JPS5848104A - Control system for moving body - Google Patents

Control system for moving body

Info

Publication number
JPS5848104A
JPS5848104A JP56144798A JP14479881A JPS5848104A JP S5848104 A JPS5848104 A JP S5848104A JP 56144798 A JP56144798 A JP 56144798A JP 14479881 A JP14479881 A JP 14479881A JP S5848104 A JPS5848104 A JP S5848104A
Authority
JP
Japan
Prior art keywords
light beam
light
moving
moving body
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56144798A
Other languages
Japanese (ja)
Inventor
Kenro Motoda
謙郎 元田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motoda Electronics Co Ltd
Original Assignee
Motoda Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motoda Electronics Co Ltd filed Critical Motoda Electronics Co Ltd
Priority to JP56144798A priority Critical patent/JPS5848104A/en
Publication of JPS5848104A publication Critical patent/JPS5848104A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/24Beam riding guidance systems
    • F41G7/26Optical guidance systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To guide a moving body securely by moving a light beam and allowing its irradiation surface to follow the moving body, and then controlling its movement. CONSTITUTION:A light beam 23 from a projecting means 20 is projected and when photodetectors 61B-61R of a light beam displacement detecting means 60 are all in the irradiation surface 24 of the beam 23, the photodetectors 61B- 61R have the equal quantities of photodetected light, so differential amplifying circuits 63A and 63B both generate outputs 0 and a moving body 10 is still at its position. When the beam 23 is moved, the photodetectors 61F and 61B have a difference in the quantity of photodetected light and it is amplified by a differential amplifying circuit 63A. Then, a positive displacement signal proportional to the difference in the quantity of photodetected light is supplied from the differential amplifying circuit 63A and amplified by a run controlling means 70 to drive the running part 12A of a run driving means 12, thereby moving the moving body forth.

Description

【発明の詳細な説明】 本発明は、一定の領域を自在に移動して各株作業を行な
う移動体の制御方式、特に、光ビームを用いて移動体を
誘導制御する制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control system for a mobile body that freely moves within a certain area and performs various stock operations, and more particularly to a control system that guides and controls the mobile body using a light beam.

近時、走行駆動手段を有して自走し、物品の搬送、格納
、取出し、製品の溶接、組立等の作業を行なう移動体が
開発されつつある。斯かる移動体は、一定の領域をオペ
レータの遠隔操作に応じて自在に移動する構成とする必
要がある。この場合、問題となるのは、オペレータから
の操作信号をいかにして移動体に伝達するかである。
2. Description of the Related Art Recently, mobile bodies have been developed that are self-propelled and equipped with travel drive means to carry, store, and take out articles, weld products, and assemble products. Such a mobile body needs to be configured to freely move within a certain area in response to remote control by an operator. In this case, the problem is how to transmit the operation signal from the operator to the moving object.

この手段として、信号ケーブルを移動体K11続する方
式がある。しかし、この方式は、ケーブルが移動体の移
動の妨けとなりやすいこと、重量のあるケーブルを引回
すため移動体に負荷がかかること、複数の移動体を使用
する場合にケーブルが絡むこと轡の欠点がある。又、他
の手段として、電波によ抄遠隔操作する方式がある。こ
の方式は、ケーブルを用いないため、移動が妨げられた
シ、余分な負荷がかかったりすることがない点で優れて
いるが、雑音を拾いやすいこと、信号の伝送が必ずしも
確実でないこと、他のl1m!GK対し影響を与えるお
それがあること、電波の使用可能周波数帯域に制限があ
り、そのため多数の移動体を同時に制御する場合に周波
数割轟ての問題を生ずること等の欠点がある。
As this means, there is a method in which a signal cable is connected to the mobile body K11. However, with this method, cables tend to interfere with the movement of the moving object, the heavy cables are routed, which places a load on the moving object, and cables can become entangled when multiple moving objects are used. There are drawbacks. Another method is to remotely control the papermaking using radio waves. This method is advantageous in that it does not use cables, so it does not obstruct movement or impose unnecessary loads, but it also has the disadvantages that it easily picks up noise, and that signal transmission is not always reliable. l1m! There are drawbacks such as the risk of affecting the GK, the limitation on the usable frequency band of radio waves, and the problem of frequency division when controlling a large number of mobile objects simultaneously.

本発明は、斯かる欠点く鑑みてなされ九本ので、その目
的は、光ビームを移動し、その照射面を移動体く追尾せ
しめて、その移動を制御することにより、移動の妨げと
なるケーブルを使用することなく、又、雑音の影響を受
けることなく確実Kll動体を誘導でき、且つ、他の!
!I器に対し影響を全く与えない移動体制御方式を提供
することKある。
The present invention has been made in view of the above drawbacks, and its purpose is to move a light beam, make the irradiation surface track a moving object, and control the movement of the light beam, thereby eliminating the cables that obstruct the movement. It is possible to reliably guide Kll moving objects without using or being affected by noise, and other!
! It is an object of the present invention to provide a mobile object control method that does not affect the I-device at all.

父、本発明の他の付加的な目的は、光ビームをパルス化
して移動体に動作命令を伝送することによプ、上記移動
制御の外、作業動作命令をもケーブルを使用することな
く、又、雑音の影響を受けることなく確実に移動体に伝
送でき、且つ、他の機WFK対し影響を全く与えず、し
かも、電波の場合のように周波数帯域の制限を受けるこ
とのない移動体制御方式を提供することを目的とする。
Another additional object of the present invention is to transmit operation commands to a mobile object by pulsing a light beam, so that in addition to the above-mentioned movement control, work operation commands can also be transmitted without the use of cables. In addition, it is a mobile control system that can reliably transmit data to a mobile unit without being affected by noise, has no effect on other WFKs, and is not subject to frequency band restrictions as is the case with radio waves. The purpose is to provide a method.

