cathode surface to settle to the bottom of the electrolytic tank, the molten salt electrolytic bath is made of 32 to 15% by weight of AICl, MgCl2, and C.
aCl2 total of 10-60% by weight, BaCl23-
A method for electrolytically producing aluminum, characterized in that the mixed composition consists of 15% by weight of NaCl and 85-10% by weight of NaCl.
JP12381377A 1977-10-15 1977-10-15 Aluminum electrolytic manufacturing method Expired JPS5848635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12381377A JPS5848635B2 (en) 1977-10-15 1977-10-15 Aluminum electrolytic manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12381377A JPS5848635B2 (en) 1977-10-15 1977-10-15 Aluminum electrolytic manufacturing method

Publications (2)

Publication Number Publication Date
JPS5456909A JPS5456909A (en) 1979-05-08
JPS5848635B2 true JPS5848635B2 (en) 1983-10-29

Family

ID=14869964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12381377A Expired JPS5848635B2 (en) 1977-10-15 1977-10-15 Aluminum electrolytic manufacturing method

Country Status (1)

Country Link
JP (1) JPS5848635B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497742U (en) * 1991-07-31 1992-08-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206833A (en) * 2010-03-31 2011-10-05 株式会社微酸性电解水研究所 Electrolytic method and electrolytic apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0497742U (en) * 1991-07-31 1992-08-24

Also Published As

Publication number Publication date
JPS5456909A (en) 1979-05-08

Similar Documents

Publication Publication Date Title
US4865701A (en) Electrolytic reduction of alumina
US4342637A (en) Composite anode for the electrolytic deposition of aluminum
KR101684813B1 (en) Electrolysis tank used for aluminum electrolysis and electrolysis process using the electrolyzer
US3822195A (en) Metal production
CN1664170A (en) Method for producing aluminium and aluminium alloy by low temperature electrolysis
JP6501886B2 (en) Molten salt electrolytic cell, method of producing metallic magnesium using the same, and method of producing titanium sponge
US4121983A (en) Metal production
US3725222A (en) Production of aluminum
US3893899A (en) Electrolytic cell for metal production
CN1688750A (en) Utilisation of oxygen evolving anode for Hall-Heroult cells and design thereof
JPS5848635B2 (en) Aluminum electrolytic manufacturing method
US20240141529A1 (en) Method for producing metal aluminum by molten salt electrolysis of aluminum oxide
US4135994A (en) Process for electrolytically producing aluminum
US3775271A (en) Electrolytic preparation of titanium and zirconium diborides using a molten, sodium salt electrolyte
US3034972A (en) Electrolytic production of aluminum
RU2415973C2 (en) Procedure for production of aluminium by electrolysis of melt
JPS5848636B2 (en) Aluminum electrolytic manufacturing method
JPS5930794B2 (en) Aluminum electrolytic manufacturing method
NL8002381A (en) ELECTROLYTIC CELL.
NO309155B1 (en) Cell for electrolysis of alumina preferably at low temperatures and use of the cell
US3503857A (en) Method for producing magnesium ferrosilicon
JPS6133918B2 (en)
JPS5930795B2 (en) Aluminum electrolytic manufacturing method
CA2200287A1 (en) Method for producing electrolytic-pot-cell grade alumina from aluminum sulphate
US4595466A (en) Metal electrolysis using a low temperature bath