上記第1の目的を達成すべく、本履第1の発明は、移動
体及びその移動領域面を見得る位置に、光ビームを投射
する投光手段と、骸投光手段に連係し、該ビームの照射
面を外部からの操作に対応して上記移動領域面上を自在
に移動せしめる光ビーム移動手段とを設け、且つ、上記
移動体く、上記光ビームの照射を豪数個の受光素子にて
受けて、該光ビームの前後・左右の変位を検出し、各々
の変位信号を出力する光ビーム変位検出手段と、骸前後
・左右の変位信号に対応して移動体を一進・後退又は左
折・右折させて上記光ビームを追尾するよう走行駆動手
段を制御する走行制御手段とを備えて構成される。
In order to achieve the above first object, the first invention of the present invention provides a light projecting means for projecting a light beam to a position where the moving body and its moving area surface can be seen, and a skeleton light projecting means, which a light beam moving means for freely moving the beam irradiation surface on the moving area surface in response to an external operation; a light beam displacement detection means that detects the front-rear and left-right displacement of the light beam and outputs each displacement signal; Alternatively, it is configured to include a travel control means for controlling the travel drive means to turn left or right and track the light beam.

又、上記第2の目的を達成すぺく、本願第2の発明は、
上記第10発明の構成と共和、上記移動体の各種作業動
作に関する命令を生成する命令信号発生手段と、皺命令
信号によって上記光ビームを変調して投光せしめる変調
手段とを上記投光手段と1lal、て設け、且つ、上記
光ビームの照射を受光素子にて受け、上記命令信号を検
出する受信手段と、検出された信号を解読して作業動作
命令番抽出し、作業に対応する移動体の各作業手段駆動
装置を制御する作業制御手段とを備えて構成される。
Moreover, in order to achieve the above second object, the second invention of the present application is as follows:
In accordance with the structure of the tenth invention, a command signal generation means for generating commands related to various work operations of the movable body, and a modulation means for modulating and projecting the light beam according to the wrinkle command signal are combined with the light projecting means. a receiving means for detecting the command signal by receiving the irradiation of the light beam with a light receiving element; and work control means for controlling each work means driving device.

以下、これら第1.第2の発明を図面に示す実施例に基
づいて各々説明する。
Below, these first. The second invention will be explained based on the embodiments shown in the drawings.

第1図及び第2図に本願第1の発明の一実施例を示す。FIG. 1 and FIG. 2 show an embodiment of the first invention of the present application.

第1図は本発明移動体制御方式の概要を示す立面図、第
2図は上記実施例の構成を示すブロック図である。
FIG. 1 is an elevational view showing an overview of the mobile object control system of the present invention, and FIG. 2 is a block diagram showing the configuration of the above embodiment.

本体11.走行駆動手段12及び作業手段16を有して
成り、移動領域面1上を自在に移動する移動体10に適
用したもので、投光手段20と、光ビーム移動手段30
と、光ビーム変位検出手段60と、走行制御手段70と
を備えて構成される。
Main body 11. It is applied to a moving body 10 that has a traveling drive means 12 and a working means 16 and moves freely on the moving area surface 1, and includes a light projecting means 20 and a light beam moving means 30.
, a light beam displacement detection means 60 , and a traveling control means 70 .

本実施例が適用される移動体lOは、本体11の下部に
、走行部12A及び舵取部12Bとから成る走行駆動手
段12が設けてあり、本体11の四部に、アーム161
及び把持部16bから成る作業手段16が般社である。
The moving body 10 to which this embodiment is applied is provided with a traveling driving means 12 consisting of a traveling section 12A and a steering section 12B at the lower part of the main body 11, and arms 161 and
The working means 16 consisting of the gripping portion 16b and the holding portion 16b is a general company.

この移動体lOは、蓄電池を搭載して、これを電源とし
て駆動することができるが、これに限らず、燃料電池を
搭載してもよい。父、移動領域面11C,電源K11l
続した電極板を多数設置すると共に、移動体1011に
集電子を設け、電極板と集電子とを介して移動自在に移
動体と電源とを!il#J!して、電源供給を行なう構
成としてもよい。父、本実施例の移動体1oは、ml@
13にて走行すゐと共に、図示しない舵取機構を備えて
hる。もつとも、走行機構及び舵取−構は他の形式とす
るξともできる。
This moving body 10 can be equipped with a storage battery and driven using this as a power source, but is not limited to this, and may also be equipped with a fuel cell. Father, moving area surface 11C, power supply K11l
In addition to installing a large number of connected electrode plates, a current collector is provided on the movable body 1011, and the movable body and a power source are freely connected via the electrode plates and the current collector! il#J! It is also possible to adopt a configuration in which power is supplied. Father, the mobile object 1o of this embodiment is ml@
At 13, the vehicle is equipped with a steering mechanism (not shown) and a steering mechanism (not shown). However, the traveling mechanism and the steering mechanism can also be of other types.

投光手段20は、光源21、ビーム形成手段22及び光
源駆動1路25から成)、天井面2に設けられて、上記
移動体10に対し誘導用の光ビーム23を投射する。も
つとも、この投光手段2oは、移動体10に対し確実和
光ビーム23を投射できればよいのて、天井面2に限ら
ず、該移動体10及びその移動領域面】を見得る位置に
設ければ足りる。
The light projecting means 20 (consisting of a light source 21, a beam forming means 22, and a light source drive path 25) is provided on the ceiling surface 2, and projects a guiding light beam 23 onto the moving body 10. However, since the light projecting means 2o only needs to be able to reliably project the Wako beam 23 onto the moving body 10, it is possible to install it not only on the ceiling surface 2 but also at a position where the moving body 10 and its movement area can be seen. Enough.

光11121は、飼えば、レーザーダイオード、発光ダ
イオード勢から成り、光源態動回路25にで駆動されて
発光する0発光は、連続的発光でもよく、又、一定周波
数のパルス発光でもよい。一方、ビーム形成手段22は
、鏡筒22mとレンズ22bとから成り、レンズ22b
の焦点位置に上記光I[21を設置して、該光源21か
らの光を略平行な光束として光ビーム23を形成する。
The light 11121 is composed of a laser diode or a light emitting diode, and the zero light emitted by being driven by the light source state circuit 25 may be continuous light emission or may be pulsed light emission with a constant frequency. On the other hand, the beam forming means 22 consists of a lens barrel 22m and a lens 22b.
The light I[21 is placed at the focal position of the light source 21, and the light from the light source 21 is made into a substantially parallel light beam to form a light beam 23.

もつと4、ビーム形成手段22は、この例のものに限ら
ず、例えイ放物面鏡IIIIKて構成できる。
In addition, the beam forming means 22 is not limited to this example, and may be constructed by, for example, a parabolic mirror IIIK.

上記投光手段20には、その光ビーム23を、移動領域
面1上を任意に移動させる光ビーム移動手段30が連係
して設けである。この光ビーム移動手段30は、上記投
光手段20を支持するX軸部材3]と、該X軸部材31
軸止するコ字形のY軸部材32ど、X軸部材31及″び
Y軸部@32をそれぞれ所定角度回動せしめるX軸サー
ボ機構33及びY軸サーボ機構34とから成る。この光
ビーム移動手段30は、外部からの機走信号に応動じて
X軸部材31及びY軸部材32がそれぞれ回動し、X軸
部材31に支持される投光手段200投射口201の向
きを任意の方向忙連続的に変化させ、光ビーム23の照
射面24を所望や経路にて目的の位置まで移動せしめる
The light projecting means 20 is provided in conjunction with a light beam moving means 30 for arbitrarily moving the light beam 23 on the movement area surface 1. This light beam moving means 30 includes an X-axis member 3 which supports the light projecting means 20 and an X-axis member 31
It consists of a U-shaped Y-axis member 32 that is fixed, and an X-axis servo mechanism 33 and a Y-axis servo mechanism 34 that respectively rotate the X-axis member 31 and the Y-axis part @32 by a predetermined angle.This light beam movement The means 30 rotates the X-axis member 31 and the Y-axis member 32 in response to a flight signal from the outside, so that the projection port 201 of the light projecting means 200 supported by the X-axis member 31 can be directed in any direction. The irradiation surface 24 of the light beam 23 is moved to a desired position along a desired path by continuously changing the light beam 23.

上記光ビーム変位検出手段60は、この光ビーム23の
照射を受ける4個の受光素子61F 、 61B 。
The light beam displacement detection means 60 includes four light receiving elements 61F and 61B that are irradiated with the light beam 23.

61R、61Lと、検出回路62F 、 62B 、 
62R、62Lと、差動増幅回路63A 、 63Bと
を備えて成り、上記光ビーム23の移動に伴なう前後・
左右の変位を検出し、対応する変位信号を出力する。
61R, 61L, and detection circuits 62F, 62B,
62R, 62L, and differential amplifier circuits 63A, 63B, and the front and rear and rearward and rearward directions as the light beam 23 moves.
Detects left and right displacement and outputs the corresponding displacement signal.

受光素子61F 、 61B 、 61R、61Lは、
ホトダイオード、ホトトランジスタ、光導電体等の半導
体受光素子から成り、移動体100本体頂部111に1
前後・左右に対応して配設される。配置は、移動領域面
lの任意の位置にて本体頂部11a上に上記光ビーム2
3が形成する照射面(この実施例では円乃至楕円)24
内に収まる範8において十字状に設定される。この実施
例では、円形の受光素子を使用しているが、矩形、三角
形等の形状てらってもよく、受光面形状により、変位に
対する電気信号の変化の割合を適宜設定し得る。
The light receiving elements 61F, 61B, 61R, 61L are
It consists of semiconductor light-receiving elements such as photodiodes, phototransistors, photoconductors, etc., and one
They are arranged corresponding to the front, rear, left and right sides. The arrangement is such that the light beam 2 is placed on the top part 11a of the main body at an arbitrary position on the moving area plane l.
3 forms an irradiation surface (circle or ellipse in this example) 24
It is set in a cross shape in range 8 that falls within the range 8. In this embodiment, a circular light-receiving element is used, but a rectangular, triangular, or other shape may be used, and the ratio of change in electric signal to displacement can be set as appropriate depending on the shape of the light-receiving surface.

受光素子61F 、 61B 、 61R、61Lは、
それぞれ対応する検出回路62F 、 62B 、 6
2R、62Lに接続される。この検出回路62F 、 
62B 、 62R、62Lは、各受光素子61F 、
 61B 、 61R、61LKシける光電変換された
信号を、光量変化に対応する電圧信号として出力する。
The light receiving elements 61F, 61B, 61R, 61L are
The corresponding detection circuits 62F, 62B, 6
Connected to 2R and 62L. This detection circuit 62F,
62B, 62R, 62L are each light receiving element 61F,
The photoelectrically converted signals of 61B, 61R, and 61LK are output as voltage signals corresponding to changes in the amount of light.

差動増幅回路63A 、 63Bは、上記検出回路62
Fと62B 、 62Rと62Lの差信号をそれぞれ増
幅するもので、63A #i、光ビーム230前後の変
位を検出する受光素子61F 、 61B K対応して
前後の変位信号を出力し、一方、63Bは、光ビーム2
3の左右の変位を検出する受光素子61R、61LK対
応して左右の変位信号を出力する。
The differential amplifier circuits 63A and 63B are connected to the detection circuit 62.
It amplifies the difference signals of F and 62B, 62R and 62L, respectively, and 63A #i detects the displacement before and after the light beam 230, and the light receiving elements 61F and 61B K output corresponding displacement signals before and after, while 63B is light beam 2
The light-receiving elements 61R and 61LK detect the left and right displacement of 3, and output left and right displacement signals in response to the light receiving elements 61R and 61LK.

なお、この実施例では、4個の受光素子を使用している
が、個数はこれに限られるものではな−0例えば、光ビ
ームによる誘導が一方向のみの場合は、その方向に対応
する2個の受光素子があれば足りる。父、前後シ左右の
各々Vcll数個の受光素子を配設する構成としてもよ
い。
Although four light receiving elements are used in this embodiment, the number is not limited to this.For example, when the light beam is guided in only one direction, two light receiving elements corresponding to that direction It is sufficient to have one light receiving element. A configuration may also be adopted in which several light-receiving elements are provided on each of the front, rear, left, and right sides.

上記光ビーム変位検出手段60の出力儒九走行制御手段
70が接続される。この走行制御手段7゜は、増幅回路
71A 、 71Bから成り、前者は、差動増幅回路6
3Aと上記走行駆動手段12の走行部12ムとの間に介
在接続され、前後の変位信号を増幅して移動体10を前
進又は後退させる操作信号を走行部12AK送出し、後
者は、差動増幅回路63Bと上記走行駆動手段12の舵
取部12Bとの間に介在接続され、左右の変位信号を増
幅して移動体10を左折又は右折させる操作信号を舵取
部12BK送出する。
The output of the light beam displacement detecting means 60 is connected to the traveling control means 70. This traveling control means 7° consists of amplifier circuits 71A and 71B, and the former is a differential amplifier circuit 6.
3A and the traveling part 12AK of the traveling drive means 12, and sends out an operation signal for moving the moving body 10 forward or backward by amplifying the front and rear displacement signals, and the latter is a differential drive unit 12AK. The amplifier circuit 63B is connected between the amplifier circuit 63B and the steering section 12B of the travel drive means 12, and amplifies the left and right displacement signals and sends out an operation signal to the steering section 12BK for causing the mobile body 10 to turn left or right.

次に、上記実施例の移動体制御方式による移動体の誘導
制御動作について上記各図及び第3A。
Next, the above-mentioned figures and Fig. 3A describe the guidance control operation of the moving body by the moving body control method of the above embodiment.

3B、30図を参照して説明する。This will be explained with reference to FIGS. 3B and 30.

今、移動領域11rl上にある移動体)Oの頂部】1a
に投光手段20から光ビーム23が投射され、光ビーム
変位検出手段6oの各受光素子61F、 61B 、 
61R、61Lのすべてが該光ビーム23の照射面24
内にあるものとすると(第3A!!!l参照)、各受光
素子61F 、 61B 、 61R、61Lの受光量
が等しいので、差動増幅回路63A及び63Bは共にそ
の出力が0である。したがって、移動体1oは、その位
置にて静止している。
Now, the top of the moving object )O which is on the moving area 11rl】1a
A light beam 23 is projected from the light projecting means 20 to each of the light receiving elements 61F, 61B, 61B of the light beam displacement detecting means 6o.
61R and 61L are all the irradiation surface 24 of the light beam 23
(see 3rd A!!!l), the amount of light received by each of the light receiving elements 61F, 61B, 61R, and 61L is equal, so the outputs of both the differential amplifier circuits 63A and 63B are 0. Therefore, the moving body 1o is stationary at that position.

この状態で、オペレータの外部操作によりy軸サーボ嶺
構34を作動せしめ、Y軸部材32を徐々に回動させ、
光ビーム23を矢視A方向に移動させると、第3B図に
示すように、後部側にある受光素子61Bが照射面24
から徐々に外れてくる。
In this state, the y-axis servo ridge structure 34 is activated by an external operation by the operator, and the Y-axis member 32 is gradually rotated.
When the light beam 23 is moved in the direction of arrow A, as shown in FIG.
It gradually comes off.

そのため、受光素子61Fと61Bの受光量に差を生じ
、これが差動増幅回路63AKて増幅される。受光素子
61Fの出力が61Bの出方より大きいとき、差動増幅
回路63Aの出力が正と表るように設定しておけば、上
記の場合、差動増幅回路63Aから受光量差に比例した
正の変位信号が出方される。この変位信号は、走行制御
手段70にて増幅され、走行駆動手段120走行部12
Aに送出されて、声行部12Aのモータ(図示せず)を
駆動し、移動体10を前進させる。
Therefore, there is a difference in the amount of light received by the light receiving elements 61F and 61B, which is amplified by the differential amplifier circuit 63AK. If the output of the differential amplifier circuit 63A is set to be positive when the output of the light receiving element 61F is larger than the output of the light receiving element 61B, in the above case, the output of the differential amplifier circuit 63A is proportional to the difference in the amount of light received. A positive displacement signal is output. This displacement signal is amplified by the travel control means 70, and the travel drive means 120 travel section 12
A, the motor (not shown) of the voice producing section 12A is driven, and the movable body 10 is moved forward.

ここで、光ビーム23の移動速度を大きくすると、受光
素子61Fと61Bの受光量差が大きくなるので、それ
だけ変位信号4大きくなり、走行部12人のく一夕も対
応して回転速度が大きくなって、移動体10は、皺光ビ
ーム23の移動速度に追従して移動する。同様にして、
光ビーム23の速度が遅くなると、移動体10の速f4
遅くなり、又、光ビーム23が静止すると移動体10も
静止する。
Here, when the moving speed of the light beam 23 is increased, the difference in the amount of light received by the light receiving elements 61F and 61B increases, so the displacement signal 4 increases accordingly, and the rotating speed of the 12 members of the traveling section also increases accordingly. Thus, the moving body 10 moves following the moving speed of the wrinkled light beam 23. Similarly,
When the speed of the light beam 23 decreases, the speed f4 of the moving body 10 decreases.
When the speed slows down and the light beam 23 stops, the moving body 10 also stops.

ついで、X軸サーボ機構33をも作動せしめ、X軸部材
31を徐々に回動させると、例えば第3CIIK示すよ
うに1後部側の受光素子61Bと共に左側の受光素子6
1Lが照射面24から外れてくる。
Then, when the X-axis servo mechanism 33 is also activated and the X-axis member 31 is gradually rotated, the light-receiving element 61B on the left side together with the light-receiving element 61B on the rear side 1 as shown in 3rd CIIK, for example.
1L comes off the irradiation surface 24.

このため受光素子61Fと61B及び61Rと611.
に受光量差を生じ、差動増幅回路63A 、 63B 
Kてそれぞれ差が増幅され、それぞれの大小関係に対応
して正・貴の変位信号が差動増幅回路63A 、 63
Bから出力される。これらの変位信号は、走行制御手段
70を介して走行部12A、舵取部12BK送出され、
移動体10を前進させつつ右折させる。
Therefore, the light receiving elements 61F, 61B, 61R, and 611.
A difference in the amount of light received is caused in the differential amplifier circuits 63A and 63B.
The difference is amplified by K, and positive and noble displacement signals are sent to differential amplifier circuits 63A and 63 corresponding to the respective magnitude relationships.
Output from B. These displacement signals are sent to the traveling section 12A and the steering section 12BK via the traveling control means 70,
The moving body 10 is made to turn right while moving forward.

したがって、移動体】0は、光ビーム23の照射面24
を追尾して移動することくなり、光ビーム23を移動さ
せること−により移動体10を任意の経路にて自在に目
的位置まで誘導することができる。
Therefore, the moving object ]0 is the irradiation surface 24 of the light beam 23.
By moving the light beam 23, the moving body 10 can be freely guided to the target position along an arbitrary route.

次に、第4図は本発明移動体制御方式における走行制御
手段70及び走行駆動手段12の他の実施例を示すブロ
ック図である。なお同図に示すものは、後述する本願第
2の発明にも適用できるものである。
Next, FIG. 4 is a block diagram showing another embodiment of the travel control means 70 and travel drive means 12 in the mobile body control system of the present invention. Note that what is shown in the figure can also be applied to the second invention of the present application, which will be described later.

同図に示す走行制御手段70は、上記第2図に示される
差動増幅回路63人(前後変位検出用)の出力に入力を
接続される増幅fit 72R、72Lと、差動増幅回
路63B(左右変位検出用)の出力に入力を接続される
インバータ73R及びバッファアンプ73Lとから成る
。上記増幅972Rは、その出力をモーフ14RK按続
され、増幅器72Lは、その出力を毫−J14LKII
m!される。又、インバータ73Rはその出力を増幅9
72Hの入力に、又バッファアンプ73Lはその出力を
増幅II 78Lの入力にそれぞれ出力信号を加算する
ように接続される。
The traveling control means 70 shown in the figure includes amplification fits 72R and 72L whose inputs are connected to the outputs of the 63 differential amplifier circuits (for longitudinal displacement detection) shown in FIG. 2, and differential amplifier circuits 63B ( It consists of an inverter 73R and a buffer amplifier 73L whose inputs are connected to the output of the lateral displacement detector (for left/right displacement detection). The amplification 972R has its output connected to the morph 14RK, and the amplifier 72L has its output connected to the morph 14RK.
m! be done. In addition, the inverter 73R amplifies its output 9
The buffer amplifier 73L is connected to the input of the amplifier 72H, and the buffer amplifier 73L is connected to add the output signal to the input of the amplifier II 78L, respectively.

一方、走行駆動手段12は、上記そ−J 14R#14
Lとギア15R、151,とから成抄、上記増幅器72
R、72Lの出力に応じて左右の車輪1.3 、13を
独立に駆動せしめる。
On the other hand, the traveling drive means 12 is
L and gears 15R, 151, and Karasei, the above amplifier 72
The left and right wheels 1.3 and 13 are driven independently according to the outputs of R and 72L.

斯かる構成IC力いて、上述したように1光ビームが移
動体の前方側KV位すると、差動増幅回路63Aから正
の変位信号が出力されるので、増幅器72R、72Lは
、これを増[して左右のそm−14R114Lを均等に
駆動せしめる。更に、光ビームが右11に変位すると、
上述したように、差動増幅回路63Bから%変位信号が
出力される。ここで、光ビームが右側KIR位すると正
の変位信号を出力するように差動増幅回路63Bを設定
しておくと、上述の場合、正の変位信号が出力される。
With such a configuration IC, when one optical beam moves to a position KV on the front side of the moving body as described above, a positive displacement signal is output from the differential amplifier circuit 63A, so the amplifiers 72R and 72L increase this. to drive the left and right Som-14R114L equally. Furthermore, when the light beam is displaced to the right 11,
As described above, the % displacement signal is output from the differential amplifier circuit 63B. Here, if the differential amplifier circuit 63B is set to output a positive displacement signal when the light beam is at the right KIR position, a positive displacement signal will be output in the above case.

この変位信号は二分され、一方はインバータ73Rを介
して符号を反転され、他方はバッファアンプ73Lを介
してその11の符号で、それぞれ上記差動増幅回路63
Aの出力に加算される。その結果、増幅器72Rの入力
信号は減少し、他方、増幅II 72Lの入力信号は増
大して、篭−夕14Hの回転が遅くなり、父、モータ1
4Lの回転が速くなるよう制御され、ロボットlOは右
折することになる。
This displacement signal is divided into two, one having its sign inverted via an inverter 73R, and the other having its 11 signs via a buffer amplifier 73L.
It is added to the output of A. As a result, the input signal of the amplifier 72R decreases, while the input signal of the amplifier II 72L increases, causing the rotation of the basket 14H to slow down, causing the motor 1 to rotate more slowly.
The rotation of 4L is controlled to become faster, and the robot 1O turns right.

次に、第1図及び第5図に本原第2の発明の一実施例を
示す、第5図は上記実施例の構成を示すブロック図であ
る。
Next, FIGS. 1 and 5 show an embodiment of the second invention, and FIG. 5 is a block diagram showing the configuration of the above embodiment.

これらの図において、本実施例の制御方式は、上記第1
の発明の実施例と同様の移動体10に適用したもので、
該第1の実施f14Jf構成する投光手段20、光ビー
ム移動手段30、光ビーム変位検出手段60及び走行制
御手段70に1命令信号発生手段40と、変調手段50
と、受信手段80と、作業制御手段90とを付加して構
成される。な紙第1の実施例のものと同一物については
同一符号を付して説明を省略する。
In these figures, the control method of this embodiment is the first one described above.
This is applied to a moving body 10 similar to the embodiment of the invention,
The first implementation f14Jf includes a light projecting means 20, a light beam moving means 30, a light beam displacement detecting means 60, and a traveling control means 70, a command signal generating means 40, and a modulating means 50.
, a receiving means 80 and a work control means 90 are added. Components that are the same as those in the first embodiment are designated by the same reference numerals, and a description thereof will be omitted.

命令信号発生手R4Gは、スイッチ、可変抵抗等からな
る入力手R(図示せず)、エンコーダ(図示せず)、並
列−直列蜜換器(図示せず)等から故知、移動体lOの
各種作業動作に関する命令をパルス符号として生成する
。父、変調手段5oFi、上記命令信号発生手段40と
光源駆動回路25とに接続され、上記パルス符号により
上記光ビーム23を変調して投光すべく、光源駆動回路
25を制御する。なお、変調手段50は、上記直接変調
一方式Kml・らず、高速シャッタ、セクタ等の機械的
手段、又は、電気光学効果素子、音響光学効果素子等の
変調素子を用いた外部変調方式によってもよい。
The command signal generating unit R4G is a known input unit R (not shown) consisting of a switch, a variable resistor, etc., an encoder (not shown), a parallel-series converter (not shown), etc., and various types of moving objects IO. Generate instructions regarding work operations as pulse codes. The modulating means 5oFi is connected to the command signal generating means 40 and the light source driving circuit 25, and controls the light source driving circuit 25 to modulate the light beam 23 according to the pulse code and project the light beam. Note that the modulation means 50 is not limited to the above-mentioned direct modulation method, but may also be a mechanical means such as a high-speed shutter or a sector, or an external modulation method using a modulation element such as an electro-optic effect element or an acousto-optic effect element. good.

上記受信手段80は、受光素子81と、検出回路82と
、直列−並列変換1183とを有して成り、上記パルス
符号を検出する。受光素子81は、ガえばホトダイオー
ドから成り、上記受光素子61F。
The receiving means 80 includes a light receiving element 81, a detection circuit 82, and a serial-to-parallel converter 1183, and detects the pulse code. The light receiving element 81 is composed of a photodiode, for example, and is the same as the above-mentioned light receiving element 61F.

61B 、 61R、6ルの略中央に配設される。この
受光素子81は、光ビームのパルス局波数に応答可能と
するため、高速応答し得るもの、例えばPINホトダイ
オード、アバランシ・ホトダイオードが望ましい。検出
回路82は、受光素子81にて光電費換された電気信号
からパルス符号を検出する。直列−並列変換器83は、
直列伝送されたパルス符号を並列データに変換するもの
で、後述する作業制御手段90のインタフェースとして
橡能する。なお、受光素子81として、受光素子61F
It is arranged approximately in the center of 61B, 61R, and 6L. Since the light receiving element 81 can respond to the pulse frequency of the light beam, it is preferable to use a device that can respond at high speed, such as a PIN photodiode or an avalanche photodiode. The detection circuit 82 detects a pulse code from the electrical signal converted into photoelectric power by the light receiving element 81 . The series-parallel converter 83 is
It converts serially transmitted pulse codes into parallel data, and functions as an interface for work control means 90, which will be described later. Note that as the light receiving element 81, the light receiving element 61F
.

61B 、 61R、61Lを適宜使用してもよい。61B, 61R, and 61L may be used as appropriate.

作業制御手段90は、例えばマイクロコンピュータから
成り、□上記パルスを解読して作業動作命令を抽出し、
対応する作業手段駆動装置17a 、 17b・・・を
、予め記憶してい石動作パターンをメモリ(lll示せ
ず)から読出して制御し、所定の作業を行なわしめる。
The work control means 90 is composed of, for example, a microcomputer, and □ decodes the pulses to extract work operation instructions;
The corresponding work means driving devices 17a, 17b, . . . are controlled by reading a pre-stored stone movement pattern from a memory (not shown) to perform a predetermined work.

なか、表すべき作業が重線な場合には、作業制御手段9
0を、デコーダ及びシーケンスコントローラにて構成す
ることができる。又、すべての動作パターンを、光ビー
ムを介してオペレータが直接指示する構成とすることも
できる。
Among them, when the work to be represented is a double line, the work control means 9
0 can be configured with a decoder and a sequence controller. Alternatively, all operation patterns can be directly instructed by the operator via a light beam.

−&か、本実施調では、パルス変調方式を用いているが
、これに限らず、振幅変調方式、周波数変調方式とする
こともできる0例えば、前者の場合は、命令信号を一定
の波形に対応させ、この波形によって連続発光する光ビ
ームを変調する方法が考えられる。
In this example, a pulse modulation method is used, but the method is not limited to this, and an amplitude modulation method or a frequency modulation method may also be used.For example, in the former case, the command signal is shaped into a constant waveform. A method can be considered in which the continuously emitted light beam is modulated by this waveform.

斯かる構成によれば、命令信号発生手段40にて生成さ
れた動作命令によシ、変調手段50を介して光ビーム2
3を変調し、これを受光素子81及び検出回路82にて
検出せしめるととくより、作業動作命令をオペレータか
ら移動体10に伝送することができる。又、移動体1G
の移動は、上記第1の実施内と全く同様に行なうことが
でき、更に、この移動と同時に作業を行なわしめるξと
もできる。
According to this configuration, the light beam 2 is transmitted through the modulation means 50 according to the operation command generated by the command signal generation means 40.
By modulating the signal 3 and having it detected by the light receiving element 81 and the detection circuit 82, work operation commands can be transmitted from the operator to the moving object 10. Also, mobile object 1G
The movement can be performed in exactly the same manner as in the first embodiment, and furthermore, the work can be performed simultaneously with this movement.

上記各実施内では1台O移動体くついて制御する場合を
示したが、本発明は祷数台の移動体を同時に制御するこ
ともできる。この場合、投光手段20及び光ビーム移動
手段30を移動体の数に対応させて設ければよい。なか
、信号の干渉を排除するKFi、飼えば光の波長(色)
等を変えればよい。
In each of the above embodiments, the case where one mobile body is controlled is shown, but the present invention can also control several mobile bodies at the same time. In this case, the light projecting means 20 and the light beam moving means 30 may be provided in correspondence with the number of moving bodies. Among them, KFi eliminates signal interference, and if you keep it, the wavelength (color) of light
etc. can be changed.

又、本発明は、車輪走行式の移動体く限らず、歩行ロボ
ット等にも適用でき、更に、自動運転装置を有する車輛
の誘導にも適用できる。勿論、特別の作業を行なわない
雁なるデモンストレーション用ロボット、玩具のロボッ
トにも本発明を適用することができる。
Furthermore, the present invention is applicable not only to wheel-running moving objects but also to walking robots and the like, and furthermore, to the guidance of vehicles having automatic driving devices. Of course, the present invention can also be applied to demonstration robots such as geese and toy robots that do not perform special tasks.

以上説明し元ように、本福明は、光ビームを移動し、そ
の照射面を移動体く追尾せしめて腋移動体の移動を制御
することくより、移動の妨げとなるケーブルを使用する
ことなく、任意の経姑】茫1て自在に目的位置に移動体
を確実vcn導でき、しかも、信号の伝送媒体が光であ
るから、電気的雑音。を拾うことがなく、又、雑音を発
生して他の機器に影響を与えることがないという効果が
ある。更に1光を媒体とするため、電波のように使用し
得る周波数に制限を受けないので、任意の周波数帯域に
て信号O伝送を行ない得る効果がある。
As explained above, Honfukumei does not control the movement of the armpit moving object by moving the light beam and having the irradiated surface track the moving object, but rather uses a cable that obstructs the movement. The moving body can be reliably guided to the target position without any interference, and since the signal transmission medium is light, there is no electrical noise. This has the effect that it does not pick up noise, nor does it generate noise that affect other equipment. Furthermore, since light is used as a medium, there are no restrictions on usable frequencies as with radio waves, so there is an advantage that signal O transmission can be performed in any frequency band.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願第1.第2の発明の移動体制御方式O概要
を示す立面図、第2図は本願第1の発明の一実施例の構
成を示すブロック図、第3A図、第3BII!及び第S
Cmは上記実施例にシける光ビームの照射面と受光素子
との関係を示す説明図、第4図は本発明移動体制御方式
における走行制御手段及び走行駆動手段の他の実施例を
示すブロック図、第s!11#i本願第2の発明の一実
施例の構成を示すブロック図である。 】2・・・走行駆動手段   12A・・・走行部12
B・・・舵取部     13・・・車輪16・・・作
業手段     17・・・作業手段駆動装置20・・
・投光手段    21・・・光源22・・・ビーム形
成手段  23・・・光ビーム24・・・照射面   
  25・・・光源駆動回路30・・・光ビーム移動手
段  31・・・X軸5W32・・・Y軸部材    
 33・・・X軸サーボ機構34・・・Y軸サーボ機構
  40・・・命令信号発生手段50・・・変調子9 
     6G・・・光ビーム蜜位検出手段61F、6
1B、6]R,61L・・・受光素子62F、62B、
62R,62L・・・検出回路63A、F13B・・・
差動増幅回路 70・・・走行制御手段71A、71B
・・・増幅回路  72R,72L・・・増幅器73R
・・・インバータ   73L・・・バッファアンプ8
0・・・受信手段    81・・・受光素子82・・
・検出回路     83・・・直列−並列変!lI器
90・・・作業制御手段 出履人  元田電子工業株式会社 第1図
Figure 1 is part 1 of the present application. FIG. 2 is a block diagram showing the configuration of an embodiment of the first invention, FIG. 3A, and FIG. 3BII! and Article S
Cm is an explanatory diagram showing the relationship between the light beam irradiation surface and the light receiving element in the above embodiment, and FIG. 4 is a block diagram showing another embodiment of the travel control means and travel drive means in the mobile object control system of the present invention. Figure, No. s! 11#i is a block diagram showing the configuration of an embodiment of the second invention of the present application. ]2... Traveling drive means 12A... Traveling part 12
B... Steering section 13... Wheels 16... Working means 17... Working means drive device 20...
- Light projection means 21... Light source 22... Beam forming means 23... Light beam 24... Irradiation surface
25... Light source drive circuit 30... Light beam moving means 31... X axis 5W32... Y axis member
33...X-axis servo mechanism 34...Y-axis servo mechanism 40...Command signal generation means 50...Modulator 9
6G...Light beam level detection means 61F, 6
1B, 6]R, 61L... Light receiving element 62F, 62B,
62R, 62L...detection circuit 63A, F13B...
Differential amplifier circuit 70... Traveling control means 71A, 71B
...Amplifier circuit 72R, 72L...Amplifier 73R
...Inverter 73L...Buffer amplifier 8
0... Receiving means 81... Light receiving element 82...
・Detection circuit 83...Series-parallel variation! II device 90...work control means operator Motoda Electronics Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】 +1)  走行駆動手段を備え、一定の領域を自在に移
動して各種作業を行なう移動体の制御方式において、 上記移動体及びその移動領域面金見得る位置く、光ビー
ムを投射する投光手段と、該投光子WIK連係し、該光
ビームの照射面を外部からの操作く対応して上記移動領
域面上を自在に移動せしめる光ビーム移動手段とを設け
、 且つ、上記移動体に、裡数儒の受光素子にて上記光ビー
ムの解射を受け、該ビームの前後・左右の変位を検出し
、各々の変位信号を出力する光ビーム変位検出手段と、
該前後舎左右の変位信号に対応して移動体を前進・後退
又は左折・右折させて上記光ビームを追尾するよう走行
駆動手段を制御する走行制御手段とを一見たことを特徴
とする移動体制御方式。 (21走行駆動手段を備え、一定の領域を自在に移動し
て各種作業を行なう移動体の制御方式にシいて、 上記移動体及びその移動領域面を見得る位置に、光ビー
ムを投射する投光手段と、皺投光手段に連係し、該光ビ
ームの照射面を外部からの操作に対応して上記移動領域
面上を自在に移動せしめる光ビーム移動手段とを設け、 且つ、上記移動体の各種作桑動作に関する命令を生成す
る命令信号発生手段と、該命令信号によって上記光ビー
ムを変調して投光せしめる変調手段とを上記投光手段と
接続して設け、更に、上記移動体に、複数個の受光素子
にて上記光ビームの照射を受け、該ビームの前後・左右
の変位を検出し、各々の変位信号を出力する光ビーム変
位検出手段と、該前後・左右の変位信号に対応して移動
体を前進・後退又は左折・右折させて上記光ビームを追
尾するよう走行駆動手段を制御する走行制御手段とを備
え、且つ、上記光ビームの照射を受光素子にて受け、上
記命令信号を検出する受信手段と、検出された信号を解
読して作業動作命令を抽出し、作業に対応する移動体の
各作業手段駆動装置を制御する作業制御手段とを倫えた
ことを特徴とする移動体制御方式。 (31移動体の各種作業動作に関する命令をパルス符号
として生成する命令信号発生手段と、骸パルス符号によ
って上記党ビームを変調して投光せしめる変調手段とを
備え、且つ、上記光ビームの照射を受光素子にて受け、
上記パルス符号を検出する受信手段と、検出されたパル
ス符号を解読して作業動作命令を抽出し、作業に対応す
る移動体の各作業手段駆動装置を制御する作業制御手段
とを偕えた上記第2項記載の移動体制御方式。
[Scope of Claims] +1) In a control method for a moving body that is equipped with a traveling drive means and performs various tasks by freely moving within a certain area, a light beam is provided at a position where the moving body and its moving area can be seen. and a light beam moving means that is linked to the light projector WIK and moves the light beam irradiation surface freely on the moving area surface in response to an external operation, and A light beam displacement detection means for receiving the light beam at the light receiving element of the moving body, detecting the longitudinal and horizontal displacement of the beam, and outputting each displacement signal;
A moving body characterized by a traveling control means for controlling a traveling drive means to move the moving body forward, backward, or to turn left or right in response to the front and rear left and right displacement signals to track the light beam. control method. (According to a control method for a moving body that is equipped with a traveling drive means and performs various tasks by freely moving within a certain area, a projection system that projects a light beam to a position where the above-mentioned moving body and the surface of its moving area can be seen) and a light beam moving means that is linked to the wrinkle light projecting means and allows the light beam irradiation surface to freely move on the moving area surface in response to an external operation, and the moving body A command signal generating means for generating commands related to various mulling operations, and a modulating means for modulating and projecting the light beam according to the command signal are connected to the light projecting means, and , a light beam displacement detection means for receiving the light beam by a plurality of light receiving elements, detecting the longitudinal and lateral displacement of the beam, and outputting each displacement signal; travel control means for controlling the travel drive means to move the moving body forward, backward, or turn left or right to track the light beam; The present invention is characterized by having a receiving means for detecting a command signal, and a work control means for decoding the detected signal, extracting a work operation command, and controlling each work means driving device of a moving body corresponding to the work. (31) A mobile body control system comprising: a command signal generation means for generating commands regarding various work operations of the mobile body as pulse codes; and a modulation means for modulating the above-mentioned beam by a skeleton pulse code and projecting the beam; Receiving the irradiation of the above light beam with a light receiving element,
The above-mentioned third apparatus includes a receiving means for detecting the pulse code, and a work control means for decoding the detected pulse code, extracting a work operation command, and controlling each work means driving device of the mobile body corresponding to the work. 2. Mobile object control method according to item 2.
JP56144798A 1981-09-16 1981-09-16 Control system for moving body Pending JPS5848104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56144798A JPS5848104A (en) 1981-09-16 1981-09-16 Control system for moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56144798A JPS5848104A (en) 1981-09-16 1981-09-16 Control system for moving body

Publications (1)

Publication Number Publication Date
JPS5848104A true JPS5848104A (en) 1983-03-22

Family

ID=15370700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56144798A Pending JPS5848104A (en) 1981-09-16 1981-09-16 Control system for moving body

Country Status (1)

Country Link
JP (1) JPS5848104A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017504A (en) * 1983-07-08 1985-01-29 Daifuku Co Ltd Light beam guidance device of unmanned car
JPS6017505A (en) * 1983-07-11 1985-01-29 Daifuku Co Ltd Light beam guidance device of unmanned car
JPS6111819A (en) * 1984-03-09 1986-01-20 マホ アクチエンゲゼルシャフト Railless floor conveyance system for freight transportation
US4812726A (en) * 1986-01-16 1989-03-14 Mitsubishi Denki Kabushiki Kaisha Servo circuit positioning actuator
JPH0535408U (en) * 1991-10-22 1993-05-14 日野自動車工業株式会社 Air suspension car crouching device
JPH0628772U (en) * 1992-09-09 1994-04-15 エスエムシー株式会社 Mobile signal transmission equipment
KR20140053032A (en) * 2011-08-09 2014-05-07 더 보잉 컴파니 Beam directed motion control system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154609A (en) * 1979-05-21 1980-12-02 Komatsu Ltd Automatic running control unit for construction machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55154609A (en) * 1979-05-21 1980-12-02 Komatsu Ltd Automatic running control unit for construction machine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017504A (en) * 1983-07-08 1985-01-29 Daifuku Co Ltd Light beam guidance device of unmanned car
JPH0340842B2 (en) * 1983-07-08 1991-06-20
JPS6017505A (en) * 1983-07-11 1985-01-29 Daifuku Co Ltd Light beam guidance device of unmanned car
JPH0359443B2 (en) * 1983-07-11 1991-09-10 Daifuku Kk
JPS6111819A (en) * 1984-03-09 1986-01-20 マホ アクチエンゲゼルシャフト Railless floor conveyance system for freight transportation
US4812726A (en) * 1986-01-16 1989-03-14 Mitsubishi Denki Kabushiki Kaisha Servo circuit positioning actuator
JPH0535408U (en) * 1991-10-22 1993-05-14 日野自動車工業株式会社 Air suspension car crouching device
JPH0628772U (en) * 1992-09-09 1994-04-15 エスエムシー株式会社 Mobile signal transmission equipment
KR20140053032A (en) * 2011-08-09 2014-05-07 더 보잉 컴파니 Beam directed motion control system
JP2014522064A (en) * 2011-08-09 2014-08-28 ザ・ボーイング・カンパニー Beam guided motion control system

Similar Documents

Publication Publication Date Title
JPS6197711A (en) Infrared-ray tracking robot system
JPS5848104A (en) Control system for moving body
WO2017030205A1 (en) Distance sensor and conveying robot using same
JP4611735B2 (en) Light control movable toy
WO2021255797A1 (en) Autonomous movement device, autonomous movement method, and program
JPH11122179A (en) Space light transmitter and space light transmission method
JPH01222889A (en) Safety device for mobile type robot
JPH031682B2 (en)
GB1448623A (en) Remote control for a car by laser beam
GB1157074A (en) Improvements in or relating to Self-Laying Endless Tracks and to Transporters Fitted therewith
JPS6048511A (en) Guidance for moving body and its communication device
JPS62105206A (en) Guiding device for unmanned guided vehicle
JP2002258945A (en) Monitor and control system for mobile object
JPS5855813A (en) Optical distance measuring meter
CN111399521A (en) Intelligent robot control system for substation inspection
JPS5984172A (en) Tracking type guidance and information transmission device of moving body utilizing light beam
JPS6351615B2 (en)
Kumar et al. Low Cost Line Follower Obstacle Detector and DTMF Tone Robot
JPH0436404B2 (en)
JPS5956178A (en) Remote control system of unmanned transport vehicle
JPS61154772A (en) Method and device for guiding of carriage
JP2002215235A (en) Self-traveling robot
JPS5957306A (en) Induction and steering method of on-ground mobile body
JPH05346467A (en) Moving body tracking type communication equipment
JPH0447306A (en) Method and device for guiding railless type automatic carrying truck